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ABSTRACT

For real-world applications, robots will need to continually learn in their environments through
limited interactions with their users. Toward this, previous works in few-shot class incremental
learning (FSCIL) and active class selection (ACS) have achieved promising results but were tested
in constrained setups. Therefore, in this paper, we combine ideas from FSCIL and ACS to develop a
novel framework that can allow an autonomous agent to continually learn new objects by asking its
users to label only a few of the most informative objects in the environment. To this end, we build on
a state-of-the-art (SOTA) FSCIL model and extend it with techniques from ACS literature. We term
this model Few-shot Incremental Active class SeleCtiOn (FIASco). We further integrate a potential
field-based navigation technique with our model to develop a complete framework that can allow
an agent to process and reason on its sensory data through the FIASco model, navigate towards the
most informative object in the environment, gather data about the object through its sensors and
incrementally update the FIASco model. Experimental results on a simulated agent and a real robot
show the significance of our approach for long-term real-world robotics applications.

1 INTRODUCTION

A primary challenge faced by robots deployed in the real world is continual adaptation to dynamic environments.
Central to this challenge is object recognition (Ayub & Wagner, 2020d), a task typically requiring labeled examples.
In this work, we address the problem of parsimonious object labelling wherein a robot may request labels for a small
number of objects about which it knows least.

In recent years, several works have been directed toward the problem of Few-Shot Class Incremental Learning (FSCIL)
(Tao et al., 2020; Ayub & Wagner, 2020c) to develop models of incremental object learning that can learn from limited
training data for each object class. The literature has made significant progress toward developing robots that can
continually learn new objects from limited training data while preserving knowledge of previous objects. However,
existing methods make strong assumptions about the training data that are rarely true in the real world. For example,
FSCIL assumes that in each increment the robot will receive a fully labeled image dataset for the object classes in that
increment, and the robot will not receive more data for these classes again (Tao et al., 2020; Ayub & Wagner, 2020c;d).
In real world environments, however, robots will most likely encounter many unlabeled objects in their environment,
and they will have to direct their learning toward a smaller subset of those unknown objects.

Active learning is a subfield of machine learning that focuses on improving the learning efficiency of models by
selectively seeking labels from within a large unlabeled data pool (Settles, 2009; Ayub & Fendley, 2022). Related
to active learning is active class selection (ACS) in which a model seeks labels for specific object classes (Lomasky
et al., 2007). ACS can allow autonomous robots operating in real-world environments to focus their learning objects
about which they know least. Most ACS models, however, have been designed for batch learning, i.e., they require
all the previous training data to be available when learning in an increment (Lomasky et al., 2007). Further, both
active learning and ACS techniques have previously been tested on static datasets rather than with real agents/robots
(Lomasky et al., 2007; Yoo & Kweon, 2019; Siddiqui et al., 2020).

In this paper, we combine ideas from ACS and FSCIL to develop a framework that can allow an autonomous agent
roaming in its environment to continually adapt by learning about the most informative objects through interaction
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Figure 1: Pepper learns about the environment by actively selecting classes to incrementally train on.

with its human users. Toward this, we build on a state-of-the-art (SOTA) FSCIL model and extend it with techniques
from ACS literature. We term this model Few-shot Incremental Active class SeleCtiOn (FIASco). We further integrate
a potential field-based navigation technique with our model to develop a complete framework that can allow an agent
to process and reason about its sensory data, navigate towards the most informative object in the environment, gather
the data for the object through its sensors and incrementally update the FIASco model. We perform extensive evalu-
ations of our approach in a simulated Minecraft environment and with a real robot in a laboratory setting. The main
contributions of the paper are as follows: (1) We develop a novel framework extending FSCIL techniques with ideas
from ACS and integrating it with autonomous agents. (2) Our experiments on a simulated and a real autonomous agent
demonstrate the effectiveness and applicability of our framework for the long-term deployment of robots in real-world
environments.

2 BACKGROUND

Class-incremental learning (CIL) considers the problem where labeled data is provided to the learner in increments
of full classes. When applied to neural networks, CIL results in catastrophic forgetting, where the model forgets the
previously learned classes and classification accuracy erodes (Kirkpatrick et al., 2017a). A limitation of recent CIL
methods is the reliance on storing a portion of the data from prior classes when learning new classes (Rebuffi et al.,
2017; Castro et al., 2018; Wu et al., 2019). These methods, often storing high-dimensional images, are not practical in
situations when the system has limited memory. To avoid storing real images, some CIL methods use a regularization
loss term to prevent the weights of the model from changing drastically when learning new classes (Kirkpatrick et al.,
2017b; Li & Hoiem, 2018; Dhar et al., 2019). Other CIL methods regenerate images of the old classes with generative
models (Ostapenko et al., 2019; Ayub & Wagner, 2021).

In a preliminary experiment, we compare the performance of a recent clustering approach (CBCL-PR) (Ayub & Wag-
ner, 2020c;a;b) against three popular CIL algorithms in a few-shot class-incremental learning setting: iCARL, POD-
Net, and DER. iCaRL (Rebuffi et al., 2017) stores exemplars in memory, uses a regularization term called distillation-
loss (Hinton et al., 2015), and Nearest Class Mean (NCM) to classify data (Mensink et al., 2013; Dehghan et al., 2019).
PODnet (Douillard et al., 2020) stores proxy vectors in memory, uses a spatially-based distillation-loss, and also uses
an NCM classifier. DER (Yan et al., 2021) uses a two-stage approach that freezes previously learned representations
and then augments the model with features from a fine-tuned extractor. The results of this preliminary experiment are
contained in the appendix.
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Few-shot class-incremental learning (FSCIL) adapts the class-incremental learning problem by limiting the number
of training examples per class. Specifically, the data is first divided among training and test sets such that xi ∈
(Xtrain∪Xtest), yi ∈ (ytrain∪ytest). Then the training data is divided into increments xtrain

i ∈ (Dtrain
0 ∪Dtrain

1 ∪
...Dtrain

n ), ytraini ∈ (C0 ∪ C1 ∪ ...Cn) such that each increment is composed of a unique set of classes (i.e., ∀i, j ∋
i ̸= j, Ci ∩ Cj = ∅). In the i-th increment, the model only trains on the corresponding training data {Dtrain

i , Ci}.
The model is then evaluated on a test set that includes all classes seen so far (i.e., {

⋃i
j=1 D

test
j ,

⋃i
j=1 Cj). The size of

an increment is Dtrain
0 containing Nb of full classes. A problem setting which contains N classes per increment and

k examples per class is known as N -way k-shot learning. In FSCIL, the problem is typically formatted with 100 full
classes in the first increment, and then 10-way 5-shot learning for the remaining increments (Tao et al., 2020).

In a preliminary experiment, we compare the performance of CBCL-PR (Ayub & Wagner, 2020c;a;b) against five
other FSCIL algorithms: TOPIC, SPPR, Decoupled-DeepEMD, CEC, and FACT. TOPIC (Tao et al., 2020) represents
knowledge with a neural gas network in order to preserve the topology of the feature space. SPPR (Zhu et al.,
2021) uses prototype learning, including random episode selection to adapt the feature representation and a dynamic
relation projection between old and new classes. Decoupled-DeepEMD (Zhang et al., 2020) decouples the training
of the embedding and the classifier; the embedding is trained on the initial increment of 100 full classes, while the
subsequent increments replace class-specific classifiers with new mean embeddings. CEC (Zhang et al., 2021) trains
an additional graph model to adapt prototypes of old and new classes. FACT (Zhou et al., 2022) is the current state-
of-art, which uses prototypes to limit the embedding space of old classes, reserving space for new classes. The results
of this preliminary experiment are contained in the appendix.

Active Class Selection (ACS) considers the problem where the learner can improve learning efficiency by requesting
more data from a specific class (Lomasky et al., 2007). In prior work, ACS was piloted to enable an artificial nose to
efficiently learn to discriminate vapors (Lomasky et al., 2007). In a batch learning setting, the learner used feedback
from the previous batch to influence the class distribution among samples in the next class. A recent approach to
ACS, PAL-ACS, demonstrated high performance by generating pseudo-examples, transforming an ACS problem into
an active learning problem (Kottke et al., 2021). This study was, however, limited to synthetic data.

Active incremental learning considers the problem where incremental learning and active learning are combined.
In active learning, the learner may actively request labels for training data. One study assumed labels are no longer
provided in the CIL setting (Belouadah et al., 2020). Another study allowed a learner to incrementally select points
for labeling from a point cloud (Lin et al., 2020). A third study allowed a learner to incrementally select examples for
annotation by a human expert (Brust et al., 2020). In these studies, the incremental learner selects training data to
label, which defines the active learning problem. In contrast, this paper uses incremental learning to select classes to
receive additional training instances, which is an active class selection problem.

3 MODEL DESCRIPTION

Our goal is to develop a model (FIASco) that can not only learn incrementally, but can also select – from observed
classes in a novel environment– classes which to receive more training instances. This problem is a modified class-
incremental learning problem, whereas the next training class is determined by environmental availability and agent
affinity. To learn incrementally, we ran preliminary experiments (see appendix) to identify CBCL-PR (Ayub & Wagner,
2020b; 2023) as the most promising approach for this problem. The identified approach not only produces SOTA
results on few-shot incremental learning benchmarks, but also represents object classes as clusters, which have intrinsic
statistics that can be used to to select the next training class in an environment. An overview of the model is shown
in Figure 2. In this section, we describe the components of FIASco, including incremental learning with clustering
(Section 3.1), active class selection with cluster statistics (Section 3.2), and navigation using a potential field created
by cluster-averaged statistics of the observed classes in the environment (Section 3.3).

3.1 INCREMENTAL LEARNING WITH CLUSTERS

In each increment, the learner receives the training examples (images) for new classes. Feature vectors of the images
are generated using a pre-trained convolutional neural net as a feature extractor. Clusters are created from feature
vectors that are within a tolerable distance of one another, enabling discrimination between classes and consolidation
of these classes into long-term memory. For more details of this clustering approach, please see the appendix or related
literature (Ayub & Wagner, 2020c;a;b).
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Figure 2: This flow summarizes the training phase of FIASco. An agent uses a fixed feature extractor to obtain and
cluster feature vectors from training images (solid line). The resulting centroids are used to fit a linear SVM, which
is then used for predicting real objects. Cluster statistics are used to inform the agent which real objects to pursue
and request more examples (training images). The training process combines few-shot class-incremental learning with
active class selection. *Please see the appendix for additional info on clustering or pseudo-rehearsal.

3.2 ACTIVE CLASS SELECTION WITH CLUSTER STATISTICS

We extend the learning approach to use feedback from cluster statistics. Specifically, the cluster space allows for
measures – cluster weight, class weight, and cluster variance – to guide the selection of new samples for training.

Figure 3: Left. An example distribution of data, where each point represents a training instance plotted in a two-
dimensional feature space. Middle. The clustering process groups similar training instances, extracting useful infor-
mation such as cluster weight and cluster variance. Right. The cluster-averaged class weight and class variance can be
used for determining the next class to request.

Cluster weight is the number of training examples included in an individual cluster within a class. Likewise, class
weight is the number of training examples per class. Cluster variance is calculated in a recursive manner such that
prior training data is not needed. As defined by Welford’s method, the n-th update (n > 1) of a cluster’s variance is
s2n (Welford, 1962; Knuth, 2014):

(n− 1)s2n − (n− 2)s2n−1 = (xn − x̄n)(xn − x̄n−1) (1)

These internal measures give direct feedback for active class selection (ACS). Recall that previous ACS methods use
results from the previous batch as feedback to specify the distribution of classes in the next batch. In incremental
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learning, the learner does not control the size of new batches. Therefore, class selection is instead an ordering of
preferred classes:

1. Low Class Weight: Prioritize classes with lower class weight. The intuition for this ordering is that adding
instances to a class with fewer instances will likely add useful information (new clusters), increasing overall
accuracy.

2. Low Cluster Weight: Prioritize classes with lower average cluster weight. The intuition for this ordering is
that adding instances to classes with undeveloped clusters (outliers) will be more likely to impact (shift/ add
weight to) the class-specific space, increasing overall accuracy.

3. Low Cluster Variance: Prioritize classes with lower average cluster variance. The intuition for this ordering
is that adding instances from classes with less noise will likely add valuable information with minimal overall
noise.

4. High Cluster Variance: Prioritize classes with higher average cluster variance. The intuition for this ordering
is that adding instances from classes with more uncertainty will likely provide more distinct clusters within
the class.

To further illustrate these measures, consider a distribution of two classes of data, as shown in Figure 3. Each instance
of data is initially plotted in the two-dimensional vector space (left). The clustering process (middle) extracts useful
cluster information, such as weight and variance. Finally, the extracted information can be cluster-averaged per each
class of data (right). Which class of data should be requested next for the purpose of training? According to the low
class weight metric, class A should be requested (4.0 < 7.0). According to the low cluster weight metric, class B
should be requested (3.5 < 4.0). For low cluster variance, class A should be requested (0.5 < 1.3). Of course, class
B should be requested for high cluster variance (1.3 > 0.5).

3.3 NAVIGATION FROM ACTIVE CLASS SELECTION

Integrating our incremental ACS approach on an autonomous agent requires developing a method for navigation to
move towards the most informative data samples. The selected method for navigation was a potential field approach,
simplified from (Koren et al., 1991). Figure 4 shows a potential field created from agent observations in the simulation.

Figure 4: A view of the agent in simulation (A) and the potential field created for navigation (B).

Motivated to apply these methods on a real robot that can make some inference about distal objects (d ≤ dfar)
and then identify objects at a closer distance (d ≤ dclose < dfar), the learner is given similar characteristics. In
experiment, distances for class identification and feature extraction were set to dfar and dclose, respectively. Objects
within distance dfar would be included in the learner’s internal potential field, where the true class label would be
known by the robot (i.e., close enough to ask a person for the true labels). For the i-th object in the potential field, an
attractive or repulsive force fi was assigned based on the order of class priority determined in ACS. The potential field
is then defined by equation (2), where the i-th observation is made at (xi, yi) and the robot position is (x0, y0). Objects
are only learned when the robot is within the distance dclose, where an image can be taken and features extracted for
training.
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(Fx, Fy) =

(
ni∑
i=1

fi
xi − x0

,

ni∑
i=1

fi
yi − y0

)
(2)

A common problem with potential fields is that the agent can get stuck in a local minima. Past solutions for this local
minima problem have included adding small, random perturbations or adjusting the gain of a particular contribution to
a potential field (Arkin, 1989). In our simulated experiment, the number of time steps spent inside a relative location
is counted. If the learner exceeds a specified count limit, it is directed back to the start position. Every time the learner
returned to the start position, it is sent in a new direction (i.e., if the learner came from the North, it is randomly sent
East, South, or West).

Figure 5: A view of the robot in the environment (A) and the A* path created for navigation (B).

In our experiment with a real robot, sensor error also presented problems. That is, not only is there possibility of
getting stuck in a local minima, an undetected obstacle would also prevent movement of the robot. To mitigate the
effects of sensing error, rather that use a continually-adapting potential field, the robot observed its surroundings once,
then used A* path-planning (Hart et al., 1968) to get to the location of selected class. This navigation method has less
benefit for actively selecting classes; please see the results from Section 5.2 for a discussion, or the appendix for more
info on the A* method. Figure 5 shows the A* path planning from robot observations in the environment.

4 EXPERIMENT: FSCIL-ACS IN MINECRAFT

Our first experiment is an image classification task within the Minecraft simulation environment. We aim to show that
a simulated robot can use internal feedback based on what it has learned about the environment (cluster space) to more
efficiently seek unknown objects in the environment.

4.1 EXPERIMENTAL SETUP

Overview. A robot in Minecraft is given two minute intervals to search the environment for new visual examples of
objects. The robot navigates with an internal potential field, created from objects within an observable distance (d <
dfar = 15). The robot can observe visual examples of an object only when it stands over that object (d < dclose = 1).
After the interval of searching, the robot processes the visual examples by updating its cluster space (FIASco) or re-
training on all of the previous training data (SVM). Finally, the robot makes predictions on the test data (static subset
of original dataset) and classification accuracy is recorded. The robot’s affinity to different classes of items is updated
using the ACS methods described in Section 3.2 , which directly affects the future potential field for navigation. The
experiment continues for 360 minutes. Please see the supplemental material for experiment replication notes.

Baselines. Cluster-based ACS methods were compared with a batch learner using ‘uniform’ and ‘redistricting’ class
selection. The ‘uniform’ method randomly sets the class order so that all classes have an equal opportunity to be
prioritized. The ‘redistricting’ method uses cross-validation to determine the most volatile (changing predictions when
new samples are added in the validation stage) classes to prioritize. The cluster-based ACS methods are described in
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Figure 6: Left. The map depicts the layout of the simulation environment. Middle. A single building has 30 containers
of items, which are arranged randomly. Right. The agent navigates between buildings, looking for particular items.

Section 3.2. Note that ‘uniform’ is also run for FIASco and that ‘high cluster variance’ is most similar to the previous
‘redistricting’ method without the time-consuming validation step.

Environment. Minecraft was used because it offers a large number of items and user control to create maps, enabling
a realistic, yet constrained spatio-temporal situation for an agent (Johnson et al., 2016). The experiment map (Figure 6,
left) contained four buildings. These buildings housed four unique groups of classes, grouped by the similarity of class-
averaged feature vectors (centroids). Within a building, items were randomly, uniquely assigned to one of the thirty
containers (Figure 6, middle). These containers served as the link to real-world items. As an agent approached the
location of a container, it would observe a certain type of Minecraft item. This observation was then mapped to a
class of the training dataset. While in the proximity of a container, the agent could choose to learn about the class by
standing directly over the container. In this case, the agent would receive a random 5-9 instances of a class for training,
after which the container would be empty. The container does not restock until the next round of exploration, after the
agent trains and updates its class affinity.

Data. Two datasets were used for training and testing of the image classifier: CIFAR-100 (Krizhevsky et al., 2009) and
the Grocery Store (Klasson et al., 2019) datasets. CIFAR-100 contains 60,000 32x32 images, evenly distributed among
100 classes. The classes include various types of objects, such as “beaver” or “rocket.” The Grocery Store dataset
contains 5,125 348x348 pixel images, non-uniformly distributed among 81 classes. The classes include various goods
found in grocery stores, such as types of fruits, vegetables, and packages. Both datasets were modified to have a 90:10
stratified train-test split. Please see the Appendix for more information about the data selection.

Implementation. The fixed feature extractor in this experiment was a Resnet-34 model pre-trained with Imagenet.
The test was run with ten random seeds and the average was determined. For clustering, the distance threshold D and
number of pseudo-exemplars NP were determined by validation. For the CIFAR-100 test, the values for D and NP

were set to 17 and 5, respectively. For the Grocery Store test, the values for D and NP were 15 and 40, respectively.
For batch learning, a support vector machine with a linear kernel was used (Boser et al., 1992) to make test predictions
given all extracted features.

4.2 EXPERIMENTAL RESULTS

Results are shown in Figure 7. The metric used for comparison was average incremental accuracy. Note that the
accuracy computed in this experiment is different from the preliminary study: rather than testing over only seen classes,
the learner is tested over all classes in the environment. The highest performer in the CIFAR-100 test was FIASco
with ‘low class weight’ ACS (44.2%), an improvement of 3.7% over the best case of batch learning ‘uniform’ ACS.
The highest performer in the Grocery Store test was FIASco using ‘low class weight’ ACS (63.4%), an improvement
of 5.3% over the best case of batch learning ‘uniform’ ACS.
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Figure 7: Test prediction accuracy over time in Minecraft simulation. Note that SVM classifier is a batch learner,
while FIASco, CEC, and FACT do not re-use training data. Average incremental accuracy is indicated.

5 EXPERIMENT: FSCIL-ACS WITH PEPPER

In the final experiment, a Softbank Pepper robot was tasked with an image classification in an indoor environment.
We aim to demonstrate that a real robot can use active class selection to more efficiently seek unknown objects (see
Figure 1).

5.1 EXPERIMENTAL SETUP

Overview. The robot is given sixty iterations to search the environment for new visual examples of objects. An
iteration consists of the robot (1) relocating, (2) searching, (3) choosing an object, and (4) receiving training examples.
To relocate, the robot first rotates with range sensors to define a localized map; an end location is chosen among the
free space, and A* path planning is used (Hart et al., 1968). To search, the robot uses a top camera, which provides
up to 2560x1080 pixel resolution at 5 fps. After taking images of the surrounding area, the robot uses the YOLO
algorithm (Redmon et al., 2016) pre-trained on the Microsoft COCO dataset (Lin et al., 2014) for object localization.
To choose an object, the robot uses centroids for (initially weaker) classification with active class selection to pick the
most desirable class. To receive training examples, the robot shows the human experimenter an image of the desired
class, for which the human can give the true label of the predicted class, as well as ten visual examples. After every
iteration, the robot updates its cluster space of learned classes. The robot’s affinity to different classes of items is
updated using the ACS methods. At the end of every three iterations, the robot makes predictions on the test data and
classification accuracy is recorded.

Baselines. Cluster-based ACS methods (Section 3.2) were compared with a batch learner using ‘uniform’ class selec-
tion, which randomly sets the class order so that all classes have an equal opportunity to be prioritized.

Environment. This test was completed in an indoor environment, where items were purchased from a local grocery
store to represent classes in the Grocery Store dataset (Klasson et al., 2019). Black cloths were used to cover tables
and serve as a backdrop for items. Please see supplemental materials for images of the included classes.

Data. The Grocery Store dataset (Klasson et al., 2019) was used for training and testing of the image classifier,
as in Section 4. The continually-trained image classifier was used for object recognition of the real objects in the
experiment. A subset of 41 classes of the Grocery store dataset was used, comprised of items that could be primarily
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stored at room temperature. The dataset was modified to have a 90:10 stratified train-test split. Real items were
distributed randomly by their coarse labels, such that similar items were grouped together (e.g., Red Delicious and
Yellow Delicious apples). Please see the Appendix for more information about the data selection.

Implementation. The fixed feature extractor in this experiment was a Resnet-34 model pre-trained with Imagenet.
For clustering, the distance threshold D and number of pseudo-exemplars NP were determined by validation. For this
test, the values for D and NP were 15 and 40, respectively. For batch learning, a support vector machine with a linear
kernel was used (Boser et al., 1992) to make test predictions given all extracted features.

5.2 EXPERIMENTAL RESULTS

Results are shown in Figure 8.

Figure 8: Test prediction accuracy over iterations in indoor
environment with Pepper. Note that SVM classifier is a
batch learner, while FIASco does not re-use training data.

The metric used for comparison was average incremen-
tal accuracy. The accuracy computed in this experiment
is the same as in Section 4: the learner is tested over
all classes in the environment. The highest performer
in the test was FIASco with ‘high cluster variance’ ACS
(60.7%), an improvement of 0.4% over the best case of
batch learning ‘uniform’ ACS.

While both experiments have a learner using the same
measures to prioritize classes, there is a difference in
the value of particular measures (e.g., high cluster vari-
ance.) This difference is likely due to the slight change
in process, where the robot learner is making an initially
weak prediction about the detected object classes before
requesting a class (see Section 5.1). Hence, a wrong
prediction about a class with a high variance may actu-
ally provide valuable insight into the divisions of nearby
classes.

In terms of average incremental accuracy, the FIASco
model does not show as much improvement over ACS
with SVM, as compared to the simulated experiment.
This result is likely due to the limitations in real navi-
gation, noted in Section 3.3. When the agent moved in
simulation, the potential field was updated at every time
step, calculating attractive weights for each new posi-
tion of observed class. In the real environment, the robot
made one full turn to observe its surroundings, then fol-
lowed a path prescribed by A*. As the robot moved, new class observations were not included as options for the robot.
The reason for this change was due to our particular robot being susceptible to drift error and sensor noise; we choose
to reduce the sensing demand such that the robot would not get itself stuck as frequently. Note that the navigation
method is kept constant in each experiment, so the comparison of ACS methods still holds true. In future studies, it
would be helpful to improve the robot controller so that the more reactive navigation method could be used.

6 CONCLUSION

To the authors’ knowledge, active class selection (ACS) has not previously been combined with few-shot incremental
learning (FSCIL). This paper extends an incremental learner to use cluster statistics as feedback for actively selecting
classes to learn. We have shown that the selected incremental learner (CBCL-PR) is not only state-of-the-art in a
pure few-shot class incremental learning setting, but also that the cluster space is valuable to intrinsically motivate the
learner to select specific classes. In both Minecraft simulation and real indoor environments, a robot that used cluster
statistics for active class selection out-performed uniform batch-learning.

A challenge of any (machine) learner is to gather labeled data for supervised training. We lay the groundwork for
more efficient gathering and usage of labeled data, relaxing previous assumptions that have hindered the feasibility
of robot learning. As opposed to previous methods in FSCIL, we do not rely on a prescribed class order, nor require
training on half the dataset prior to incremental learning. These assumptions are both unrealistic and not applicable to
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a robot learning in a new environment. As opposed to previous methods in ACS, we incorporate more current efforts
of incremental learning such that computational complexity is more favorable in the long-term (see Appendix).

Future work should build on the merging of active class selection and incremental learning. The most obvious reason
is that it is critical to bridge the gap between robot and agent learning. Additionally, there is opportunity to further
advance the state-of-art in FSCIL-ACS. For instance, in the context of clustering, a combination of statistics could be
used to guide class selection. More broadly, alternative internal measures could be used as feedback for class selection.
Regardless, the advantages in combining ACS and FSCIL motivate a new direction for robot learning.
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A APPENDIX

A.1 PRELIMINARY STUDY

Overview. Two settings for few-shot class-incremental learning are considered, denoted traditional and pure FSCIL.
In traditional FSCIL, as described in Section 2, the learner receives Nb-base classes of full data in the first session
(t = 1), then incrementally learns on the remaining data using N -classes per session with k-examples per class
(i.e., N -way, k-shot) on subsequent sessions (t > 1). The primary difficulties for learning in this setting include
catastrophic forgetting and over-fitting due to class imbalance. In pure FSCIL, as introduced here, the learner receives
no base classes of full data, but rather incrementally trains with N -way k-shot learning from the first session (t ≥ 1).
The primary challenges of this setting include catastrophic forgetting and learning without a large portion of the
dataset.

Baselines. CBCL-PR was compared with nine other methods: CBCL, iCarL, PODNet, DER, TOPIC, SPPR,
Decoupled-DeepEMD, CEC, and FACT. The methods formulated for class-incremental learning (iCarL, PodNet, and
DER) were adapted from previous works (Zhou et al., 2021; Douillard et al., 2020) to limit the number of shots. FACT
and CEC were re-run from original code for the pure FSCIL setting. Note that TOPIC and Decoupled-DeepEMD did
not have full code available for reproduction, while SPPR performed significantly worse with any reduction in Nb base
classes, so these methods are excluded from pure FSCIL comparison.

Data. The Caltech-UCSD Birds 200 (CUB-200) image dataset was used for a preliminary study (Welinder et al.,
2010). CUB-200 contains 11,788 images, uniformly distributed over 200 classes. The classes are different species of
birds.

Implementation. All methods used Resnet-18 pre-trained with Imagenet as a backbone. The preliminary study used
ten random seeds. As in previous work (Tao et al., 2020), traditional FSCIL incorporated 100 base classes and 10-
way 5-shot incremental learning. The first session (t = 1) trained for 50 epochs with an initial learning rate of 0.1,
decreased to 0.01 and 0.001 at 30 and 40 epochs, respectively. Subsequent sessions (t > 1) were trained with a
learning rate of 0.01 for 100 epochs. The mini-batch size was 128. For pure FSCIL, no base classes were used,
allowing 10-way 5-shot incremental learning from the first session. The learning rate was 0.01 for 100 epochs for all
sessions (t ≥ 1). The mini-batch size was 64.

Figure 9: A comparison of traditional and pure FSCIL on the CUB200 dataset. Note that 1CIL is modified for FSCIL,
2results are as reported, and 3traditional FSCIL is modified for pure FSCIL. Average incremental accuracy (y) and
performance decay (∆y) are indicated. ±σ is plotted as transparent.
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Results. The left plot of Figure 9 shows the traditional FSCIL setting. In this setting, the usual metric for comparison
is performance decay (∆y), a difference between first and last session incremental accuracy. This metric is consistent
with the goal of few-shot class-incremental learning to prevent catastrophic forgetting; however, the results are not
entirely clear when the lowest performance decay (best case) has a lower incremental accuracy (worst case) over a
majority of the test. Attempts have been made to minimize this ambiguity by re-using the first session training or
selecting hyper-parameters such that the first session has similar accuracy to baseline methods (Tao et al., 2020).
However, hyperparameters and full model architecture are not always shared, such that a major disadvantage of the
setting is reproducibility (Gibney); moreover, it is unrealistic for a robot to train on half of the dataset before entering
a new environment. Regardless, in traditional FSCIL, the best performer in performance decay is CBCL (−17.6%),
an improvement of 2.4% over FACT. The newer CBCL-PR ranks third in terms of performance decay (−22.2%). It
should be noted that other works have addressed more naturalistic learning paradigms, as opposed to the traditional
FSCIL setting. For example Ren et. al define a new learning setting that is not based on episodes of training and
testing but rather online, continual learning (Ren et al., 2020).

The right plot of Figure 9 shows the pure FSCIL setting. The results are less dependent on the accuracy of the first
session, which makes for a fairer overall comparison; furthermore, this setting is more realistic for robots learning
in unknown environments. The primary metric for comparison in this setting was average incremental accuracy (y),
which naturally considers performance decay (∆y) along with the rate of decay. The best performer in this setting
was CBCL-PR (48.4%), an improvement of 2.3% over CEC.

A.2 CBCL-PR ALGORITHM DETAILS

CBCL-PR is an updated version of CBCL (Ayub & Wagner, 2020c;a) and it is composed of the following primary
components: fixed feature extractor, agg-Var clustering, and the generation of pseudo-exemplars for test prediction.

In each increment, the learner receives the training examples (images) for new classes. Feature vectors of the images
are generated using a pre-trained CNN feature extractor. With the exception of the preliminary study, the feature
extractor was a Resnet-34 model pre-trained with ImageNet.

The learner applies Agg-Var clustering on the feature vectors of new classes. Agg-Var clustering, inspired by the
concept learning models of the hippocampus and the neocortex (Zeithamova et al., 2012; Mack et al., 2018), enables
the learner to discriminate between classes and consolidate these classes into long-term memory. Within the cluster
space, each new class is initialized by creating a centroid of a new cluster using the first feature vector in the training
set. Next, each additional feature vector xj

i (i.e., i-th image in class j) is compared to all the existing centroids for
class j. If the Euclidean distance between xj

i and the closest centroid is greater than a pre-defined distance threshold
D, a new centroid is created for class j and equated to xj

i . If the distance is less than D, the closest centroid is updated
with a weighted mean: the n-th update (n > 1) is calculated by equation (3) below:

nx̄n = xn + (n− 1)x̄n−1 (3)

Note that prior training data is not needed to calculate a new centroid, as the old centroid x̄n−1 and new feature vector
xn = xj

i are sufficient. This process results in a collection of centroids for the class j, Cj = {cj1, ..., c
j
Nj

}, where Nj

is the number of centroids for class j.

In the update of the cluster space, covariance matrices of new clusters are recorded prior to the discarding of training
data. These covariance matrices are used to generate a Gaussian distribution of pseudo-exemplars centered on their
respective centroid. A linear SVM1 is trained using pseudo-exemplars of the old classes and feature vectors of the new
classes. During testing, feature vectors of the test images are generated using the pre-trained CNN feature extractor
and passed through the linear SVM to classify test images based on their feature vectors. This process is shown in
Figure 10.

A.3 A* ALGORITHM DETAILS

In the final experiment, the FIASco algorithm was demonstrated on a Pepper robot navigating an indoor environment.
A* path planning was used in order to get from point A (current location) to point B (goal location). The A* algo-
rithm (Hart et al., 1968) is a common search method that incrementally extends the path until a goal state is reached
(or until the maximum number of iterations have been attempted, i.e., failure). Specifically, the agent extends the path

1For slightly higher accuracy, a shallow neural net was used in the preliminary study. Either classifier can be used.
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Figure 10: This flow summarizes the testing phase of FIASco, where extracted features from test images are passed
through the trained linear SVM to make predictions.

with the next node n minimizing the cost function (equation 4), where f(n) is the total cost, h(n) is the path distance
from start, and g(n) is the estimated path distance to goal.

f(n) = h(n) + g(n) (4)

In order to use this algorithm, the robot first used range sensors to compute a two-dimensional grid map. With an RGB
camera, the robot localized objects and placed them on this two-dimensional grid map. Based on which object was
most desirable, a goal location was selected. The A* algorithm was used to determine a path, given current and goal
locations, and the two-dimensional map of the relative surroundings.

A.4 COMPUTATIONAL COST DETAILS

The batch learner (SVM) and clustering approach (FIASco) both rely on a support vector machine with linear kernel
to make test predictions. The data used to train the classifier is the same data type (thus, same dimension), so a
comparison of computational complexity depends solely on the number of data points. For the batch learner, this
collection of data includes every training instance the learner has collected to a given iteration. Conversely, the
clustering approach of FIASco uses incoming data to update the centroids of the cluster space, for which the centroids
(fewer than the total training instances) are the data points; however, the pseudo-exemplars should also be considered.
Fortunately, the number of pseudo-exemplars are fixed per class and do not grow without bound. These observations
can be seen in a plot of training time versus run time, shown in Figure 11.

With the CIFAR-100 and Grocery store datasets, the FIASco only uses 5 and 40 pseudo-exemplars per class, respec-
tively (see Section 4). Additionally, the agent is permitted to explore longer in the CIFAR-100 environment, since the
dataset is much larger. These factors explain the trend of computational cost. Initially, the difference between training
instances and centroids is minimal, as the agent sees many new objects, creating many new centroids for a majority
of incoming data. Furthermore, as the agent has not explored much of the environment, the total number of training
points is small, as compared to the total number of pseudo-exemplars. Of course, as time progresses, the impact of the
pseudo-exemplars is reduced relative to the total number of data points. Here, clustering would see much benefit in
the long term.

A.5 TABULAR RESULTS

This section includes the tabular results from the simulation (Section 4) and real-world (Section 5) experiments.

A.6 POTENTIAL FIELD DETAILS

Regarding the forces used in the potential field, ACS methods were used to prioritize the order the classes. Then, the
classes were divide by quartile. The top 25 percent of classes received the highest magnitude of attraction, the next 25
percent received the next highest attraction and so on. Table 4 describes the different splits attempted. The actual splits
used in the simulation experiment were those described as mod 1. Note that − and + reflect attraction and repulsion,
respectively, while the integer that follows reflects magnitude.
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Figure 11: Train time versus exploration time in Minecraft simulation. Note that average incremental train time is
indicated and ±σ is plotted as transparent.

Table 1: Test prediction accuracy (%) as a function of run time, as the agent learns in Minecraft with CIFAR-100 data.
This data corresponds to the left side of Fig. 7. The highest accuracy at a given increment is indicated with bold font.

Method 0 12 24 36 48 60 72 84 96 108 120 min.
FIASco, low cluster weight 17.9 29.5 38.4 42.5 44.8 46.3 47.3 47.9 48.4 49.0 49.4
FIASco, high cluster variance 17.8 23.9 27.9 29.6 30.7 32.3 33.9 35.3 35.9 36.4 36.8
FIASco, low cluster variance 17.9 29.9 38.0 41.8 43.0 43.8 44.5 45.0 45.3 45.7 45.9
FIASco, low class weight 17.9 29.0 40.8 44.5 46.9 47.7 48.8 49.8 50.4 50.7 51.2
FIASco, uniform 17.9 27.7 34.8 39.3 42.7 45.3 46.8 48.0 49.0 49.9 50.6
SVM, redistrict 17.8 25.7 32.5 37.4 40.0 43.2 45.2 46.8 48.1 49.4 50.4
SVM, uniform 17.8 27.0 34.2 38.0 41.1 43.3 45.6 46.6 47.6 48.8 49.8
CEC, uniform 8.2 9.4 10.3 10.6 11.4 11.8 12.0 12.1 12.6 12.6 12.6
FACT, uniform 8.3 10.5 11.4 11.8 12.3 12.5 12.7 13.0 13.2 13.2 13.3

A.7 DATASET NOTES

Reason for datasets. The CIFAR-100 (Krizhevsky et al., 2009) dataset was chosen as a common benchmark in
continual learning tasks (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017). The Grocery Store dataset (Klasson et al.,
2019) represents an ecologically valid dataset that is very close to a real-world dataset. The authors specify the data
was collected from 18 different grocery stores with realistic features such as misplaced objects, varying distances,
angles, lighting conditions, etc.

Nature of training data. In both experiments, the data was modified to have a 90:10 stratified train-test split. The
test data (10 percent) was used for the evaluation of the classifier at every iteration. In the simulation experiment,
the learner selects from Minecraft objects within an observable distance. Each Minecraft object has a 1:1 mapping to
classes in the offline dataset, either CIFAR-100 or Grocery Store. Thus, when the agent is near n Minecraft objects, it
processes as being near n specific classes and selects a class. The learner receives training instances from the offline
dataset corresponding to the selected class. In the real-world experiment, the learner detects real objects using an RGB
camera, predicts the classes for which the objects belong with its classifier, and then selects from the predicted classes
to train. The learner receives training instances from the offline dataset corresponding to the real object requested
(from pointing). When the learner receives training instances from the offline dataset, it either stores the training
features (SVM learner) or uses the training features to update the cluster space and ACS methods (FIASco).
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Table 2: Test prediction accuracy (%) as a function of run time, as the agent learns in Minecraft with Grocery store
data. This data corresponds to the right side of Fig. 7. The highest accuracy at any point is indicated with bold font.

Method 0 6 12 18 24 30 36 42 48 54 60 min.
FIASco, low cluster weight 30.6 40.4 52.9 59.3 64.6 67.6 70.2 72.3 73.9 75.4 76.5
FIASco, high cluster variance 30.6 36.5 41.3 44.0 47.2 49.2 49.9 51.8 53.0 53.9 54.7
FIASco, low cluster variance 30.6 39.9 52.6 60.2 64.9 68.1 69.9 71.6 72.3 73.0 74.0
FIASco, low class weight 30.6 39.6 52.1 60.4 66.8 69.3 71.1 73.4 75.0 75.9 76.2
FIASco, uniform 30.6 38.2 45.8 52.5 57.3 60.7 64.4 67.2 69.4 71.6 74.4
SVM, redistrict 30.5 37.3 44.6 52.2 57.3 62.0 64.7 68.0 70.0 72.2 74.0
SVM, uniform 30.5 37.4 44.9 50.8 56.7 61.6 65.4 68.7 71.3 73.0 74.8
CEC, uniform 52.6 47.6 51.7 56.0 60.2 62.0 63.6 65.5 66.3 67.4 69.0
FACT, uniform 51.4 50.3 54.0 57.9 61.1 62.4 63.9 66.2 66.7 67.2 68.0

Table 3: Test prediction accuracy (%) as a function of requested classes, as Pepper learns with Grocery store data.
This data corresponds to Fig. 8. The highest accuracy at any point is indicated with bold font.

Method 0 6 12 18 24 30 36 42 48 54 60 requests
FIASco, low class weight 54.5 57.2 60.2 58.2 60.2 60.9 61.5 63.9 62.2 66.6 67.9
FIASco, high cluster variance 54.5 56.5 56.9 57.2 59.2 58.9 62.5 64.2 67.6 67.2 68.2
FIASco, low cluster variance 54.5 54.2 54.5 55.5 57.5 58.5 59.9 61.5 61.5 63.5 63.2
FIASco, low cluster weight 54.5 52.2 52.8 56.9 59.9 60.9 62.5 61.9 62.9 62.5 63.2
FIASco, uniform 54.5 54.8 55.2 56.2 59.2 59.9 60.9 63.9 65.2 66.2 66.6
SVM, uniform 54.8 51.5 57.2 57.9 59.5 60.5 62.2 64.9 65.6 66.9 67.2

Table 4: A breakdown of attraction splits per quartile of attractive classes.

Magnitude Descriptor Q1 Q2 Q3 Q4
attract + repulse −20 −10 +10 +20
attract + ignore −20 −10 00 00
mod 1 −20 −10 +05 +05
mod 2 −20 −10 −05 −05
mod 3 −20 −10 −10 −10
attract only −20 −20 −20 −20

Future work. Evaluating these methods in a more cluttered or less structured environment could also be an interesting
problem. Testing on such cluttered data for ACS has not been explored in most prior works (Lomasky et al., 2007;
Wu & Parsons, 2011; Kottke et al., 2021). This application might also require object segmentation or object detection,
which is currently out of the scope of this work. We do note that grocery stores are highly structured environments in
which products are naturally categorized and organized in a logical manner. Moreover, items are placed on the shelves
in a reasonably uncluttered manner.
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