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ABSTRACT

Lifelong learning agents aim to learn multiple tasks sequentially over a lifetime. This involves the
ability to exploit previous knowledge when learning new tasks and to avoid forgetting. Recently,
modulating masks, a specific type of parameter isolation approach, have shown promise in both
supervised and reinforcement learning. While lifelong learning algorithms have been investigated
mainly within a single-agent approach, a question remains on how multiple agents can share life-
long learning knowledge with each other. We show that the parameter isolation mechanism used by
modulating masks is particularly suitable for exchanging knowledge among agents in a distributed
and decentralized system of lifelong learners. The key idea is that isolating specific task knowledge
to specific masks allows agents to transfer only specific knowledge on-demand, resulting in a robust
and effective collective of agents. We assume fully distributed and asynchronous scenarios with
dynamic agent numbers and connectivity. An on-demand communication protocol ensures agents
query their peers for specific masks to be transferred and integrated into their policies when facing
each task. Experiments indicate that on-demand mask communication is an effective way to imple-
ment distributed and decentralized lifelong reinforcement learning, and provides a lifelong learning
benefit with respect to distributed RL baselines such as DD-PPO, IMPALA, and PPO+EWC. The
system is particularly robust to connection drops and demonstrates rapid learning due to knowledge
exchange.

1 INTRODUCTION

Distributed lifelong reinforcement learning (DLRL) is an emerging research field that offers scalability, robustness,
and speed in real-world scenarios where multiple agents continuously learn. A key aspect of DLRL is the ability of
multiple agents to learn multiple tasks sequentially while cooperating through information sharing. Notable advances
have been made in related areas such as distributed reinforcement learning (Espeholt et al., 2018; Wijmans et al.,
2019), federated reinforcement learning (Qi et al., 2021), and lifelong reinforcement learning (Zhan et al., 2017;
Abel et al., 2018a;b; Xie et al., 2020). While the integration of lifelong learning and distributed learning is emerging
only recently (Mohammadi & Kolouri, 2019; Song et al., 2023), the combination of these two paradigms could yield
efficient, scalable, and robust learning systems.

The use of multiple workers in RL has been applied to accelerate data collection in methods like A3C (Mnih et al.,
2016) while training a single model. Distributed reinforcement learning (DRL) (Weiß, 1995; Espeholt et al., 2018;
Wijmans et al., 2019) expands on the concept of multiple workers to include multiple agents and may utilize a fully
decentralized approach where each agent learns a potentially different model. Such systems can exhibit high learning
performance and robustness. However, learning across multiple agents does not address the issue of non-IID data,
which frequently arises when multiple tasks are learned sequentially over time.

Lifelong or continual learning specifically addresses the issue of sequential task learning, in which an agent learns
multiple tasks characterized by unique input, transition, and reward distributions (Thrun, 1995; De Lange et al., 2021).
The primary challenge is integrating a new task into existing knowledge without experiencing catastrophic forgetting
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(McCloskey & Cohen, 1989). Various approaches have been suggested to implement lifelong learning: De Lange
et al. (2021) propose a taxonomy with three main approaches, namely replay methods, regularization methods, and
parameter isolation methods. Parameter isolation methods, in particular, allocate different parameters in a model to
different tasks. In this paper, we suggest that such isolation mechanisms can be advantageous in a distributed setting
where agents need to share knowledge.

We adopt a lifelong learning approach based on modulating masks, which have demonstrated competitive performance
in supervised learning (Mallya & Lazebnik, 2018; Zhou et al., 2019; Wortsman et al., 2020; Koster et al., 2022). Re-
cently, modulating masks have also been extended to lifelong reinforcement learning (LRL), enabling the integration
and exploitation of previous knowledge when learning new tasks (Ben-Iwhiwhu et al., 2022b). A natural question aris-
ing from these recent studies is whether decomposing knowledge into masks can be utilized to transfer task-specific
information across agents, implementing a distributed system of lifelong reinforcement learners. In this paper, we pro-
pose a system where agents use a fully asynchronous and decentralized protocol to query each other and exchange only
relevant information for their respective tasks. The proposed proof-of-concept, named lifelong learning distributed de-
centralized collective (L2D2-C), suggests a lifelong learning approach to distributed decentralized learning. We test
the proposed approach on benchmarks designed for multiple sequential tasks, namely the CT-graph (Soltoggio et al.,
2023) and Minigrid (Chevalier-Boisvert et al., 2018). The simulations show that the system accelerates learning with
respect to a single lifelong learning agent by a factor close to the number of agents. In addition, we demonstrate
the system’s robustness to connection drops. Comparisons with existing distributed RL approaches, namely DD-PPO
(Wijmans et al., 2019) and IMPALA (Espeholt et al., 2018), and non-distributed LL approaches (PPO+EWC) illustrate
the advantages of integrating both LL and sharing. This study only illustrates initial experiments to suggest the validity
of the idea, encouraging further future investigations for particular aspects of the system. The code to launch L2D2-C
and reproduce the results is freely available at https://github.com/DMIU-ShELL/deeprl-shell.

The paper is structured as follows. Section 2 provides a review of related work and introduces the necessary back-
ground concepts. Section 3 introduces the lifelong learning distributed decentralized collective (L2D2-C) approach. In
Section 4, we present the results of our simulations and analyze them. Finally, in Section 5, we discuss the implications
of our findings and conclude the paper. Additional information is provided in the Appendix.

2 RELATED WORKS AND BACKGROUND

We focus on a relatively unexplored scenario in which multiple lifelong learning agents learn from their own non-IID
streams of tasks and share relevant acquired knowledge with each other upon request. While individual aspects of
such a system have been studied in the literature, our work brings together several of these concepts to create a more
comprehensive understanding. For example, lifelong reinforcement learning (Section 2.1) explores continual learning
methods in RL settings for a single agent, while federated learning (Section 2.2) investigates the use of centralized and
decentralized methods to learn with non-IID data. Finally, distributed RL (Section 2.3) seeks to enhance the speed of
RL by deploying multiple agents working together. In addition, the concept of modulating masks has become crucial
in various fields, including lifelong learning. In Section 2.4, we examine how modulating masks can be effectively
employed to facilitate lifelong reinforcement learning.

2.1 LIFELONG REINFORCEMENT LEARNING

Lifelong learning, a concept known for decades (Thrun, 1995), has gained prominence as an active field of study
in recent neural network studies (Soltoggio et al., 2018; Van de Ven & Tolias, 2019; Hadsell et al., 2020; Khetarpal
et al., 2020; De Lange et al., 2021). The desiderata of a lifelong learner lie in its ability to learn multiple tasks in
sequence while avoiding catastrophic forgetting (McCloskey & Cohen, 1989), enabling knowledge reuse via forward
and backward transfer (Chaudhry et al., 2018) and reducing task interference (Kessler et al., 2022).

Different approaches can be largely categorized into regularization methods, modular methods, or a combination of
both. Regularization methods apply an additional penalty term in the loss function to penalize either large structural
changes or large functional changes in the network. Structural regularization or synaptic consolidation methods (Kirk-
patrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Kolouri et al., 2019) penalizes large change weights in
the network that are important for maintaining the performance of previously learned tasks. Modular methods learn
modules or a combination of modules useful for solving each task. A module is expressed as either: (i) a mask that
activates sub-regions of a fixed neural network (Mallya & Lazebnik, 2018; Serra et al., 2018; Mallya et al., 2018;
Wortsman et al., 2020; Koster et al., 2022; Ben-Iwhiwhu et al., 2022b), or (ii) a neural network that is expanded (Rusu
et al., 2016; Yoon et al., 2018) or compositionally combined (Mendez & Eaton, 2021; Mendez et al., 2022) with other
modules as new tasks are learned.
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Lifelong RL agents are set up as a combination of standard deep RL and lifelong learning algorithms. In Kirkpatrick
et al. (2017), EWC was combined with DQN (Mnih et al., 2013) to solve Atari games (Bellemare et al., 2013).
Progress & Compress (Schwarz et al., 2018) showed further extensions of EWC by combining EWC with IMPALA
(Espeholt et al., 2018) and policy distillation techniques. In CLEAR (Rolnick et al., 2019), IMPALA was combined
with a replay method and behavioral cloning. SAC (Haarnoja et al., 2018) was combined with a number of lifelong
learning algorithms in Wołczyk et al. (2021). For offline RL, Xie & Finn (2022) leveraged a replay buffer in SAC and
importance weighting technique to specifically tackle forward transfer in a robotics agent, while Mendez et al. (2022)
merged neural modular composition, offline RL, and PPO (Schulman et al., 2017) to enable reuse of knowledge and
fast task learning. For masking approaches, Wołczyk et al. (2021) combined SAC and PackNet (Mallya & Lazebnik,
2018) (masks derived from iterative pruning), while Ben-Iwhiwhu et al. (2022b) demonstrated the use of directly
learned modulating masks with PPO and introduced a knowledge reuse mechanism for the masking agents.

2.2 FEDERATED LEARNING FOR NON-IID TASKS

Federated learning (FL) generally considers multi-modal systems that train centralized models across various nodes,
enabling accelerated training on massive amounts of data (Kairouz et al., 2021). Data anonymity and security are
one of the core concerns in federated learning. FL approaches that address fully decentralized and non-IID scenarios
are focused primarily on reducing the efficiency drops and guaranteeing convergence for a model for a single task.
Sources of non-IID data in FL are often related to the geographical distributions of the clients, time of training, and
other factors that relate often to biasing aspects of the data collection rather than the assumption of different tasks.
As a result, rather than employing lifelong learning algorithms, more often FL on non-IID data adopts solutions to
mitigate the effect of different distributions such as sharing sample data sets across clients (Wang et al., 2018; Zhao
et al., 2018; Ma et al., 2022). An alternative FL approach to manage non-IID data is to assume the presence of multiple
tasks: in such cases, FL integrates aspects of multi-task learning and meta-learning. In multi-task learning, the result
of the process is one model per task (Smith et al., 2017; Zhang et al., 2022). Finally, meta-learning (Hospedales et al.,
2021) can be effective to learn a global model for further fine-tuning to local data. Combinations of meta-learning
approaches such as MAML (Finn et al., 2017) with FL have been explored in Jiang et al. (2019); Khodak et al. (2019).
The objective of such approaches is often that of adapting a global model to a specific local data set (Fallah et al.,
2020; Li et al., 2021; Tan et al., 2022) in what is referred to as personalized FL.

2.3 DISTRIBUTED REINFORCEMENT LEARNING

The concept of distributed reinforcement learning (DRL) was initially introduced to distribute computation across
many nodes and thereby increase the speed at which data collection and training are performed (Weiß, 1995; Gronauer
& Diepold, 2022). Both synchronous and asynchronous methods such as A2C/A3C (Mnih et al., 2016), DPPO (Heess
et al., 2017), IMPALA (Espeholt et al., 2018), and others, use multiple workers to increase the rate of data collection
while training a central model. A variation of PPO (Schulman et al., 2017), DD-PPO (Wijmans et al., 2019) extends
the framework to be distributed and uses a decentralized optimizer, reporting a performance that scales nearly linearly
with the number of nodes. While these algorithms have shown improvements in the SoTA on various benchmarks,
they do not incorporate lifelong learning capabilities.

2.4 MODULATING MASKS FOR LIFELONG REINFORCEMENT LEARNING

The idea of using modulation in RL tasks is not new (Doya, 2002; Dayan & Niv, 2008; Soltoggio et al., 2008; Ben-
Iwhiwhu et al., 2022a), but recently developed masking methods for deep supervised lifelong learning, e.g., Wortsman
et al. (2020), have shown the advantages of isolation parameter methods. In Ben-Iwhiwhu et al. (2022b), modulating
masks are shown to work effectively in deep reinforcement learning when combined with RL algorithms such as PPO
(Schulman et al., 2017) or IMPALA (Espeholt et al., 2018). Other approaches such as Mallya & Lazebnik (2018)
or Mallya et al. (2018) use masks in RL, but modify the backbone network as well, making them less suitable for
knowledge sharing. In Ben-Iwhiwhu et al. (2022b) the agent contains a neural network policy πθ,Φ, parameterized
by the weights (backbone) of the network θ and the mask score parameters Φ = {ϕ1, . . . ϕk} for tasks 1 . . . k. The
backbone is randomly initialized (using the signed Kaiming constant (Ramanujan et al., 2020)) but kept fixed and
remains unchanged, while mask score parameters are optimized during learning and applied on the backbone. For
any given task k, ϕk represents the mask parameters across all layers of the network. In a network consisting of L
layers, ϕk = {S1

k, . . . S
L
k } where Si

k is the mask parameter in layer i for task k. To apply a mask on the backbone, ϕk

is quantized using an element-wise threshold function (i.e., 1 if ϕk,{i,j} > 0, otherwise 0) to generate a binary mask
that is element-wise multiplied with θ. The multiplicative process activates and deactivates different regions of the
backbone. Also, the framework supports knowledge reuse via the weighted linear combination of previously learned
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task masks and the current task mask. For each layer l, this is expressed as:

Sl,lc =

(
k∑

i=1

βl
iS

l,∗
i

)
+ βl

k+1S
l
k+1 , (1)

where Sl,lc denotes the transformed mask score parameters for task k + 1 after the linear combination step. Sl,∗
i

denotes the optimal mask score parameters for previously learned task i, and βl
1, . . . β

l
k+1 are the linear coefficients

(weights) of the operation at layer l. Softmax is applied on the linear co-efficient to normalize it and also express the
degree to which each mask is relevant to learn the current task. The learned parameters in the framework are β and Φ.
Once the mask for task k + 1 has been learned using linear combination parameters, it is consolidated into a mask by
itself, and thus the masks of other tasks can undergo further changes. The approach has been shown to be an effective
way to implement LL by avoiding forgetting via complete parameter isolation and exploiting previous knowledge to
facilitate learning of future tasks in a sequential curriculum.

3 SHARING MASKS ACROSS LIFELONG LEARNING AGENTS

The main research questions we want to address are, can we effectively transfer modulating masks across agents to
produce a distributed lifelong learning system? Are masks a suitable form of parameter isolation that allows for task-
specific policies to be transferred and integrated across agents? If we do so, can we observe a learning benefit from the
synergy of both lifelong learning and sharing? The benefits may include increased learning speed of the collective with
respect to the single agent, albeit at the increased overall computational resources. A hypothesis is that, if learning
and sharing is efficient, n agents may be up to n-times faster at learning a given curriculum than the single agent. We
provide further technical considerations on such an idea of performance improvement in Section A. To address the
objectives above, we designed an algorithm for communication and sharing that can transfer the relevant modulating
masks from the appropriate agents when needed. To produce a fully asynchronous and fully distributed system, each
agent needs to act without central coordination and independently determine what information to ask for and when.

3.1 WHAT AND WHEN TO SHARE

We assume that each agent in the system shares the same backbone network θ that is randomly initialized. Each agent
stores a list of masks Φ = {ϕ1, . . . ϕk} for tasks that they have encountered, and therefore they can independently
learn a subset of all available tasks. A research question is whether agents can opportunistically and timely exchange
learned masks to (i) acquire the knowledge of a task that has been already learned by another agent and integrate
it into its own knowledge (ii) continue to learn on that task in cooperation with other agents, thereby increasing the
knowledge of the collective system. With that aim, we introduce two main communication operations: queries and
mask transfers.

Queries. When Agent 1 faces a task, it sends a query to all other agents (IDQ) communicating the task representation
(e.g., task ID) and its performance on that task. Agents that have seen that particular task before, and exceed the
performance of Agent 1, send a query-response (QR) with their performance measures, effectively communicating
that they have better knowledge to solve that particular task. All other agents do not answer the query.

Mask transfers. Agent 1 then selects the best agent that reports the highest performance on the task and requests
the mask with mask-request (MR) sent only to that particular agent, which, in turn, answers by sending the requested
mask with a mask-transfer (MTR). In the present implementation, we transfer the scores of Eq. 1. Transferring the
sparse and binarized masks offers significant bandwidth saving, but requires a re-initialization of the scores to resume
training. Note that the scores are not used in forward passes, so such a process does not cause a drop in performance.
The optimization of communication, including different degrees of sparsity of masks could be the topic of future
application-specific studies.

In summary, when an IDQ is triggered, the following steps take place:

Step 1: Agent 1 sends a query (IDQ) to all other agents with the task ID and its performance.
Step 2: Agents that have encountered that task before and exceed the performance by at least 10% (estimated as the

return over the last 5121 steps), respond with a query-response (QR).
Step 3: Agent 1 sorts all the responses to find the agent X that has the highest performance and requests a mask from

that particular agent (via a mask-request (MR)).
Step 4: Agent X sends the mask corresponding to that task ID back to agent 1 with a mask-transfer (MTR).

1Assuming the product of the rollout length and number of workers in tables 4 and 5 is 512.
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Figure 1: Messages and steps in the communication protocol. (Left) Event 1: All agents send IDQ to all other agents.
Event 2: Agent 3 sends an IDQ to agent 2, there is no answer because agent 2 cannot exceed agent 3 performance.
Event 3: An IDQ triggers a QR, followed by an MR and MTR. Event 4: Agent 1 starts a new task and issues IDQs, but
there are no answers as no one has seen this task before. Event 5: Agent 3 starts task 1, issues IDQs, and receives a QR,
which triggers an MR and MTR. (Right) A detailed description of event 4. An IDQ message is sent by agent 3 when
starting to learn task 1. A QR is sent back by agent 1 who has seen task 1 before and exceeds agent 3 performance.
Agent 3 then selects the best-performing policy and requests the corresponding mask to agent 1 with an MR message.
In step 4, agent 1 sends the requested mask to agent 3 (MTR).

The process is graphically illustrated in Figure 1. An IDQ is triggered by one of two events: a task change or a
maximum length of independent learning. In the first case (task change), an agent is about to start learning a task and
therefore issues IDQs to consult the collective about whether a policy (mask) exists that solves the task better than its
own mask. The second case, instead, is designed to take advantage of more frequent communication among agents
learning the same task, which periodically check the collective for better policies than their own.

The number of IDQ messages sent across the network depends on the frequency f of IDQ messages per agent times
n the number of agents, with a growth of fn2. The growth is quadratic with the number of agents in a fully connected
network. However, such messages are small as they contain only the task ID. Moreover, they are sent only to reachable
online agents. The number of QR messages is a fraction of the IDQ messages that depends on how many agents exceed
the performance on that task. These are also small messages containing only the task ID and a measure of performance.
The number of mask requests and responses grows linearly with the frequency of IDQs and the number of agents, i.e.,
fn. This is particularly important for the transfer of a mask, which is the largest type of communication that transfers
the model parameters of Eq. 1.

3.2 KNOWLEDGE DISTRIBUTION, PERFORMANCE AND EVALUATING AGENTS

In a distributed system, determining how the collective’s knowledge is distributed across agents is not straightforward.
The communication protocol devised in Section 3.1 implies that agents only maintain knowledge of the tasks that they
have encountered, and update such knowledge from the collective only when they re-encounter that task. We devised
the following system to assess the performance of the system as a whole. Given a curriculum T = {τ1, τ2, . . . , τn}, a
measure of performance can be expressed as the degree to which an agent can solve those tasks after a given learning
time µ. In other words, the learning objective can be set to maximize the reward across all tasks, i.e., a performance
value p can be defined as:

p(µ) =

τ=n∑
τ=1

µ+κ∑
t=µ

r(st, at) , (2)

where µ is the time at which the system is assessed, κ is the duration of an evaluation block set as a multiple of an
episode duration, and r(st, at) is the reward collected at each time step. If we divide p(µ) by the number of episodes
in an evaluation period κ (nr. of episodes in an evaluation ee), we obtain an instant cumulative return (ICR) of an
agent at time µ, i.e., ICR(µ) = p(µ)/ee. Eq. 2, when computed over time also provides a basic but effective lifelong
learning metric. While many other factors can be considered to assess lifelong learning systems (New et al., 2022;
Baker et al., 2023), p(µ) in Eq. 2 reveals how well an agent can solve all tasks after a period of training.

To assess the performance of the learning collective with respect to a single agent, we also introduce two comparison
values: (1) a performance advantage (PA) defined as the ratio PA = pc(µ)/ps(µ), where pc refers to a collective of
agents and ps refers to a single agent: this is the advantage of a collective of agents with respect to a single agent; (2)
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a time advantage (TA), defined as the ratio between time-to-performance-p for the collective with respect to the single
agent. This is how much faster the collective reaches a determined performance.

Eq. 2 requires the unrolling of the sequence of tasks T to at least one agent in the collective. A common approach to
test lifelong learning (Baker et al., 2023) is to stop learning to perform evaluation blocks, during which the agent is
assessed. In our case, stopping any agent in the collective from learning in order to assess the performance will affect
the performance itself. The solution we devised is to create one or more special agents called evaluating agents (EA)
with the following characteristics: the EA does not learn and does not answer queries, so it is invisible to the collective
and it cannot impact their performance. However, it can query all agents and fetch their knowledge, which is then
tested continuously. The use of EAs is a way to monitor the performance of the collective without interfering with its
learning dynamics. In the experiments in which we used the ICR metric (derived by Eq. 2), one evaluation agent was
deployed.

3.3 DECENTRALIZED DYNAMIC NETWORK AND AGENT ARCHITECTURE

To ensure that L2D2-C is completely decentralized and asynchronous, the entire architecture is contained with one
agent, i.e., there is no coordinating or central unit. Each agent in the system is identified by their unique tuple <IP,Port>.
An agent stores the following data structures: entry-points and online-agents. Entry-points is a list of <IP,Port> tuples
that lists all known agents. The list is continuously updated by adding any new agent that makes contact via an IDQ.
When an agent enters the collective and makes first contact with another agent, it receives the entry-points list from
that agent, thus acquiring knowledge of the identities of the other agents. If an agent goes offline for a period of time,
when is back online, it will attempt to access the collective by contacting the agents in this list. The online-agents
list keeps track of agents that are currently online, and it is used to send out IDQs. This system allows agents to (i)
dynamically enter and leave the collective at any time and (ii) manage sparsely connected or constrained topologies
by communicating only with reachable (i.e. online) agents. Such a simple setup allows L2D2-C to run multiple agents
on the same server, across multiple servers, and across multiple locations anywhere in the world.

As L2D2-C emerges from instantiating multiple single agents, the entire system architecture is contained within one
agent. In the most general case of DLRL, events such as task changes, data collection and learning, and communication
among agents, are stochastic and independent events. Thus, an agent is required to perform different operations in
parallel (data collection, learning, and communication as both client and server) to maximize performance. L2D2-C
is implemented with multi-processing and multi-threading to ensure all such operations can run simultaneously. An
overview of the agent’s architecture is provided in Figure 6 in the Appendix B.

4 EXPERIMENTS

We present the tests of L2D2-C when multiple agents learn randomized curricula of tasks. The following metrics
are measured: performance of a varying number of agents with respect to the single lifelong learning agent (Section
4.2); lifelong learning performance of L2D2-C with respect to IMPALA, DD-PPO, PPO, PPO+EWC (single-head)
and PPO+EWC (multi-head) (Section 4.3); performance of L2D2-C with unreliable communication (Section 4.4).

4.1 BENCHMARKS

We employed two benchmarks for discrete RL scenarios that are particularly suitable for sequential LL, the config-
urable tree graph (CT-graph) (Soltoggio et al., 2023) (code at Soltoggio et al. (2019)) and the Minigrid (Chevalier-
Boisvert et al., 2018) environments. The CT-graph is a generative environment that implements a tree graph with 2D
images which makes it suitable for evaluating lifelong RL approaches. A number of tasks with varying complexity
can be automatically generated to create a large variety of curricula. It features sparse rewards and arbitrarily long
episodes in different configurations. Due to the varying reward location, the CT-graph implements interfering tasks.
Graphical illustrations of the environment are provided in Appendix D.1. The Minigrid (Chevalier-Boisvert et al.,
2018) is a grid-world navigation environment, consisting of a number of predefined partially observable tasks with
varying levels of complexity. The agent is required to reach a defined location in the grid world, avoiding obstacles
such as walls, lava, moving balls, etc. The experiment protocol employs a curriculum of three tasks that consists
of the following: SimpleCrossingS9N1, SimpleCrossingS9N2, SimpleCrossingS9N3. Screenshots of all tasks are
reported in the Appendix (D.2).

4.2 L2D2-C VERSUS A SINGLE LIFELONG LEARNER (L2D2-C WITH ONE AGENT)

Our initial tests aim to assess the impact on performance with an increase in the number of agents in a LL setting.
In the CT-graph, 16 tasks are learned sequentially over 64 learning slots per agent. One learning slot corresponds to
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Figure 2: L2D2-C versus a single agent. (A) The instant cumulative return (ICR) provides the sum of the performance
of the evaluating agents on 16 CT-graph tasks. A single agent is compared with a 4 and a 12-agent collective. (B) ICR
on 3 Minigrid tasks. (C, D, E, F) Performance advantage (PA) of L2D2-C with respect to the single agent: (C) 4-agent,
CT-graph; (D) 12-agent, CT-graph; (E) 4-agent, Minigrid; (F) 12-agent, Minigrid. (G, H, I, J) The time advantage (TA),
i.e., the speedup of L2D2-C with respect to the single agent, expressed as a ratio of time-to-performance: (G) 4-agent,
CT-graph; (H) 12-agent, CT-graph; (I) 4-agent, Minigrid; (J) 12-agent, Minigrid.

continuous training over one task for 12800 steps. In the Minigrid, 3 tasks are learned over 12 learning slots of 102400
steps each. The instant cumulative return (ICR) (Section 3.2) is used as the performance metric that represents the sum
of returns across all tasks, i.e., p(µ)/ne (Eq. 2). The results in Figure 2 are the mean of 5 seed runs with the shades
denoting the 95% confidence interval, computed following the procedure in Colas et al. (2018).

As the learning takes place, one evaluation agent (EA) was deployed to run a continuous assessment of L2D2-C by
continuously cycling through the 16 tasks (CT-graph) and 3 tasks (Minigrid). As each agent runs independently from
the others, including the EA, there is no direct mapping between evaluation checkpoints and training steps, as each
agent could run at a slightly different speed. However, as the EA runs at a constant speed, the evaluation blocks can be
interpreted as elapsed time. The graph indicates that the main advantage of L2D2-C is visible with a higher number of
tasks (16 in the CT-graph), while such an advantage is reduced when learning the 3-task Minigrid. Nevertheless, the
12-agent L2D2-C appears immune from the local minima that affect the single agent and the 4-agent L2D2-C (Fig.
2(B). The second and third row of Fig. 2 shows how much more performance is scored by L2D2-C with respect to the
single agent (Panels C to F) and how much faster is L2D2-C to reach a determined level of performance (Panels G to J).
From the second row of Fig. 2, the 4 and 12-agent L2D2-C have a significant performance advantage during the early
stages of training: for the 16-task experiment, such an advantage peaks at levels that are comparable to the number of
agents, i.e., approximately n times performance (where n is the number of agents), but decreases progressively with
time as the single agent, slowly, learns all available tasks. The third row of Fig. 2 shows that the speed advantage is
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Figure 3: Training performance on single tasks through a LL curriculum: two L2D2-C agents vs. two DD-PPO
workers, two IMPALA workers, one PPO worker, one PPO+EWC single-head and one PPO+EWC multi-head worker.
The performance of one single agent is plotted for each algorithm, averaged over 5 seeds and with the shade showing
the 95% confidence interval.

also significant in the 16-task experiment and mostly exceeding a factor n for target performances above ∼ 30%, but
not so for the 3-task experiment in which the low number of tasks per agent appears to have an impact on efficiency.

In addition to the experiments in Fig. 2, we run tests with the following agents/tasks numbers: 2/2, 4/4, 8/8, 4/16,
16/16, and 32/32. As these runs were executed with one seed, we report the results in the Appendix C in Table 9 and
Fig. 8 for the 32-tasks/32-agents run as supporting experiments. The additional runs confirm the learning dynamics of
Fig. 2 and indicate similar learning trends with up to 32 agents and 32 tasks.

4.3 L2D2-C VERSUS DD-PPO, IMPALA, PPO, PPO+EWC

We assessed the advantage of introducing LL dynamics to distributed RL, and in particular the performance of L2D2-
C with respect to established distributed RL baselines, DD-PPO, IMPALA, plus two additional references PPO and
PPO+EWC. Approaches were tested on a randomized 4-task CT-Graph curriculum with 3 repeats totaling 12 tasks
at 42752 steps per task (Details in the appendix table 4). Rather than measuring the ICR metric that is implemented
only for L2D2-C, we monitor the performance on each task individually for both L2D2-C and the baselines. Fig. 3
shows L2D2-C and the baselines sequentially learning different tasks. The task changes are visible when there is a
drop in performance. It can be noted that an L2D2-C agent learns three tasks initially and then shows minor drops
in performance as (1) it acquires task knowledge from the other agent and (2) it shows no forgetting thanks to the
LRL masking approach. The non-LL baselines, instead, while showing steep learning curves, are unable to maintain
the knowledge when switching tasks on such a sequential LL curriculum. The LL baseline PPO+EWC multi-head
shows the best performance among other approaches, but such an algorithm does not have a sharing mechanism for
distributed learning.

4.4 ROBUSTNESS IN FRONT OF CONNECTION DROPS

We introduced a stochastic mechanism to simulate connection drops: with varying probability, Step 1 in the commu-
nication protocol (issuing of IDQ as outlined in Section 3.1) is canceled. Since IDQ issuing is the first step in the
communication chain, canceling this first step has the same effect as dropping communication at any following step.
We use the evaluation agent in two different settings: to monitor all agents, and to monitor one single random agent.
The evaluation agent is not affected by connection drops, it cannot learn, it cannot share and its presence does not af-
fect the performance of L2D2-C. Fig. 4 shows that even high levels of connection drops fail to affect the performance
of the system significantly until communication is completely stopped.

Where does such robustness come from? We identified two reasons. Firstly, when a connection is dropped, the agent
continues to learn and attempts to communicate again sometime later (when the conditions for communication occur
again). In other words, the agent gives up temporarily, uses the time to learn, and tries again later. Thus, we measured
that the number of transferred masks (Table 1) does not decrease linearly with the probability of connection drops, and
goes to zero only when communication is completely stopped. Detailed scatter plots of data exchange are reported in
the appendix (Sec. C, Fig. 10). A second reason for robustness is that, even when communication is very unlikely or
not possible at all, each agent is unhindered in their lifelong learning dynamics. Thus, many agents learning different
tasks will collectively acquire more knowledge, which can then be shared the moment communication is restored. To
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Type of message Average nr. sent (5 seeds)
0% drop 50% drop 75% drop 95% drop 100% drop

ID queries (IDQ) 2705.98 1356.217 674.47 136.45 0
Query responses (QR) 187.23 95.25 51.33 18.82 0
Mask requests (MR) 28.40 27.45 25.03 15.88 0
Mask transfers (MTR) 28.40 27.45 25.03 15.88 0

Table 1: Average number of messages sent per type per agent with different probabilities of connection drops. It can
be noted that even with high probabilities of connection drops, the agents “insist” on their attempts so that the number
of masks transferred decreases to a lesser degree. The data shown above corresponds to the duration of learning in the
collectives depicted between evaluation checkpoints 0 to 154 Fig. 4 (A) and 0 to 192 Fig. 4 (B).
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Figure 4: Instant cumulative reward (ICR) of L2D2-C with different connection drop probabilities for a 16-task, 12-
agent CT-graph experiment (average and 95% confidence interval over 5 seeds). (A) One evaluation agent monitors
all agents. (B) One evaluation agent monitors one random agent only.

provide a visual insight into learning for a single agent, Fig. 5 shows how a single agent learns a sequence of tasks
when has full communication, 50%, and 100% connection drops.

5 DISCUSSION

In our experiments, we assumed that each agent sees a random task from a list of tasks and will learn that for a
fixed duration. Under such conditions, some agents might be learning the same task at the same time, while other
agents learn different tasks. The ratio of tasks/agents determines the similarity of DLRL with other approaches.
For one-task/many-agents, LL is not necessary and DRL performs optimally. For many-tasks/one-agent, only LL is
required. For many-tasks/many-agents a combination of DRL and LL is required, as in the proposed approach. In
the experiments of Fig. 2, we investigated two cases. In the first case (CT-graph), we used more tasks than agents (16
tasks with 12, 4, and 1 agents) and saw a linear improvement of the L2D2-C metrics with the number of agents (Fig.
2 (CDGH)). In the second case (Minigrid), we used fewer tasks than agents (3 tasks with 12, 4, and 1 agents) and
noticed the ability of parallel search to escape local minima as the number of agents increases (Fig. 2 (B)).

L2D2-C requires no central coordination with the exception of the assignment of the task ID, for which we assume
the existence of an oracle to provide each agent with the ID for each task. Such an assumption could be unrealistic
in real-world scenarios where tasks are not defined by an oracle (Rios & Itti, 2020). Extensions of the L2D2-C
framework could be considered by adding task detection capabilities to enable agents to compare tasks according to
their similarities (Liu et al., 2022). Such added capabilities would affect the queries that agents exchange (steps 1 and
2 in Section 3.1) that would therefore contain task descriptors as opposed to task IDs.

Further analysis of the system is required to assess the overall communication load and the impact of different network
topologies. The query messages (IDQ and QR, Section 3.1) are designed to discover which agents have knowledge of
a specific task, and therefore, their number grows with the square of the number of agents in a fully connected network.
For larger networks, query messages could be optimized by adopting multiple stellar topologies, i.e., defining some
agents as hubs. However, once the mask provider has been identified, our one-to-one mask transfer protocol ensures
scalability. The impact of network topologies and the communication load was not presented in this paper as the
experiments in this first study were run on a single server. However, the agent-centered L2D2-C architecture was
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Figure 5: Examples of training plots for one agent with different levels of connection drops. Each task is learned for
10 iterations, equivalent to 12,800 steps. To improve readability, we modified the curriculum for this specific agent
to undertake tasks sequentially from 1 to 16, and repeat that sequence. (A) Full communication (no drops). The
upwards trend from about half performance shows that the agent receives masks and then improves on them. (B) 50%
connection drops. (C) No communication. The masks now are trained partially when tasks are seen for the first time
(iterations 1 to 160). The partially trained masks are used to continue training after iteration 160. No communication
means that this agent is learning “on its own”.

observed to be functional across distant locations with a proof-of-concept experiment in which four agents formed an
L2D2-C system across locations in two different countries. Under such conditions, analysis of the effect of bandwidth
usage and delay is essential to further assess the system.

The current approach relies on a common backbone network shared initially by all agents, and therefore it cannot be
used if agents have different networks. Other approaches, e.g., based on knowledge distillation (Hinton et al., 2015;
Gou et al., 2021), could be devised for heterogeneous agents.

Important considerations for specific applications of the system could include computational and memory costs. As in
all deep network approaches, these directly relate to the size of the network. In addition, by transferring highly sparse
binary masks, it is possible to significantly reduce the ratio of the size of the mask with respect to the backbone. For
example, for a backbone encoded with 32-bit precision parameters, a full binary mask is 1/32 the size of the backbone.
Specific applications might result in different trade-offs of performance versus computation and memory. We did not
implement optimization steps in the current study.

6 CONCLUSION

This paper introduced the concept of a distributed and decentralized RL system that can learn multiple tasks sequen-
tially without forgetting thanks to lifelong learning dynamics. The system is based on the idea of agents exchanging
task-specific modulating masks that are applied to a backbone network that is common to all the agents in the system.
While the advantage of modulating masks is known in the literature for both supervised and reinforcement learning
approaches, here we show that the isolation of task knowledge to masks can be exploited to implement a fully dis-
tributed and decentralized system that is defined simply by the interconnection of a number of identical agents. The
L2D2-C system was shown to maintain LL dynamics across multiple agents and to prevent catastrophic forgetting
that is typical of distributed approaches such as DD-PPO and IMPALA. The system has an increase in speed-up and
performance that appears to grow linearly with the number of agents when the agent/task ratio is close to one. Finally,
we observed a surprising robustness of the collective learning in front of high levels of connection drops.

BROADER IMPACT

The idea that reinforcement learning agents can learn sequential tasks incrementally and in collaboration with other
agents contributes towards the creation of potentially more effective and ubiquitous RL systems in a variety of appli-
cation scenarios such as industrial robotics, search and rescue operations, and cyber-security just to mention a few. A
broad application of such systems could affect efficiency and productivity by introducing automation and independent
ML-driven decision-making. Careful considerations must be taken in all scenarios in which human supervision is
reduced to ensure the system acts in alignment with regulations, safety protocols, and ethical principles.
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Figure 6: System architecture of an L2D2-C agent. Collectives consist of multiple instances with a common network
backbone.

A CONSIDERATION ON THE PERFORMANCE OF n AGENTS

With respect to a single-agent system, in a multi-agent system, the overall computational cost increases by a factor that
is proportional to the number of agents, plus a communication cost. However, the aim of deploying multiple agents is
to increase the speed of learning and observe possible beneficial effects of inter-agent interaction. When comparing
the performance of n agents versus one, it might appear as “unfair”, but the point of the comparison is to observe how
much faster can we learn a set of tasks if n agents are deployed instead of one. In fact, it is not given that n agents will
learn n times faster than the single agent: if n agents do not communicate, each agent is effectively a single agent and
only the merging of their knowledge would cause an acceleration of learning. If we define a metric “learning speed
(LS)” as the time taken by an agent to reach a pre-determined level of performance on a given curriculum of tasks, we
can distinguish the following cases:

• LS(n) ∼ LS(1) : n agents take the same amount of time to learn the curriculum as one agent. This is the
case when agents do not communicate and their knowledge is not aggregated. The cost of n agents is not
exploited.

• 1/n · LS(1) < LS(n) < LS(1) : n agents learn faster than one agent but are less than n times faster than
the single agent. This is the case when agents benefit from communication, but there is a loss in efficiency.
The cost of n agents is somewhat compensated by improved performance.

• LS(n) ∼ LS(1)/n : n agents are approximately n times faster than the single agent. In this case, the
increased computational cost of a factor n is compensated by an equivalent improvement in performance.

• LS(n) < LS(1)/n : n n agents are faster than n times the single agent. While this may appear unlikely
at first, such a situation can emerge if n agents exploit parallel search to solve difficult problems, e.g., with
sparse reward. In this case, the cost of n agents is largely compensated by a better-than-n improvement in
performance.

Overall, we can conclude that the deployment of n agents versus one may lead to significant gains in performance if
an efficient algorithm can exploit their combined computation.

B HARDWARE AND SOFTWARE DETAILS

Simulations were conducted with two main network setups: one with all agents launched on a single GPU server, with
specifications described in Table 2 and a second setup in which agents were launched on different servers in different
locations.

Fig. 7 illustrates the steps of the communication protocol (Algorithms 1 and 2) in two flowcharts.

The code to run L2D2-C and reproduce the experiment presented in this paper is available at https://github.
com/DMIU-ShELL/deeprl-shell.
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Figure 7: Flowcharts depicting the communication protocol used in L2D2-C. Left: Client-side, Right: Server-side

Algorithm 1 Client Protocol

Require: List of IP-port tuples, C
Require: Current task label, L
Require: Current task reward, R
Require: Constant identifier for query, I
Require: Own IP address, ipself
Require: Own port, portself

1: while True do
2: while Label L not received from the main process do
3: Wait for label L
4: end while
5: Construct query as array {ipself , portself , I, L,R}
6: Serialize query into a byte string
7: for (ip, port) in C do
8: Send outgoing query
9: end for

10: Sleep for 0.2 seconds
11: if Length of response list > 0 then
12: Select best agent An using condition An = {a ∈ C : 0.9Rn > Rx} from received responses
13: Send mask request to An

14: end if
15: end while
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Algorithm 2 Server Protocol

Require: List of tuples containing IP-port pairs, C
Require: Current task label, L
Require: Current task reward, R
Require: Constant identifier for query, I

1: Listen for incoming connections
2: Construct query as array {Cip, Cport, I, L,R}
3: Serialize query into a byte string
4: for (Cip, Cport) in C do
5: Sleep for 0.2 seconds
6: if Length of response list > 0 then
7: Select best agent An using condition An = {a ∈ C : 0.9Rn > Rx}
8: Send mask request to An for ipn, portn
9: else

10: Pass
11: end if
12: end for

Hardware specifications
Linux GPU Server Windows GPU Machine

Architecture x86_64 x86_64
CPU(s) 128 32
Thread(s) per core 2 2
Core(s) per socket 64 16
CPU Model AMD EPYC 7713P AMD Threadripper Pro

3955WX
L1d cache 2 MiB 96 Kib
L1i cache 2 MiB N/A
L2 cache 32 MiB 512 Kib
L3 cache 256 MiB 64 Mib
CPU MHz 1700.000 4000.000
CPU Max MHz 3720.7029 4300.000
CPU Min MHz 1500.0000 3900.000
GPU 1 NVIDIA A100 NVIDIA A5000
GPU 2 NVIDIA A100 N/A
Interface PCIe PCIe
Memory 256 GB ECC 64 GB
GPU Memory 40 GB ECC (×2) 24 GB ECC
Base GPU Clock 765 MHz 1170
Boost GPU Clock 1410 MHz 1695
FP32 TFLOPS 156 55.55
FP16 TFLOPS 312 111.1

Table 2: Hardware specifications for the GPU servers used to run the experiments presented in this paper. Experiments
featured in Fig. 2, 4 and 8 were run using the Linux-based GPU server while experiments featured in Fig. 3 was run
using the Windows-based machine. Experiments were run using FP16 and FP32 configurations.
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ML Packages
Package Version
Python 3.9.13
PyTorch 1.13.0
Gym API 0.24.0
Gym-MiniGrid 1.1.0
Gym-CTgraph 0.1
Tensorboard 2.9.1
TensorboardX 2.5.1
Pandas 1.4.3
NumPy 1.23.1
CUDA 11.7.1
cpython 0.29.30
gcc 12.2.0

Table 3: Core packages used in a single L2D2-C agent. The core ML is based on PyTorch with CUDA. OpenAI Gym
is used as the interface between the model and the reinforcement learning environment. TCP/IP communication is
implemented using the built-in socket module in Python.

Hyper-Parameters
learning rate 0.00015
cl preservation supermasks
number of workers 1
optimiser function RMSprop
discount rate 0.99
use general advantage estimator
(gae)

True

gae_tau 0.99
entropy weight 0.00015
rollout length 512
optimisation epochs 8
number of mini-batches 64
ppo ratio clip 0.1
iteration log interval 1
gradient clip 5
max steps (per task) 42752
evaluation episodes 25
require task label True
backbone network seed 9157
experiment seeds 958, 959, 960, 961, 962

Table 4: Agent hyper-parameters. These parameters were used across all the single-server experiments shown in Fig.
3. These hyper-parameters are consistent across all experiments shown in the figure. IMPALA, DDPPO, and PPO
experiments were run using the Ray API (Anyscale-Inc, 2023).
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Hyper-Parameter CT-graph Minigrid CT-graph Drop
conn.

learning rate 0.00015 0.00015 0.00015
cl preservation supermasks supermasks supermasks
number of workers 4 4 4
optimiser function RMSprop RMSprop RMSprop
discount rate 0.99 0.99 0.99
use general advantage estimator
(gae)

True True True

gae_tau 0.99 0.99 0.99
entropy weight 0.00015 0.1 0.00015
rollout length 128 128 320
optimisation epochs 8 8 8
number of mini-batches 64 64 64
ppo ratio clip 0.1 0.1 0.1
iteration log interval 1 1 1
gradient clip 5 5 5
max steps (per task) 12800 102400 12800
evaluation episodes 25 5 25
require task label True True True
backbone network seed 9157 9157 9157

Table 5: Agent hyper-parameters. These parameters were used across all the single-server experiments shown in Fig.
2 and 4. Fig. 4 specifically uses the connection drops version of the CT-graph hyper-parameters.

Agents seed 1 seed 2 seed 3 seed 4 seed 5
1 9158 6302 8946 5036 7687
2 9159 1902 4693 8814 1029
3 9160 4446 3519 2851 4641
4 9161 9575 6652 4719 7122
5 9162 1954 6613 3672 6470
6 9163 3972 4197 3523 5614
7 9164 5761 8640 6978 4687
8 9165 8004 6738 1399 8024
9 9166 3993 8248 5952 3218
10 9167 6553 7423 9744 8224
11 9168 8805 9725 3633 2047
12 9169 5066 8760 4131 6219
0 9157 9802 9822 2211 1911
13 9157 9802 9822 2211 1911

Table 6: Seeds used across each agent. These remained consistent throughout each experiment. Global evaluation
agents correspond to agent 0 (evaluate the entire collective), and local evaluation agents correspond to agent 13 (eval-
uate a singular agent from the collective). A single L2D2-C agent corresponds to agent 1, and L2D2-C collectives are
comprised of subsets of these agents (i.e., L2D2-C 4 agents consist of agents 1-4 while L2D2-C 12 agents consist of
agents 1-12).
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Hyper-Parameter Depth 2 16-task CT-graph
general seed 3
tree depth 2
branching factor 2
wait probability 0.0
high reward value 1.0
fail reward value 0
stochastic sampling false
reward standard deviation 0.1
min static reward episodes 0
max static reward episodes 0
reward distribution needle in haystack
MDP decision states true
MDP wait states true
wait states [2, 8]
decision states [9, 11]
graph ends [12, 15]
image dataset seed(s) 1-4
1D format false
image dataset seed 1
number of images 16
noise on images on read 0
small rotation on read 1

Table 7: CT-graph environment parameters. We use 5 seed variations of a depth 2 4-task CT-graph to achieve the
16-task CT-graph for our experiments. We use the depth 2 16-task CT-graph for Fig. 2 (A, C, D, G, H) and 4.

Hyper-Parameter 3-task Minigrid
tasks MiniGrid-SimpleCrossingS9N1-v0,

MiniGrid-SimpleCrossingS9N2-v0,
MiniGrid-SimpleCrossingS9N3-v0

one hot true
label dimensions 3
action dimensions 3
seeds 860, 860, 860

Table 8: Minigrid environment parameters. Each seed corresponds to task IDs 0-2 respectively. We use the 3-task
Minigrid for Fig. 2 (B, E, F, I, J).
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agents/tasks Time to X% performance Performance at X% time
20% 50% 70% 20% 50% 70%

2/2 (L2D2-C) 1.7 27.9 33.1 6.6 100 100
1/2 (singleLLAgent) 4.1 33 57 0 50 48.3

4/4 (L2D2-C) 10.2 12.5 16.3 71.2 97.5 100.0
1/4 (singleLLAgent) 11.1 45.8 76.0 22.5 43.1 50.0

8/8 (L2D2-C) 5.4 6.9 16.3 72.7 98.7 98.5
1/8 (singleLLAgent) 22.4 55.8 79.9 12.9 32.7 57.0

16/16 (L2D2-C) 2.9 4.5 8.6 100.0 100.0 100.0
1/16 (singleLLAgent) 24.6 57.5 76.9 12.5 40.6 56.2

32/32 (L2D2-C) 1.8 2.7 4.5 96.8 100.0 96.8
1/32 (singleLLAgent) 22.8 60.5 79.2 12.5 37.5 54.6

4/16 (L2D2-C) 5.1 18.8 28.0 55.4 98.7 100
1/16 (singleLLAgent) 24.5 55.2 76.2 12.5 37.5 59.6

Table 9: Time to X% performance (in %) and performance (in %) at X% time (with total time measured as the
time required to reach 95% performance. Due to noise affecting evaluations with few tasks, smoothing was applied:
percentages are more representative for experiments with 8 or more tasks. L2D2-C 16/16 and 32/32 (in bold) were the
fastest vs the single agent.

Figure 1: Performance of ShELL vs SingleLLAgent for 2/2, 4/4, 8/8, 16/16, 32/32, 4/16
agents/tasks in the CT-graph. Note that the tests use stochastic policies and fine sampling,
which results in a noisy signal. Averaging more runs for the 2/2 and 4/4 might be beneficial.

Figure 2: Instant learning advantage (ILA) of ShELL vs SingleLLAgent for 2/2, 4/4, 8/8,
16/16, 32/32, 4/16 agents/tasks in the CT-graph.

3

L2D2-C
Single agent

Figure 8: Instant cumulative reward (ICR) for the 32-agents/32-tasks experiment.

C ADDITIONAL RESULTS

Table 9 reports additional metrics for single-seed experiments in which the agents/tasks ratio was used: 2/2, 4/4, 8/8,
16/16, 32/32, and 4/16. The instant cumulative reward (ICR) for the 32/32 experiment is reported in Fig. 8.

Fig. 9 shows the performance of an L2D2-C system across two locations in different countries. This is a proof-of-
concept that the system can work across locations and more statistical analysis and experiments are required. However,
it indicates that four agents across two locations do not appear slower than 4 agents in the same location.

Scatter plots showing the different types of messages exchanged by all agents during 4 runs with different probabilities
of connection drop are shown in Fig. 10.

D ENVIRONMENTS

D.1 CT-GRAPH

In the configurable tree graph (CT-graph) (Soltoggio et al., 2019; 2023) the environment is implemented as a graph,
where each node is a state represented as a 12× 12 grayscale image. As shown in Fig. 11, the node types are start (H),
wait (W), decision (D), end/leaf (E), and fail (F). The goal of an agent is to navigate from the home state to one of the
end states designated as the goal where the agent receives a reward of 1. To navigate to any end of the graph, the agent
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Figure 6: Performance with communication drops on 16-agent 16-task experiment. We
could not measure significant di↵erences in performance even with the highest connection
drop probability of 0.75. While surprising, we observed that, with 16 agents, an agent that
drops 3 connections out of 4 will still be able to contact 4 agents out of 16, and thereby obtain
the required knowledge. It is possible that communication drops will be more damaging with
a larger number of tasks and a lower number of agents.

Figure 7: Two agents at LU (UK) and two agents at VU (USA) learning a 8-task curriculum.
This single experiment does not allow to measure the e↵ect of longer communication delays
across campuses. However, it might suggest that, in such a case, the delays could have a
negligible e↵ect on the learning performance.

10

L2D2-C 4 agents location A
Single agent

L2D2-C 4 agents location B
L2D2-C 4 agents (2 @A + 2 @B)

Figure 9: An L2D2-C system run across two locations in two different countries. The system across two locations
does not appear to be slower than the system that ran in the same location.

(A) (B)

(C) (D)

Figure 10: Different message types exchanged by 12 agents during runs with different connection drop probabilities.
For better visibility, a time window of 120 seconds only is shown. (A) Full connection. (B) 50% connection drop
probability. (C) 75% connection drop probability. (D) 95% connection drop probability.
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Figure 11: Examples of CT-graph environments. States are: home (H), wait (W), decision (D), end (E), and fail (F).
Three actions at W and D nodes determine the next state. (Left) A depth-3 graph with three sequential decision states
(D) and reward probability 1/37 = 1/2187 reward/episodes. (Right) A depth-2 graph with 4 leaf states.

is required to perform action a0 when in W states, and any other action ai with i > 0 in D states. The challenge is
any policy that does not follow the above criteria will lead the agent to the fail state and terminate the episode without
reward.

Two parameters in the CT-graph are the branching factor b that determines how many sub-trees stem from each D
state, and the depth d that determines how many subsequent branching node D occur before a leaf node. By setting
these two parameters, different instances of the CT-graph can be created with a measurable size of the search space
and reward sparsity.

In a typical execution with the CT-graph, tasks are sampled randomly. Fig. 12 shows a typical curriculum that was
visualized and analyzed.

D.2 MINIGRID

The Minigrid environment (Chevalier-Boisvert et al., 2018) is a grid world where an agent is required to navigate to
the goal location. There are pre-defined grid worlds with sub-variants according to the random seed. A tensor of shape
7× 7× 3 is used as input. The reward is defined as

goal_reward = 1− 0.9× es

ms
, (3)

where es is the number of steps taken to navigate to the goal and ms is the maximum number of steps in an episode.
The environment variations employed are: SimpleCrossingS9N1, SimpleCrossingS9N2, SimpleCrossingS9N3. Fig.
13 shows the five grid worlds used.
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Figure 12: Distribution of randomly sampled tasks. (A) 12 sequences of tasks (one for each agent, plotted as 12 rows)
are visualized with each task having a different color. The horizontal dimension is the time, showing here that there are
64 task changes. This task curriculum consists of tasks randomly sampled from a 16-task CT-graph. (B) The number
of times each task is encountered across all learning time and agents. (C) 12 sequences of tasks are visualized for 12
task changes for 3 Minigrid task variations. (D) The number of times each task is encountered across all learning time
and agents. For experiments shown in Fig. 4 we use a modified curriculum in which the first agent uses a sequential
repeating curriculum i.e., 0 15 for 4 cycles. The first agent also acts as the target of the local evaluation agent featured
in figure 4 and so it is a reflection of the learning dynamics of the first agent when it is connected to the rest of the
collective with varying amounts of connection drops.
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Figure 13: Visual representation of the 3 tasks in the MG3 curriculum. From left to right, one variant of each class:
SimpleCrossingS9N1, SimpleCrossingS9N2, SimpleCrossingS9N3. The agent (red) must navigate the environment
with impassable walls (gray) and reach the goal state (green). The agent can only observe a limited portion of the
environment, indicated by the highlighted squares in the images.
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Figure 14: Individual seed runs of L2D2-C on CT-graph and Minigrid from Fig. 2. A total of 5 seeds were used for
each experiment. The graphs show configurations of 1, 4, and 12 agents tested on the CT-graph environment (A, B, C)
and similarly on the Minigrid environment (D, E, F).
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