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ABSTRACT

A key challenge in training generally-capable agents is the design of training tasks that facilitate
broad generalization and robustness to environment variations. This challenge motivates the prob-
lem setting of Unsupervised Environment Design (UED), whereby a student agent trains on an
adaptive distribution of tasks proposed by a teacher agent. A pioneering approach for UED is
PAIRED, which uses reinforcement learning (RL) to train a teacher policy to design tasks from
scratch, making it possible to directly generate tasks that are adapted to the agent’s current capa-
bilities. Despite its strong theoretical backing, PAIRED suffers from a variety of challenges that
hinder its practical performance. Thus, state-of-the-art methods currently rely on curation and mu-
tation rather than generation of new tasks. In this work, we investigate several key shortcomings of
PAIRED and propose solutions for each shortcoming. As a result, we make it possible for PAIRED
to match or exceed state-of-the-art methods, producing robust agents in several established challeng-
ing procedurally-generated environments, including a partially-observed maze navigation task and a
continuous-control car racing environment. We believe this work motivates a renewed emphasis on
UED methods based on learned models that directly generate challenging environments, potentially
unlocking more open-ended RL training and, as a result, more general agents.

1 INTRODUCTION

Deep reinforcement learning (RL; Sutton & Barto, 1998) has been successfully applied to many challenging domains
in recent years ranging from games (Silver et al., 2016; 2017; Vinyals et al., 2019; Berner et al., 2019; Hu et al., 2021)
to real world problems such as controlling nuclear fusion plasma (Degrave et al., 2022). Many of these achievements
are attributed to techniques like domain randomization and self-play, which provide an adaptive curriculum for training
the agents. While these methods have led to impressive results, most successes are limited to single domains, neces-
sitating re-training for each new setting. Instead, there has recently been interest in training more generally capable
agents (Open Ended Learning Team et al., 2021; Adaptive Agent Team et al., 2023), which remains a considerable
challenge (Zhang et al., 2018; Song et al., 2020).

As focus shifts from mastery to generality, emphasis shifts away from designing new agents to focus more on gener-
ating sufficiently rich environments. However, manually designing these environments is a tremendous engineering
challenge, and even when possible, it is often the case that many instances of the environment are incompatible with
training a robust generalist agent. Instead, it may be desirable to automatically discover useful training environments.
In light of this, the Unsupervised Environment Design (UED; Dennis et al., 2020) paradigm has emerged, whereby a
student agent trains on an adaptive distribution of tasks proposed by a teacher which ultimately aids in automatically
discovering a curriculum of environments at the frontier of the agent capabilities.

A pioneering approach for UED is PAIRED, where the teacher is an RL agent trained to maximize relative regret,
defined as the difference in performance between two student policies, called the protagonist (the student policy) and
an antagonist (cooperating with the teacher agent). Using the teacher objective of maximizing regret between the
antagonist and protagonist, Dennis et al. (2020) showed that the teacher proposes increasingly complex environments,
which leads to a robust generalist student.

∗ : Equal Contribution
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Figure 1: The Unsupervised Environment Design (UED) framework (Dennis et al., 2020) In an Underspecified POMDP, the
layout and dynamics of the environment are left underspecified as a free parameter θ. The level-generator (either learned or search-
based) can then set this parameter to design POMDP levels. (b) This work focuses on the Unsupervised Environment Design (UED)
paradigm, which is a method for designing environments using a curriculum, either via a learned adversary to generate new levels
or via smart curation of previously-seen levels.

However, PAIRED suffers from a variety of challenges which hinder performance. The predominant issue is that
optimizing the teacher with RL is incredibly challenging and suffers from the following problems:

• Non-Stationarity: Both student policies, the protagonist and the antagonist, are updating, making the problem
nonstationary.

• Long-term Credit Assigment: There is a challenging credit assignment problem since the teacher must fully
specify an environment before receiving a sparse reward in the form of feedback from the students.

• High-dimensionality: The high-dimensionality of the space can make the task difficult for the RL algorithms
used by the teacher and students, leading to sub-optimal performance.

Due to the above-mentioned problems, PAIRED empirically tends to perform worse than one would expect it to based
on the theoretical guarantees. In this paper, we will show and also try to alleviate the following two problems:

1. P1 - Entropy Collapse: The adversary (teacher) faces a challenging RL task due to the high-dimensionality
of the environment design space, leading to difficulties in exploration and policy entropy collapse for the
agents.

2. P2 - Fall Behind: In the PAIRED curriculum, protagonists can still face difficult exploration tasks, leading
to sub-optimal performance. We demonstrate one such case in the Car Racing environment where the teacher
produces simple levels favoring the antagonist, causing the protagonist to fall behind.

Thus, alternative UED algorithms focus on sampling tasks uniformly at random from the full distribution, relying on
curation and mutation to provide an effective curriculum (see Section 2.3), as opposed to generation (guided by the
regret metric, which aids in producing meaningful levels based on the agent’s current capabilities) in PAIRED.

In this paper, we seek to investigate the major shortcomings in PAIRED, seeing if PAIRED can be made competitive
with state-of-the-art methods. We propose a variety of techniques for stabilizing training by overcoming problems
P1, P2. In particular, we explore regularization approaches to aid the teacher in better exploration of the level-
design space, alternative optimizers and finally behavior distillation across students. In each case we provide rigorous
empirical analysis and demonstrate the specific mechanisms by which these approaches improve performance. As a
result of these variations, we make it possible for PAIRED to match or exceed state-of-the-art methods, producing
general agents in challenging procedurally generated environments. We believe this work paves the way for a renewed
emphasis on methods that learn to automatically generate environments, potentially unlocking more open-ended RL
training and as a result more robust, general agents. We have released the accompanying code as part of the existing
DCD repository at https://github.com/facebookresearch/dcd.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

In reinforcement learning ((RL; Sutton & Barto, 1998), a Markov Decision Process (MDP) is a mathematical frame-
work that models an agent’s decision-making process. An MDP is defined as a tuple (S,A, T ,R, γ), where: S is
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a set of states, A is a set of actions, T is the state transition probability function, denoted as P (s′, s|a), R is the
reward function, denoted as R(s, a), and γ is the discount factor, a scalar between 0 and 1, used to balance the
trade-off between immediate and future rewards. The agent’s objective in an MDP is to learn an optimal policy, de-
noted as π (which is a mapping from states to actions) that maximizes the expected cumulative discounted reward
over time, defined as E[

∑∞
t=0 γ

tR(st, π(st))]. The value function, denoted as V π(s), is a measure of the long-term
expected cumulative discounted reward for a given state s, when following a specific policy π. It is defined as:
V π(s) = E[

∑∞
t=0 γ

tR(st, π(st))|s0 = s].

However, in many environments, the full context of a state is not known to the agent. Rather, the agent gets a partial-
view of the state, also called as observation, which it then processes for decision-making. Such an MDP is termed
as Partially-Observable Markov Decision Process (POMDP). In this case, the tuple is (S,A,O, I, T ,R, γ), where
I : S → ∆(O) is the set of observations that the agent receives. We refer the readers to Figure 1 (a) for a qualitative
representation of POMDPs.

2.2 UNSUPERVISED ENVIRONMENT DESIGN

This work considers a more general problem setting where we seek to train an agent across an entire distribution of
POMDPs. In this case there are set of design parameters θ which control the initial state, transition function, and
reward function, e.g. the positions of obstacles in a maze. Given such parameters θ we can model the target domain
as an Underspecified Partially-Observable Markov Decision Process (UPOMDP; Dennis et al., 2020). A UPOMDP
is defined as a tuple M = (θ,S, S̃0A,O, I, T ,R, γ), where θ as the set of free parameters of the environment, S is
the set of states, S̃0 : θ → S is the initial distribution of states which can depend on the parameters θ, A as the set
of actions, O as the set of observations, I : S → ∆(O) is the observation function, T : S × A × θ → ∆(S) is the
transition function which can depend on the parameters θ, R : S × θ → R is the reward function which can depend on
the parameters θ, and γ is the discount factor. Here ∆(X) represents the set of distributions over the set X . Without
setting the parameters θ, the environment, and thus the task, is underspecified and the UPOMDP can be thought of as
a level editor. Once the parameters θ have been specified, the initial state distribution, reward function, and transition
function are all fully defined, and the goal of the agent is to maximize the expected discounted sum of rewards as usual
(Figure 1).

Unsupervised Environment Design (Dennis et al., 2020) considers the problem whereby a teacher (or adversary) must
select levels from this distribution, such that the resulting student agent is capable of systematic generalization across
all conceivable (solvable) levels. In order to do this, the teacher must maximize a utility function U . The most
prominent recent approach to UED is to use a teacher that maximizes the concept of regret, defined as the difference
between the expected return of the current policy π and the optimal policy π∗:

UR
t (π, θ) = max

π∗∈Π
(REGRETθ(π∗, π)) (1)

= max
π∗∈Π

(V θ(π∗)− V θ(π)) (2)

Regret-based objectives are desirable as it can be argued, under certain set of assumptions (Theorem 1; Dennis et al.,
2020), that they promote the creation of the simplest possible levels that the agent cannot currently solve. Moreover,
if St = Π is the set of strategies that the student agent can take and St = Θ is the set of strategies that the teacher
can take, then if the learning process reaches a Nash equilibrium, the resulting agent policy π provably returns to a
minimax regret policy (Theorem 2; Dennis et al., 2020), defined as:

π = argmin
πA∈Π

max
θ,πB∈Θ,Π

(REGRETθ(πA, πB)). (3)

2.2.1 UED WITH A LEARNED ADVERSARY

Protagonist Antagonist Induced Regret Environment Design (PAIRED; Dennis et al., 2020) is a method for generating
an adaptive curriculum of levels by training the teacher agent πθ to generate levels which maximize the relative regret
between two student agents, referred to as the protagonist πp and antagonist πa. By designing levels on which the
antagonist succeeds and the protagonist fails, the teacher (adversary) in PAIRED develops challenging levels while
avoiding the failure case of generating overly difficult or unsolvable levels. Both the protagonist and antagonist agents
are then trained on the generated levels resulting in an emergent curriculum of increasingly complex levels as the
teacher adapts to find new challenges the protagonist cannot yet solve. The teacher agent is tasked with maximizing
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the relative regret between the two student agents using REGRETθ⃗(πP , πA) = V θ⃗(πA) − V θ⃗(πP ). This approach
allows for the endless generation of new levels, with the ultimate goal of continually challenging and improving the
abilities of the two student agents.

Algorithm 1 PAIRED (Dennis et al., 2020)
1: Input: Initial policies for protagonist πP , antagonist

πA, initial environment generator Λ̃
2: while not converged do
3: Use Λ̃ to generate environment parameters θ⃗
4: Collect a trajectory τP using πP in environment θ⃗
5: Update πP to minimize Lppo(πP )

6: Collect a trajectory τA using πA in environment θ⃗
7: Update πA to minimize Lppo(πA)
8: Compute the regret as:

REGRETθ⃗(πP , πA) = V θ⃗(πA)− V θ⃗(πP )

9: Update Λ̃ to maximize regret
10: end while

The PAIRED algorithm (shown in Algorithm 1) is an it-
erative process, where in each iteration, the teacher (ad-
versary) generates the parameters of the environment,
θ⃗ ∼ Λ̃, both student agents will play. The protagonist
and antagonist agents then generate several trajectories
within that same environment. The protagonist is trained
to minimize regret, while the antagonist and the teacher
(environment adversary) are trained to maximize regret.
For more details on the level-generation process as well
as the architectures of teacher and student agents, we re-
fer readers to Section A.

2.3 UED WITH SEARCH-BASED CURATOR

Another approach to UED is Prioritized Level Re-
play (PLR; Jiang et al., 2021b;a). This method trains the
agent on challenging levels found by curating a rolling
buffer of the highest-regret levels surfaced through random search over possible level configurations. PLR approxi-
mates regret using the positive value loss, given by:

1

T

T∑
t=0

max

(
T∑

k=t

(γλ)k−tδk, 0

)
(4)

where λ and γ are the Generalized Advantage Estimation (GAE) and MDP discount factors respectively, and δt, the
TD-error at timestep t. PLR has been shown to produce policies with strong generalization capabilities, but it is
limited to only curating randomly sampled levels. More recently, ACCEL (Parker-Holder et al., 2022) built on PLR to
include a mutation operator, making it possible to increase the regret of existing levels. This small modification allows
for a rapid escalation in complexity, and results in strong zero-shot transfer generalization, including the challenging
BipedalWalker environment.

Despite these recent innovations, both ACCEL and PLR rely on random samples for level-generation — and subse-
quently mutate them randomly. In our work we seek to improve upon PAIRED such that it is competitive with these
newer approaches.

3 LIMITATIONS OF PAIRED

In theory, if the PAIRED algorithm reaches a Nash equilibrium, the protagonist policy has desirable properties like
being at least as good as the antagonist policy on every level. However, in practical implementations, the teacher is
trained using RL, which poses a series of challenges. Concretely, the teacher MDP consists of state s which is the
current environment configuration and actions a that incrementally change it, until the end of the episode. The teacher
receives a sparse reward r once both the student policies have been evaluated in the level.

This is a difficult RL problem—the teacher must grapple with challenging credit assignment from only getting reward
after building a complete level, non-stationarity from updating students and finally a potentially high dimensional
problem as there are often many parameters that need to be set in a given environment. For instance, the maze
environment has more than 169 parameters which need to be set before the environment designer can receive any
reward signal, presenting the environment designer with a high-dimensional exploration problem.

3.1 P1: ENTROPY COLLAPSE

Indeed, a typical instantiation of PPO struggles to properly explore the space, with the entropy of the policy often
collapsing on an overly narrow set of possible level designs. In Section 4.1, we propose to circumvent this challenge
by simply adding an entropy bonus which promotes exploration and also acts as a regularizer preventing premature
convergence to suboptimal policies. Further, we also explore alternative optimizers in Section 4.2 since RL may not
be best fit for this blackbox optimization problem.
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Figure 2: PAIRED Breaks Down in CarRacing: Left: Mean returns of protagonist and antagonist on the training levels generated
by the adversary. Center: Performance of the protagonist in the CarRacing-v0 validation track as the training progresses. Right:
Track complexity of the levels generated by the adversary throughout training. After a while, the training returns of the protagonist
saturate, whereas the antagonist keeps on doing well even in very simple tracks (as track complexity decreases severely after 2M
steps of training), thus leading to a never-ending cycle of degenerate levels.

3.2 P2: FALL BEHIND

As a result of this complexity, the system often converges to suboptimal solutions. For example, in the CarRacing
UED environment proposed in Jiang et al. (2021a), θ corresponds to the coordinates for 12 control points defining a
track. As we see in Figure 2, the adversary finds tracks that initially overly exploit the protagonist agent, which never
subsequently recovers. Throughout training, the mean return of protagonist always stays lower than that of antagonist,
thus leading to a vicious cycle where neither the tracks become complex nor the protagonist is able to learn any useful
skills. After 5M steps of training, the protagonist still cannot solve simple round tracks, that are easy for the antagonist
agent training with the same algorithm on the same data. This example also demonstrates the significance of getting
the right curriculum, with agents unable to learn anything at all after seeing the wrong sequence of initial tasks.

This example failure mode of PAIRED can also offer a potential solution—in such cases the protagonist’s exploration
problem can be avoided by treating the antagonist, which is already solving the task by the PAIRED construction, as
an expert demonstrator. In Section 4.3 we describe another possible improvement to PAIRED, adding a behavioral
cloning loss to the protagonist so it may learn from the antagonist’s solution, inspired by OpenAI et al. (2021) in the
context of asymmetric self play (Sukhbaatar et al., 2017).

4 REVISITING DESIGN CHOICES IN PAIRED

In light of the limitations outlined in the previous section, we proposed several design modifications to improve
PAIRED. These include the addition of a high entropy bonus (HiEnt), an investigation of the impact of using different
optimizers for the level-generating network (Evo), and the implementation of an online behavioral cloning term (BiBC,
UniBC). The effectiveness of these modifications will be discussed in the following sections.

Through our experiments, we show that our proposed changes produce more robust and transferable policies. In the
following subsections, we will show how our method proposed modifications improves zero-shot generalization over
RobustPLR in CarRacing, reaches a performance comparable to ACCEL in Minigrid, and is able to generate complex
levels in BipedalWalker by changing the optimizer of the teacher.

4.1 ENTROPY BONUS

In the context of maze environments, empirically we observe during training that the entropy of the teacher (adversary)
collapses before training is complete (see Figures 12 and 13). Therefore, to help alleviate that issue (Problem P1 in Sec-
tion 1), we propose to add a high entropy bonus to the policy of the agents (and term the baseline as PAIRED+HiEnt
(HiEnt)), which encourages both, the teacher and the students (protagonist and antagonist), to explore more robustly.
Overall, adding such regularization presents a promising approach for addressing the exploration challenge for both,
level-design and action-space.

4.2 OPTIMIZATION ALGORITHM

It is common for Deep RL algorithms to utilize Proximal Policy Optimization (PPO; Schulman et al., 2017) as the
objective. However, we hypothesize that the problems P1 and P2 mentioned in Section 3 are also affected by the
choice of optimizer used inside the teacher agent. In Section 5, we examine the impact of using different optimizers,
specifically a PPO-based teacher (learned editor from PAIRED) and a search-based editor (from ACCEL), on the
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performance of the level-design process. While a learned editor uses a neural network to design the best level based
on the current capabilities of both the student agents, a search-based editor seeks to curate the best level from a pool
of randomly generated levels based on a score metric (Jiang et al., 2021b;a; Parker-Holder et al., 2022), and hence the
editor here has no learned weights. Our baseline, referred to as PAIRED+Evo (Evo), is described in the accompanying
algorithm 3 which is based on the algorithm from Parker-Holder et al. (2022) and we highlight our modifications in
violet font. More specifically, we replace the teacher from PAIRED with a random level editor from ACCEL and use
the approximate regret (calculated from the antagonist and the protagonist) as the scoring function for replaying or
editing the next set of levels.

4.3 PROTAGONIST-ANTAGONIST BEHAVIORAL CLONING

Protagonist

Antagonist

Rollout policy

Rollout policy with 
stop gradient

Protagonist’s 
action distribution

Antagonist’s 
action distribution

Add KL regularizer to PPO loss

Update protagonist

Figure 3: PAIRED+BC baseline in the context of the DCD framework (Jiang et al., 2021a). PAIRED+BC makes use
of an additional regularization term which is added to the PPO loss of both (or either) of the student agents at regular
intervals. For more details, refer to Section 4.3.

The population-based Peer-to-Peer Online Distillation Strategy for RL (P2PDRL; Zhao & Hospedales, 2021) was
demonstrated to improve robustness in a randomized continuous control domain. Taking inspiration from P2PDRL,
we propose PAIRED+BC, an online-policy distillation method that generalizes prior methods, whereby the protago-
nist agent optimizes the RL objective while simultaneously behaviorally cloning the antagonist agent (unidirectional
behavioral cloning UniBC), and, if needed, the antagonist agent does the same to the protagonist (bidirectional behav-
ioral cloning BiBC).

Policy distillation for policy-gradient RL commonly occurs through minimizing the KL divergence of the student’s
policy π from the teacher’s policy π′, DKL(π

′||π). When performed online with PPO training, policy distillation for
a student π with parameters ϕ thus adds an additional regularization term to the PPO objective, JPPO(ϕ):

Lϕ = LPPO(ϕ) + Ea,s∼πϕDKL(π
′(a|s)||πϕ(a|s)), (5)

PPO performs minibatch SGD over multiple epochs of the collected transition data. To ensure each policy update
is regularized by the policy distillation loss, we jointly optimize Equation 5 periodically in each minibatch update.
Algorithm 2 provides a high-level overview of the PAIRED+BC algorithm.

It should be noted that our best results are achieved with our PAIRED+BC method when utilizing a high entropy bonus
for both the students and teacher policies (i.e. UniBC+HiEnt or BiBC+HiEnt). While either of the two baselines,
i.e. PAIRED+BC (UniBC or BiBC) without entropy or simply PAIRED+HiEnt, may yield improvements over the
PAIRED method alone, they are not sufficient as standalone, optimal approaches.

5 EXPERIMENTAL RESULTS

In this section, we examine the empirical performance of our proposed fixes on three challenging environments,
CarRacing F1 (Brockman et al., 2016), Minigrid (Chevalier-Boisvert et al., 2018) mazes with 0-60 uniformly sampled
blocks (Jiang et al., 2021a; Parker-Holder et al., 2022), and the BipedalWalker environment (Wang et al., 2019). We
describe the technical details for each of these environments in Appendix A. For demonstrating the effectiveness of the
proposed design choices in highly challenging environments, we also report results on the Minigrid Maze environment
with a strict budget of 25-blocks. In this environment, the agents are thus trained on highly sparse grids (see Figure 15)
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and tested on the same mazes as in Minigrid 0-60 uniform environment, therefore increasing the difficulty of zero-shot
transfer evaluation. All in all, we run the following baselines and ablations in each environment:

PAIRED The original PAIRED algorithm from an open source library1

HiEnt Using the PAIRED baseline from above, and adding high entropy bonuses to the teacher and students

Uni/BiBC We run both Bidirection (BiBC) and Unidirectional (UniBC) to demonstrate the effectiveness of both
approaches

Uni/BiBC+HiEnt To take things further, we combine the two design choices to see how much more we can benefit

PLR⊥, ACCEL Additionally, we report the performance of existing SoTA approaches in each environment and
also show how our suggested improvements help PAIRED achieve comparable performance with respect
to replay-guided UED approaches.

5.1 CARRACING

First, we consider the CarRacing environment, previously described in Section 3. In Figure 4 we show the performance
of all PAIRED variants as well as the DR and Robust PLR baselines in the held-out F1 benchmark. As we can see,
adding an entropy bonus to the students and the teacher (adversary) is sufficient to avoid the sub-optimal local optimum
we previously saw in Figure 2. Overall, the track complexity increases significantly, which can be seen in Figure 11
and Figure 4(a). Furthermore, PAIRED+BiBC+HiEnt stabilizes the open-ended learning process by ensuring that the
protagonist is able to learn well from the curriculum (see Figure 11 and provides significant gains over PAIRED, even
beating the current SoTA, Robust PLR (Jiang et al., 2021a) and a non-UED approach (Tang et al., 2020), by a clear
margin in the CarRacing F1 benchmark. Even the BiBC, UniBC as well as UniBC+HiEnt variants are able to improve
the performance of the protagonist over vanilla PAIRED, however, they are not sufficient in making the student agents
more competitive.

Update: 0 Update: 1400 Update: 2400

PAIRED

PAIRED
+ BiBC
+ HiEnt

(a) Tracks
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200

400
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Te
st
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et

ur
n

Tang et al, 2020
PLR DR
PAIRED HiEnt
UniBC BiBC
UniBC+HiEnt
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(b) Mean Performance

Figure 4: (a) F1 levels generated by the adversary as training progresses. (b) Mean aggregate results on real-world
F1 tracks (see Figure 9) averaged over 10 seeds (error bars represent the standard deviation). When equipped
with a Bidirectional BC term and a high entropy bonus, the protagonist trained in the CarRacing F1 environment
(PAIRED+BiBC+HiEnt) is able to generalize better and the teacher agent produces more challenging tracks.

As well as improving transfer performance, we note the complexity of emergent problems generated by the algorithm
drastically improved—tracks generated by the teacher become much more difficult, comprising of sharper edges and
turns, compared to those under PAIRED, and start to resemble real-world tracks (see Figure 14 in Appendix B).

5.2 MINIGRID 25-BLOCKS

0.2 0.4 0.6 0.8
BiBC+HiEnt

UniBC+HiEnt
BiBC

UniBC
HiEnt

PAIRED
Robust PLR

IQM

0.4 0.6 0.8

Optimality Gap

Min-Max Normalized Score
Figure 5: IQM and Optimality Gap for all baselines trained
on the Minigrid 25-Blocks environment average across 5 seeds.
PAIRED+UniBC+HiEnt is able to significantly improve the zero-shot
transfer performance over PAIRED when evaluated on 12 test mazes
(Table 1).

Next we consider the Minigrid environment which
was first introduced in Chevalier-Boisvert et al.
(2018). Readers may refer to Section A for a sum-
mary of this environment. In this experiment, we
used the default hyperparameters from Jiang et al.
(2021a) for PAIRED, which has an entropy coeffi-
cient of 0.0 for both, students and teacher. As shown
in Figure 5, simply increasing the entropy bonus co-
efficient for both the students and the teacher (adver-
sary) leads to significant improvement on the IQM
metric (calculated using RLiable library (Agarwal
et al., 2021)), and the teacher (adversary) continues

1https://github.com/facebookresearch/dcd
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generating challenging mazes, as demonstrated in Figure 12. Since in this environment, there’s a sharp drop in the
PAIRED’s adversary’s entropy (see Figure 12), hence, similar to CarRacing, we found that increasing the entropy
bonus helps in improving the performance (see UniBC+HiEnt and BiBC+HiEnt).

Table 1 shows the performance of the design choices in individual test mazes. We find that in this training environment
(with a fixed budget of 25 blocks), the protagonist benefits only by unidirectional cloning (unlike bidirectional BC in
the case of CarRacing). This maybe happening because there is very less difference between the training returns of
the protagonist and antagonist (Figure 12) and both the agents are doing equally good in the sparse mazes, thereby
eliminating the need for the antagonist to copy protagonist’s actions. Overall, PAIRED+UniBC+HiEnt is able to
achieve a performance on-par with RobustPLR, thus demonstrating the benefits of our proposed design modifications.

Table 1: Zero-shot test performance results for each baseline in 12 challenging minigrid mazes when trained with a budget of
25-blocks only. Each baseline has been evaluated for 5 seeds and 100 episodes per seed. We report mean and standard deviation
for Solved Rate as the metric here, highlighting in bold the best performing agents.

Environment Robust PLR PAIRED HiEnt UniBC BiBC UniBC+HiEnt BiBC+HiEnt

Labyrinth 0.66± 0.16 0.27± 0.17 0.28± 0.18 0.0± 0.0 0.0± 0.0 0.77± 0.15 0.19± 0.13
Labyrinth2 0.56± 0.13 0.32± 0.2 0.24± 0.18 0.0± 0.0 0.0± 0.0 0.41± 0.18 0.21± 0.14
LargeCorridor 0.71± 0.16 0.26± 0.17 0.68± 0.18 0.38± 0.22 0.48± 0.17 0.59± 0.19 0.79± 0.14
Maze 0.4± 0.18 0.0± 0.0 0.11± 0.09 0.0± 0.0 0.0± 0.0 0.26± 0.19 0.07± 0.07
Maze2 0.65± 0.16 0.0± 0.0 0.11± 0.08 0.0± 0.0 0.0± 0.0 0.6± 0.15 0.33± 0.14
Maze3 0.67± 0.16 0.2± 0.2 0.69± 0.16 0.0± 0.0 0.03± 0.03 0.58± 0.15 0.38± 0.23
MiniGrid-FourRooms 0.51± 0.04 0.33± 0.04 0.45± 0.02 0.42± 0.04 0.35± 0.02 0.53± 0.06 0.42± 0.02
MiniGrid-SimpleCrossingS11N5 0.91± 0.04 0.3± 0.14 0.73± 0.04 0.36± 0.08 0.37± 0.1 0.74± 0.1 0.76± 0.12
PerfectMazeMedium 0.44± 0.12 0.17± 0.09 0.31± 0.04 0.04± 0.02 0.09± 0.03 0.42± 0.05 0.24± 0.06
SixteenRooms 0.87± 0.05 0.46± 0.19 0.68± 0.14 0.31± 0.18 0.19± 0.16 0.79± 0.09 0.14± 0.08
SixteenRoomsFewerDoors 0.48± 0.17 0.18± 0.16 0.4± 0.05 0.1± 0.09 0.18± 0.12 0.75± 0.09 0.27± 0.17
SmallCorridor 0.78± 0.09 0.35± 0.19 0.67± 0.17 0.51± 0.18 0.48± 0.17 0.59± 0.21 0.86± 0.08

Mean 0.64± 0.03 0.24± 0.09 0.45± 0.03 0.18± 0.03 0.18± 0.05 0.59± 0.06 0.39± 0.05

5.3 MINIGRID 0-60 UNIFORM-BLOCKS
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Figure 6: Minigrid 0-60 Uniform-Blocks environment. (a) IQM and Optimality Gap for all baselines when evaluated on test
mazes (Table 4) averaged over 5 seeds. (b) Maze complexity metrics showing the emergent complexity during training in HiEnt
and BiBC+HiEnt methods. (c) Sample tracks generated by the teacher agent (adversary) in PAIRED and HiEnt methods. Due to
entropy collapse (Problem P1), PAIRED’s adversary generates sparse mazes leading to poor zero-shot transfer at test time, and
adding a high entropy bonus alleviates that issue.

Figure 6 (a) shows the performance of the HiEnt baseline versus the original PAIRED method on the Minigrid 0-60
Uniform Blocks benchmark. The HiEnt baseline consists of 0.05 entropy coefficient for the level-generating teacher
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(adversary), and a 0.005 bonus for the students. Moreover, Figure 6 (b) shows the number of blocks per level and
the minimum path length to reach the goal (with a length of 0 assigned to unsolvable levels). These figures illustrate
that the grids generated by PAIRED’s adversary kept on becoming sparse as training progressed, thus leading to a
degraded performance. Both HiEnt and BiBC+HiEnt baselines improve on the complexity front and we found that
the performance of the HiEnt baseline can significantly reduce the gap with ACCEL, often matching performance on
highly challenging test mazes (see Table 4). Readers may note that we train all PAIRED baselines for 30k gradient
updates (250M environment steps), whereas we train ACCEL for 20k gradient updates only (which corresponds to
400M environment steps). However, in Minigrid 0-60 (unlike Minigrid 25-Blocks benchmark), the level-generating
process doesn’t benefit the most from behavioral cloning, as the HiEnt baseline achieves the highest gains instead of
BiBC+HiEnt or UniBC+HiEnt. For a comparison of all these methods on individual test environments, readers may
refer to Table 4.

5.4 CHANGING THE OPTIMIZER IN BIPEDALWALKER AND MINIGRID
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Figure 7: IQM, Optimality Gap and Solved Rates averaged across 5 seeds for PAIRED+Evo and FlexPAIRED+Evo
baselines on Minigrid 0-60 Uniform-blocks environment.
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Figure 8: Zero-shot transfer performance of PAIRED+Evo on
5 test environments as training progresses in the BipedalWalker
environment.

In this section, we study the effect of changing the opti-
mizer from a learned teacher to a random search-based
level-designer, naming the baseline to be PAIRED+Evo.
Additionally, we also report the performance of this
baseline when using a flexible regret objective (Dennis
et al., 2020; Gur et al., 2021) where there is no fixed
antagonist or protagonist. We call this baseline Flex-
PAIRED+Evo.

As depicted in Figure 7(a), both PAIRED+Evo
and FlexPAIRED+Evo underperform compared to
PAIRED+HiEnt in the Minigrid 0-60 Uniform Blocks
environment, suggesting that a high entropy bonus has
a greater impact than the choice of optimizer. Moreover,
in Figure 7(b), it can be seen that the ACCEL tends to do
a lot better on the three validation mazes, indicating that
the positive value loss leads to better curation of training

levels compared to the approximate regret calculated by a pair of student agents in PAIRED(or Flexible PAIRED)+Evo.
Similar to Minigrid, in the challenging BipedalWalker (Wang et al., 2019) environment, PAIRED+Evo performs worse
than ACCEL, but better than PAIRED (Figure 8), indicating that the choice of optimizer is a significant design factor
and warrants further investigation, especially in more challenging environments where the level-design space is even
bigger.

It would be interesting to see how PAIRED performs when combined with all three design choices, i.e.
PAIRED+Evo+BC+HiEnt, which we leave for future work.

6 RELATED WORK

Our work extends a popular line of research in regret-based Unsupervised Environment Design (UED), which aims to
address problems of generalization and robustness in RL.

Unsupervised Environment Design Unsupervised Environment Design (UED), which automatically designs training
environments to maximize learning potential is a quickly growing field (Wang et al., 2019; Dharna et al., 2020; Wang
et al., 2020; Dennis et al., 2020; Open Ended Learning Team et al., 2021; Jiang et al., 2021a; Parker-Holder et al., 2022;
Jiang et al., 2022; Dharna et al., 2022; Team et al., 2023). A significant line of this work is targeted at designing high-
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regret environments (Dennis et al., 2020; Gur et al., 2021; Jiang et al., 2021a; Parker-Holder et al., 2022; Adaptive
Agent Team et al., 2023). Many of the most recent successful techniques have used curation or evolution to build
individual levels (Jiang et al., 2021a; Parker-Holder et al., 2022; Team et al., 2023). While these approaches are
currently state of the art they build each level one by one. Thus a promising direction UED is for neural models to
generate environment parameters, thus allowing for combinatorial generalization across levels.

PAIRED (Dennis et al., 2020) and the algorithms which are built on it takes this neural generative approach (Gur et al.,
2021; Du et al., 2022; Jiang et al., 2021a; Wang et al., 2022). Thus our work gives guidance to many approaches
on how they may be tuned to be competitive with the state of the art. Unsupervised environment design is also very
closely related to work on AI for procedural environment generation. AI for procedural environment generation is a
long-standing (Togelius et al., 2011; Browne & Maire, 2010; Togelius & Schmidhuber, 2008) and active field (Earle
et al., 2021; Khalifa et al., 2022; Bhatt et al., 2022). Though our work focuses on the case of using the resulting
environments to train an agent and thus does not directly address these approaches, cross-pollinating the ideas of these
fields is an important line of future work.

Generalization in RL In addition to providing a curriculum, regret-based UED approaches improve robustness
and generalization in RL (Kirk et al., 2021). Deep RL systems, like the deep neural networks on which they are
based Szegedy et al. (2013), have been shown to exhibit robustness failures such as failing under adversarial attacks
Kos & Song (2017); Lin et al. (2017); Gleave et al. (2019) or overfitting to the environment configuration Witty et al.
(2021); Di Langosco et al. (2022). Many approaches have aimed to remedy these failures by changing the objective
of RL systems, aiming to solve something closer to a robust MDP (Bagnell et al., 2001; Iyengar, 2005; Nilim &
El Ghaoui, 2005). There have been a wide variety of such approaches (Garcıa & Fernández, 2015), including those
which aim to solve regret-based MDP formulations (Ghavamzadeh et al., 2016; Regan & Boutilier, 2011; 2012).

A powerful and scalable approach for solving robust MDPs is adversarial training, for which there exist many spe-
cialized methods (Pinto et al., 2017b;a; Morimoto & Doya, 2005). The regret-based UED algorithms we study in this
work can be seen as a high dimensional adversarial training approach to a particular sort of solve regret-based MDP.

7 CONCLUSION

This work considers problems arising when using a learned adversary (or teacher) for unsupervised environment design
(UED). Focusing on the popular PAIRED algorithm, we discussed potential instabilities during training and explored
several approaches for mitigating them. Our results indicate that properly tuning the entropy parameter is crucial for
achieving good performance—by doing so, we find that this method is able to achieve results that are competitive
with other state-of-the-art UED methods. We also consider the use of behavioral cloning, which helps the student
agent in learning usefull skills in the simplest of levels. However, in some environments where this is not an issue,
behavioral cloning can lead to reduced out-of-distribution (OOD) robustness in the student model. Moreover, we find
that, when combined with the proper entropy tuning, the choice of optimizer only makes a marginal difference in the
performance of the PAIRED method. In general, our results make it possible to achieve state-of-the-art results with
a learned adversary, propelling this class of methods back to the forefront of UED research. We believe this should
result in a variety of future innovation, such as combining our proposed solutions with population-based training.
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Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In The International Conference on
Machine Learning. 2021b.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Andrei Lupu, Heinrich Küttler, Edward Grefenstette, Tim
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A EXPERIMENTAL DETAILS

In this section, we summarize the technical details of each of the environment used and list out the hyperparameters
used for each of the baselines in Table 2.

A.1 F1 CARRACING

Environment We use the CarRacing F1 UED benchmark introduced in Jiang et al. (2021a). The environment used
is a reparameterized version of the CarRacing game Brockman et al. (2016), where the tracks consist of closed loops
made of Bézier curves created from 12 randomly sampled control points. The student agent is rewarded for driving
over each unvisited polygon and penalized for each time step. The student agent’s observation space consists of a
96x96x3 pixel RGB image with a bird’s eye view of the vehicle, which allows the agent to make decisions based
on the current state of the environment and the action space is a 3-dimensional continuous action, corresponding to
control values for steer, gas and brake. The adversary (teacher agent) generates a sequence of 12 control points, one
per time step, within a fixed radius of the center of the playfield, using a 10x10 grid to encode the control points, which
is embedded using 2D convolutions and fully connected layers. The protagonists and antagonists train via PPO using
2D CNN operations. We refer the reader to Appendix of Jiang et al. (2021a) for more details about the architecture.

Hyperparameters Since our proposed methodology builds off PAIRED, we inherited most of the parameters
from Jiang et al. (2021a). For HiEnt baseline, we swept over adversary and student agent entropies in the range
{0.0, 0.005, 0.05, 0.1} for the students and {0.0, 0.005, 0.05, 0.1, 0.2} for the adversary. For the BC baselines (both
UniBC and BiBC), we swept over the following hyperparameters: {0.005, 0.01, 0.05, 0.1, 0.5} for the KL Loss
coefficient, {10, 25} gradient updates for the KL Loss interval, {0.0, 0.005, 0.05, 0.1} for the student entropy and
{0.0, 0.005, 0.05, 0.1, 0.2} for the adversary entropy. Similar to Jiang et al. (2021a), we used Test Returns from
CarRacingF1-Germany, CarRacingF1-Italy and CarRacingF1-Singapore for validation performance averaged across 3
seeds. Figure 9 shows all the tracks which were used to assess zero-shot transfer performance at test time for 10 seeds.

A.2 MINIGRID

Environment Using the same setup as in (Dennis et al., 2020; Jiang et al., 2021a), a maze-based game named
MiniGrid Chevalier-Boisvert et al. (2018) is used as the environment. The agent’s objective is to navigate the maze
and reach the end while avoiding walls. The agent receives a reward of 1 − T

Tmax
if it reaches the end, where T is

the episode length and Tmax is the maximum episode length (set to 250). If the agent fails to reach the end, a reward
of 0 is given. The agent’s perception of the environment includes its orientation and a 7x7 grid that encompasses
the agent and the area immediately in front of it. The agent can take 7 actions, but only 3 of them are used in the
game: turn left, turn right, and move forward. Both student agents, the protagonist and the antagonist, follow this.
The mazes are generated by an adversary (the teacher agent) which is given N steps to place walls in a 13x13 grid,
and then chooses the location of the end and the agent’s starting position. The value of N is a constant 25 in the case
of 25-blocks fixed budget experiment, and in the case of 0-60 Uniform-blocks, the value of N is uniformly sampled
between [0,60]. The generator architecture uses a convolution layer to process the full grid observation, followed by
an LSTM with a hidden dimension of 256 and two fully connected layers to produce action logits over the possible
169 cells. The student architecture is similar to the generator architecture, but it uses a convolution with 16 filters to
process the partial observation and doesn’t use random noise.

Hyperparameters Here, for the HiEnt baseline, we swept over adversary and student agent entropies in the range
{0.0, 0.005, 0.05, 0.1} for the students and {0.0, 0.005, 0.05, 0.1} for the adversary. For the BC baselines (both UniBC
and BiBC), we swept over the following the hyperparameters: {0.005, 0.01, 0.05, 0.1, 0.5} for the KL Loss coef-
ficient, {5, 10, 25} gradient updates for the KL Loss interval, {0.0, 0.005, 0.05, 0.1} for the student entropy and
{0.0, 0.005, 0.05, 0.1} for the adversary entropy. For the Evo experiments, we use all the hyperparameters same
as ACCEL, except the level replay coefficient ρ which we sweep over {0.5, 0.9}. We use SixteenRooms, Labyrinth
and Maze for assessing validation performance by running 3 seeds per experiment, and report the final results on
challenging mazes (see Figure 10) by averaging over 5 seeds.

A.3 BIPEDALWALKER

Environment We use the environment introduced in Parker-Holder et al. (2022) and refer the readers to Appendix
C (Parker-Holder et al., 2022) for implementation details of the environment as well as the ACCEL baseline.
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Figure 9: Test tracks used for assessing zero-shot performance in CarRacing F1 environment.
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MediumMaze3 SimpleCrossing
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Figure 10: Test mazes used for assessing zero-shot performance in the Minigrid environment.

Hyperparameters Our PAIRED+Evo baseline is based off ACCEL, with the addition of one extra agent. Hence, all
our hyperparameters are same as that of ACCEL, with the modifications highlighted in Algorithm 3.
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Table 2: Table summarizing the hyperparameters for each of the methods.

PARAMETER CARRACING MINIGRID 0-60 UNIFORM MINIGRID 25 BIPEDALWALKER

PPO
γ 0.99 0.995 0.995 0.99
λGAE 0.9 0.95 0.95 0.9
PPO ROLLOUT LENGTH 125 256 256 2000
PPO EPOCHS 8 5 5 5
PPO MINIBATCHES PER EPOCH 4 1 1 32
PPO CLIP RANGE 0.2 0.2 0.2 0.2
PPO NUMBER OF WORKERS 16 32 32 16
ADAM LEARNING RATE 3E-4 1E-4 1E-4 3E-4
ADAM ϵ 1E-5 1E-5 1E-5 1E-5
PPO MAX GRADIENT NORM 0.5 0.5 0.5 0.5
PPO VALUE CLIPPING NO YES YES NO
RETURN NORMALIZATION YES NO NO YES
VALUE LOSS COEFFICIENT 0.5 0.5 0.5 0.5
STUDENT ENTROPY COEFFICIENT 0.0 0.0 0.0 1E-3

PAIRED
GENERATOR ENTROPY COEFFICIENT 0.0 0.0 0.0 0.0

HiEnt
STUDENT ENTROPY COEFFICIENT 0.05 0.005 0.005 -
GENERATOR ENTROPY COEFFICIENT 0.1 0.05 0.01 -

BiBC
KL LOSS COEFFICIENT 0.5 0.01 0.1 -
KL LOSS INTERVAL 10 5 25 -
KL LOSS DIRECTION BIDIRECTIONAL BIDIRECTIONAL BIDIRECTIONAL -
STUDENT ENTROPY COEFFICIENT 0.005 0.005 0.005 -
GENERATOR ENTROPY COEFFICIENT 0.05 0.005 0.05 -

UniBC
KL LOSS COEFFICIENT 0.5 0.01 0.1 -
KL LOSS INTERVAL 10 5 25 -
KL LOSS DIRECTION UNIDIRECTIONAL UNIDIRECTIONAL UNIDIRECTIONAL -
STUDENT ENTROPY COEFFICIENT 0.005 0.005 0.005 -
GENERATOR ENTROPY COEFFICIENT 0.05 0.005 0.05 -

ACCEL
EDIT RATE, q - 1.0 - 1.0
REPLAY RATE, p - 0.8 - 0.9
BUFFER SIZE, K - 4000 - 1000
SCORING FUNCTION - POSITIVE VALUE LOSS - POSITIVE VALUE LOSS
EDIT METHOD - RANDOM - RANDOM
LEVELS EDITED - EASY - EASY
PRIORITIZATION - RANK - RANK
TEMPERATURE, β - 0.3 - 0.1
STALENESS COEFFICIENT, ρ - 0.5 - 0.5

PLR
SCORING FUNCTION POSITIVE VALUE LOSS POSITIVE VALUE LOSS POSITIVE VALUE LOSS POSITIVE VALUE LOSS
REPLAY RATE, p 0.5 0.5 0.5 0.5
BUFFER SIZE, K 10000 4000 4000 1000

Evo
SCORING FUNCTION - POSITIVE VALUE LOSS - POSITIVE VALUE LOSS
REPLAY RATE (PAIRED+EVO), p - 0.5 - 0.5
REPLAY RATE (FLEXPAIRED+EVO), p - 0.9 - 0.5
BUFFER SIZE, K - 4000 - 1000

B ADDITIONAL RESULTS

Here we report the performance of each design choice on individual test environments. Table 3 shows the mean and
standard error on each F1 track (Figure 9) when averaged over 10 seeds. Each seed is run for 10 episodes. Similarly,
Table 4 and 5 report the performance on challenging mazes (Figure 10) when trained in the Minigrid environment with
0-60 uniform blocks. It can be clearly seen that our proposed design choices lead to strong gains in performance over
PAIRED, with a high entropy bonus having an especially big impact on the zero-shot generalization capability.

Figure 11 (top) shows the mean return achieved by the protagonist, antagonist and the adversary throughout training in
the generated tracks. We also report the performance of protagonist in the vanilla CarRacing track used for validation
purposes. The bottom row shows the entropy loss of each agent as well as the complexity of the tracks generated by
the adversary.

Similarly, Figure 12 (a) and 13 show the mean returns achieved by the three agents in the generated mazes (top row)
and the entropy loss of each agent in those mazes (bottom row). Figure 12 (b) shows the complexity of the mazes
generated by the baselines when trained with a fixed budget of 25 blocks. PAIRED experiences a sharp decline in the
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Environment Robust PLR PAIRED HiEnt UniBC BiBC UniBC+Ent BiBC+HiEnt

CarRacingF1-Australia 692.3± 14.96 100.28± 21.67 651.72± 13.19 167.02± 18.07 273.58± 27.92 517.53± 24.04 779.11± 8.69
CarRacingF1-Austria 615.14± 12.93 92.15± 24.0 597.53± 6.88 226.64± 17.61 286.47± 26.47 487.17± 17.67 758.52± 10.83
CarRacingF1-Bahrain 589.83± 15.05 −34.96± 18.8 556.74± 16.58 42.46± 19.5 192.03± 27.19 429.02± 22.03 631.47± 14.71
CarRacingF1-Belgium 473.52± 12.22 72.19± 20.14 452.7± 6.6 143.56± 16.76 229.74± 22.13 301.16± 16.98 587.27± 15.13
CarRacingF1-Brazil 454.92± 13.35 75.73± 18.16 435.26± 13.2 150.35± 18.02 188.18± 22.24 368.09± 14.52 557.48± 19.77
CarRacingF1-China 227.71± 24.37 −100.5± 9.15 180.44± 30.45 −67.78± 6.95 117.33± 26.1 113.43± 23.97 511.67± 23.78
CarRacingF1-France 478.31± 22.35 −80.76± 12.73 482.9± 28.46 61.25± 20.53 187.0± 29.93 299.8± 22.46 603.53± 15.62
CarRacingF1-Germany 498.59± 17.9 −32.51± 16.05 471.62± 13.22 115.9± 22.96 195.58± 21.53 311.54± 19.91 532.02± 14.86
CarRacingF1-Hungary 707.75± 17.5 97.6± 28.53 696.65± 17.79 137.16± 20.82 229.81± 28.15 517.05± 26.73 739.13± 9.53
CarRacingF1-Italy 624.96± 11.94 131.56± 23.71 568.26± 6.21 233.89± 24.51 300.09± 25.83 502.34± 19.91 780.99± 8.88
CarRacingF1-Malaysia 399.86± 17.51 −26.18± 16.61 386.58± 11.78 37.31± 14.04 154.91± 23.64 306.64± 14.98 519.64± 17.22
CarRacingF1-Mexico 712.1± 12.48 66.53± 31.4 711.34± 10.05 183.82± 26.69 237.1± 30.77 543.13± 23.33 697.4± 12.06
CarRacingF1-Monaco 485.64± 19.46 −28.3± 18.18 356.1± 26.13 98.85± 19.73 181.65± 26.54 309.81± 23.53 605.03± 17.37
CarRacingF1-Netherlands 419.22± 25.24 70.41± 20.35 464.78± 17.1 135.91± 18.48 231.52± 23.17 312.16± 23.39 612.2± 17.67
CarRacingF1-Portugal 483.44± 12.7 −48.96± 13.0 424.54± 14.99 92.87± 16.31 177.13± 24.81 370.01± 19.6 621.8± 16.41
CarRacingF1-Russia 649.34± 13.55 51.26± 20.52 603.0± 22.04 202.54± 22.4 248.56± 26.74 452.11± 24.86 668.23± 12.66
CarRacingF1-Singapore 566.37± 15.11 −34.96± 13.5 435.81± 19.94 71.41± 14.78 187.53± 23.83 343.82± 27.13 644.05± 13.25
CarRacingF1-Spain 621.64± 13.7 134.11± 23.79 609.63± 12.38 260.1± 20.17 298.67± 25.3 504.32± 16.79 681.99± 13.13
CarRacingF1-UK 537.58± 16.81 137.63± 24.67 558.9± 12.65 257.21± 18.42 295.4± 25.75 445.71± 16.96 620.75± 13.1
CarRacingF1-USA 380.65± 33.22 −119.17± 10.99 324.71± 27.69 29.12± 16.07 185.31± 28.58 294.41± 31.42 667.87± 12.87

Mean 530.94± 6.67 26.16± 15.22 498.46± 6.3 128.98± 12.13 219.88± 23.08 386.46± 12.29 641.01± 7.21

Table 3: Mean and Standard Error averaged over 10 seeds for test returns of each agent on individual F1 track from
the CarRacing F1 environment.

Environment ACCEL PAIRED HiEnt UniBC BiBC UniBC+HiEnt BiBC+HiEnt

Labyrinth 0.73± 0.18 0.46± 0.23 0.7± 0.2 0.36± 0.18 0.02± 0.02 0.33± 0.1 0.48± 0.2
Labyrinth2 0.62± 0.2 0.15± 0.14 0.67± 0.18 0.46± 0.22 0.0± 0.0 0.26± 0.15 0.46± 0.19
LargeCorridor 0.64± 0.2 0.16± 0.08 0.63± 0.19 0.62± 0.16 0.16± 0.16 0.57± 0.11 0.47± 0.2
Maze 0.79± 0.2 0.01± 0.01 0.19± 0.11 0.06± 0.05 0.0± 0.0 0.03± 0.02 0.14± 0.08
Maze2 0.33± 0.18 0.02± 0.02 0.54± 0.16 0.36± 0.2 0.0± 0.0 0.38± 0.15 0.24± 0.19
Maze3 0.53± 0.2 0.15± 0.15 0.39± 0.19 0.8± 0.2 0.19± 0.19 0.5± 0.13 0.5± 0.14
MiniGrid-FourRooms 0.51± 0.04 0.38± 0.06 0.42± 0.02 0.49± 0.02 0.25± 0.06 0.55± 0.05 0.51± 0.04
MiniGrid-SimpleCrossingS11N5 0.82± 0.02 0.48± 0.16 0.62± 0.04 0.65± 0.03 0.27± 0.14 0.68± 0.08 0.86± 0.04
PerfectMazeMedium 0.5± 0.05 0.17± 0.07 0.47± 0.15 0.24± 0.07 0.12± 0.11 0.25± 0.04 0.31± 0.14
SixteenRooms 0.64± 0.18 0.16± 0.13 0.42± 0.16 0.91± 0.07 0.2± 0.18 0.83± 0.07 0.59± 0.18
SixteenRoomsFewerDoors 0.55± 0.19 0.1± 0.1 0.57± 0.23 0.25± 0.19 0.03± 0.03 0.64± 0.17 0.41± 0.17
SmallCorridor 0.67± 0.16 0.25± 0.17 0.63± 0.22 0.74± 0.17 0.04± 0.04 0.63± 0.07 0.4± 0.19

Mean 0.61± 0.03 0.21± 0.07 0.52± 0.13 0.49± 0.05 0.11± 0.05 0.47± 0.05 0.45± 0.11

Table 4: Mean and Standard Error for Solved Rates averaged over 5 seeds of each agent on individual mazes when
trained in the Minigrid 0-60 Uniform-Blocks environment.

Environment ACCEL PAIRED+Evo FlexPAIRED+Evo

Labyrinth 0.73± 0.18 0.51± 0.28 0.48± 0.2
Labyrinth2 0.62± 0.2 0.2± 0.14 0.4± 0.24
LargeCorridor 0.64± 0.2 0.53± 0.27 0.23± 0.19
Maze 0.79± 0.2 0.5± 0.27 0.06± 0.05
Maze2 0.33± 0.18 0.28± 0.24 0.28± 0.18
Maze3 0.53± 0.2 0.44± 0.25 0.33± 0.18
MiniGrid-FourRooms 0.51± 0.04 0.42± 0.09 0.38± 0.05
MiniGrid-SimpleCrossingS11N5 0.82± 0.02 0.86± 0.06 0.69± 0.06
PerfectMazeMedium 0.5± 0.05 0.42± 0.14 0.37± 0.11
SixteenRooms 0.64± 0.18 0.78± 0.13 0.26± 0.16
SixteenRoomsFewerDoors 0.55± 0.19 0.48± 0.23 0.21± 0.16
SmallCorridor 0.67± 0.16 0.58± 0.25 0.62± 0.24

Mean 0.61± 0.03 0.5± 0.14 0.36± 0.08

Table 5: Zero-shot test performance results for PAIRED+Evo and FlexPAIRED+Evo in the test Minigrid mazes when trained in
the Minigrid 0-60 Uniform-Blocks environment averaged over 5 seeds and 100 episodes per seed. We report mean and standard
error for Solved Rate as the metric here, highlighting in bold the best performing agents.
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Figure 11: Mean agent returns throughout training for all agents in the CarRacing F1 environment.

number of blocks used and hence generates extremely sparse mazes (see Figure 15), whereas the other two baselines
help the adversary in overcoming this problem.
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Figure 12: Mean agent returns throughout training for all agents in the Minigrid 25-blocks environment.
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Figure 13: Mean agent returns throughout training for all agents in the Minigrid [0-60] Uniform-blocks environment.

C PSUEDOCODES

Here we describe the algorithm of BC framework. Our algorithm is the same as that of PAIRED’s (Dennis et al., 2020),
with an additional KL-divergence term highlighted in blue font. This KL-divergence term can be applied either to both
the student agents (BiBC) or to just the protagonist (UniBC), after every N gradient update steps, where N ∈ N.
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Algorithm 2 PAIRED+BC

1: Input: Initial policies for protagonist πP , antagonist πA, initial environment generator Λ̃
2: while not converged do
3: Use Λ̃ to generate environment parameters θ⃗
4: Collect a trajectory τP using πP in environment θ⃗
5: Update πP to minimize regret using Lppo(πP ) +DτP

KL(πA||πP )

6: Collect a trajectory τA using πA in environment θ⃗
7: Update πA to maximize regret using Lppo(πA) +DτA

KL(πP ||πA) # if bidirectional BC
8: Compute the regret as:

REGRETθ⃗(πP , πA) = V θ⃗(πA)− V θ⃗(πP )

9: Update Λ̃ to maximize regret
10: end while

For PAIRED+Evo, we modify ACCEL (Parker-Holder et al., 2022) (highlighted in violent font) to utilize an additional
agent which acts as the antagonist, and modify the replay buffer to store or replay levels based on the calculated regret.

Algorithm 3 PAIRED+Evo
1: Input: Initial policies for protagonist πP , antagonist πA, initial environment generator π̃, level buffer Λ
2: while not converged do
3: Sample replay decision d ∼ PD(d)
4: if d=0 then
5: # Evaluate on levels but do not update
6: Use π̃ to generate environment parameters θ⃗
7: Collect a trajectory τP using πP in environment θ⃗ with stop gradient
8: Collect a trajectory τA using πA in environment θ⃗ with stop gradient
9: Compute the regret as:

REGRETθ⃗(πP , πA) = U θ⃗(πA)− U θ⃗(πP )

10: Add θ⃗ to Λ if score S meets threshold
11: else
12: # Train on curated high regret levels
13: Sample replay level, θ⃗ ∼ Λ

14: Collect a trajectory τP using πP in environment θ⃗
15: Update πP

16: Collect a trajectory τA using πA in environment θ⃗
17: Update πA

18: # Edit previously high regret levels and evaluate
19: Edit θ⃗ to produce θ⃗′

20: Collect a trajectory τP using πP in environment θ⃗ with stop gradient
21: Collect a trajectory τA using πA in environment θ⃗ with stop gradient
22: Compute the regret as:

REGRETθ⃗(πP , πA) = U θ⃗(πA)− U θ⃗(πP )

23: Add θ⃗ to Λ if score S meets threshold
24: end if
25: end while

D SAMPLE TRACKS

Figures 14, 15 and 16 show some sample levels generated by the adversary from each baseline. In CarRacing,
PAIRED’s adversary keeps on generating simple round tracks which do not transfer to real-world F1 tracks at test
time. Similarly, in Minigrid, PAIRED’s adversary frequently generates empty mazes which prevent the protagonist
from learning navigation skills in these mazes. On the other hand, the adversary in HiEnt and BiBC+HiEnt generates
highly complex levels that significantly improve zero-shot generalization.
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(a) PAIRED (b) PAIRED+HiEnt (c) PAIRED+BiBC+HiEnt

Figure 14: Sample tracks generated by the adversary in CarRacing Environment.
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(a) PAIRED (b) PAIRED+HiEnt (c) PAIRED+UniBC+HiEnt

Figure 15: Sample tracks generated by the adversary in MiniGrid Environment with 25-blocks budget.
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(a) PAIRED (b) PAIRED+HiEnt (c) PAIRED+UniBC+HiEnt

Figure 16: Sample tracks generated by the adversary in MiniGrid Environment with [0-60] Uniform-blocks budget.
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