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ABSTRACT

Plasticity and stability are needed in class-incremental learning in order to learn from new data while
preserving past knowledge. Due to catastrophic forgetting, finding a compromise between these two
properties is particularly challenging when no memory buffer is available. Mainstream methods
need to store two deep models since they integrate new classes using fine-tuning with knowledge
distillation from the previous incremental state. We propose a method which has similar number
of parameters but distributes them differently in order to find a better balance between plasticity
and stability. Following an approach already deployed by transfer-based incremental methods, we
freeze the feature extractor after the initial state. Classes in the oldest incremental states are trained
with this frozen extractor to ensure stability. Recent classes are predicted using partially fine-tuned
models in order to introduce plasticity. Our proposed plasticity layer can be incorporated to any
transfer-based method designed for exemplar-free incremental learning, and we apply it to two such
methods. Evaluation is done with three large-scale datasets. Results show that performance gains
are obtained in all tested configurations compared to existing methods.

1 INTRODUCTION

Class-incremental learning (CIL) enables the adaptation of artificial agents to dynamic environments in which data
occur sequentially. CIL is particularly useful when the training process is performed under memory and/or compu-
tational constraints (Masana et al., 2021). However, it is really susceptible to catastrophic forgetting, which refers to
the tendency to forget past information when learning new data (Kemker et al., 2018; Mccloskey & Cohen, 1989).
Most recent CIL methods (Douillard et al., 2020; Hou et al., 2019; Javed & Shafait, 2018; Rebuffi et al., 2017; Wu
et al., 2019) use fine-tuning with knowledge distillation (Hinton et al., 2015) from the previous model to preserve past
information. Knowledge distillation has been progressively refined (Hou et al., 2019; Javed & Shafait, 2018; Wu et al.,
2021; Yu et al., 2020; Zhou et al., 2019) to improve CIL performance. An alternative approach to CIL is inspired by
transfer learning (Razavian et al., 2014). These methods use a feature extractor which is frozen after the initial CIL
state (Belouadah & Popescu, 2018; Hayes et al., 2020; Hayes & Kanan, 2020; Rebuffi et al., 2017). They become
competitive in exemplar-free CIL, a difficult setting due to a strong effect of catastrophic forgetting (Masana et al.,
2021). The main challenge is to find a good plasticity-stability balance because fine-tuning methods favor plasticity,
while transfer-based methods only address stability.

In this work, we tackle exemplar-free CIL (EFCIL) by combining the two types of approaches described above.
Building on the strong performance of transfer-based methods (Belouadah et al., 2021; Hayes & Kanan, 2020), we
introduce a plasticity component by partially fine-tuning models for recent classes. The results from Figure 1 show
that our method gives a better global accuracy compared to DeeSIL (Belouadah & Popescu, 2018) and LUCIR (Hou
et al., 2019), two representative methods focused on stability and plasticity, respectively. Accuracy is presented sepa-
rately for past and new classes for existing methods to examine the plasticity-stability balance offered by each method.
LUCIR has optimal plasticity (best accuracy of new classes), while DeeSIL has optimal stability (best accuracy
for past classes). However, the performance of both methods is strongly degraded on the complementary dimensions.
Our method is close to LUCIR in terms of plasticity and to DeeSIL in terms of stability. Consequently, it ensures a
better balance between these two properties of EFCIL.
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Figure 1: Accuracy of past and new classes in exemplar-free CIL for three large-scale datasets with K = 10 incremen-
tal states. LUCIR (Hou et al., 2019) uses distillation to preserve past knowledge and favors plasticity. DeeSIL (Be-
louadah & Popescu, 2018) transfers features from the initial frozen model to all subsequent states and focuses on
stability. PlaStIL offers a better plasticity-stability balance. Note that the proportion of past classes increases as the
incremental process advances and so does their weight in global accuracy.

PlaStIL is inspired by transfer learning but adds a partial fine-tuning component to boost plasticity. It is applicable
to any transfer-based method and we exemplify it with DSLDA (Hayes & Kanan, 2020) and DeeSIL (Belouadah
& Popescu, 2018). We introduce a hybrid classification layer which combines classification weights learned with the
initial model for past classes and with the fine-tuned models for recent classes. We evaluate the proposed approach on
three datasets which contain 1000 classes each. The number of incremental states is varied to assess the robustness of
the tested methods. Results show that performance gains are obtained by adding the proposed plasticity component to
transfer-based methods. Equally interesting, important performance improvements are obtained over distillation-based
methods, which are the mainstream methods deployed to tackle CIL (Hou et al., 2019; Javed & Shafait, 2018; Rebuffi
et al., 2017; Smith et al., 2021; Wu et al., 2021). We will open-source the code to facilitate reproducibility.

2 RELATED WORK

Incremental learning is interesting when artificial agents need to learn under memory or computational con-
straints (Masana et al., 2021; Parisi et al., 2019; Rebuffi et al., 2017). The main challenge in CIL is to tackle the
catastrophic forgetting phenomenon (Kemker et al., 2018; Mccloskey & Cohen, 1989). A suitable balance between
plasticity and stability of the learned models is sought (Mermillod et al., 2013). Plasticity and stability are needed
in order to accommodate new data and preserve previously learned knowledge, respectively (Chaudhry et al., 2018).
As noted in a recent survey (Masana et al., 2021), a large majority of CIL-related works use a memory buffer which
stores samples of past classes in order to improve overall performance. Replaying these samples facilitates the preser-
vation of past knowledge, thus making the incremental learning process akin to imbalanced learning (Belouadah et al.,
2021). However, the assumption that past samples are available is strong and limits the applicability of CIL. A grow-
ing research effort was devoted to exemplar-free CIL (EFCIL) (Belouadah et al., 2021; Masana et al., 2021). The
plasticity-stability dilemma is particularly challenging without memory since the effects of catastrophic forgetting are
stronger in this case (Belouadah et al., 2020; Rebuffi et al., 2017; Smith et al., 2021; Wu et al., 2021).

Survey papers such as (Lange et al., 2019; Masana et al., 2021) analyze different types of continual learning meth-
ods which are usable in exemplar-free CIL. Parameter-isolation methods, such as HAT (Serra et al., 2018) or
PackNet Mallya & Lazebnik (2018) were designed for task-incremental learning, a setting in which the task ID
is known at inference time. They learn task-specific masks to reduce catastrophic forgetting. However, they are im-
practical in task-agnostic scenarios since the simultaneous evaluation of all tasks is not possible and specific forward
passes are needed for each task (Masana et al., 2021). Regularization-based methods are a popular solution to EFCIL
and they fall into two subcategories, namely data-focused or prior-focused approaches. Existing works (Lange et al.,
2019; Masana et al., 2021; Petit et al., 2023) showed that data-focused methods outperform prior-focused on in EFCIL
scenarios. Consequently, we discuss data-focused methods and use representative examples of them in experiments.
According to Belouadah et al. (2021); Masana et al. (2021), most methods update learned models in each IL state using
fine-tuning for plasticity and different flavors of knowledge distillation (Hinton et al., 2015) for stability. Alternatively,
a few works (Belouadah & Popescu, 2018; Dhamija et al., 2021; Hayes et al., 2020; Hayes & Kanan, 2020) use an
initial representation throughout the incremental process. We discuss the merits and limitations of both approaches
below and position our contribution with respect to them.
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Distillation-based methods are inspired by LwF (Li & Hoiem, 2016), an adaptation of knowledge distillation (Hinton
et al., 2015) to an incremental context. The authors of Dhar et al. (2018) add an attention mechanism to the distillation
loss to preserve information from past classes and obtain an improvement over LwF . Since its initial use for exemplar-
based CIL in iCaRL (Rebuffi et al., 2017), distillation was refined and complemented with other components to
improve the plasticity-stability compromise. LUCIR (Hou et al., 2019) applies distillation on feature vectors instead
of raw classification scores to preserve the geometry of past classes, and an inter-class separation to maximize the
distances between past and new classes. LwM (Dhar et al., 2018) adds an attention mechanism to the distillation loss
to preserve information from base classes. An interesting solution is proposed in Yu et al. (2020), where the feature
drift between incremental steps is estimated based on features of samples associated to new classes. However, this
method has a large footprint since it needs a large multi-layer perceptron and also stores past features to learn the
transformation. A feature transformation method is designed for task-incremental learning and adapted for CIL by
predicting the task associated to each test sample (Verma et al., 2021). The authors of Smith et al. (2021) combined
feature drift minimization and class separability to improve distillation. The authors of Wu et al. (2021) proposed
an approach which stabilizes the fine-tuned model, adds reciprocal adaptive weights to weigh past and new classes
in the loss, and introduces multi-perspective training set augmentation. They reported important gains in exemplar-
free CIL compared to LUCIR (Hou et al., 2019) and SDC (Yu et al., 2020) using a protocol in which half of
the dataset is available initially (Hou et al., 2019). Distillation is widely used but a series of studies question its
usefulness (Belouadah et al., 2021; Masana et al., 2021; Prabhu et al., 2020), especially for large-scale datasets. One
explanation for the lack of scalability of distillation is that inter-class confusion becomes too strong when the number
of past classes is high. Another challenge is that distillation needs to store the previous deep model to preserve past
knowledge. The total footprint of these methods is the double of the footprint of the backbone model used.

A second group of methods learns a deep representation in the initial state and uses it as feature extractor throughout the
CIL process. They are inspired by transfer learning (Tan et al., 2018) and favor stability since the initial representation
is frozen. Usually, these methods learn shallow external classifiers on top of the initial deep representation. The nearest
class mean (NCM ) (Mensink et al., 2013) was introduced in Rebuffi et al. (2017), linear SVCs (Cortes & Vapnik,
1995) were used in Belouadah & Popescu (2018); Petit et al. (2023) and extreme value machines (Rudd et al., 2017)
were tested by Dhamija et al. (2021). REMIND (Hayes et al., 2020) uses a vector quantization technique to save
compressed image representations which are later reconstructed for memory consolidation by training model tops.
The main difference with our proposal is that the past is represented via compressed image representations instead
of model tops. DSLDA (Hayes & Kanan, 2020) updates continuously a class-specific mean vector and a shared
covariance matrix. The predicted label is the one having the closest Gaussian in the feature space defined by these
vectors and matrix. These methods are simple and suited for exemplar-free CIL, particularly for large-scale datasets
where they outperform distillation-based methods (Belouadah et al., 2021; Masana et al., 2021). Equally important,
they only use the initial model and thus have a smaller footprint. Their main drawbacks are the genericity of the initial
representation and the sensitivity to strong domain variations. Their performance drops if a small number of classes is
initially available (Belouadah et al., 2021) and if the incremental classes have a large domain shift with classes learned
initially (Lange et al., 2019). The robustness of the initial representation can be improved is an assumption is made
that a model pretrained with a large amount of data is available and that its features are transferable to the incremental
datasets (Hayes et al., 2020). ESN (Wang et al., 2023) is an interesting method which was proposed very recently,
and makes this assumption, similarly to REMIND and DSLDA. ESN leverages a pretrained transformer model,
trains classifiers per state and then merges them by combining a temperature-controlled energy metric, an anchor-
based energy self-normalization strategy and a voting-based inference augmentation strategy to ensure impartial and
robust EFCIL predictions. Here, we experiment without a large pretrained model in order to cover cases where there
is a large domain drift between the pretraining and the incremental datasets.

3 PROPOSED METHOD

3.1 PROBLEM FORMALIZATION

The CIL process is divided in K states, with n classes learned in each state. In EFCIL, no past data can be stored for
future use. The predictions associated to observed classes are noted p. We write the structure of a deep model as:

M = {B, T ,W} (1)
with: M - the full model; B - the model base which includes the initial layers; T - the model top which includes the
subsequent layers up to the classification one; W - the classification layer which provides class predictions.

Assuming that the CIL process includes K states, the objective is to learn K models in order to incorporate all classes
which arrive sequentially. The incremental learning process can be written as:

M1 → M2 → ... → Mk → ... → MK−1 → MK (2)
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Each incremental model needs to integrate newly arrived data, while also preserving past knowledge. Assuming that
the current state is k ≥ 2, the majority of existing CIL methods (Castro et al., 2018; Hou et al., 2019; Rebuffi et al.,
2017; Smith et al., 2021; Wu et al., 2021; 2019) fine-tunes the entire current model Mk by distilling knowledge from
Mk−1. We note w1

k to w
(k−1)×n
k the classifier weights of the past states 1 to k − 1, and w

(k−1)×n+1
k to wk×n

k the
classifier weights of the new state k.

Their classification layer is written as:

Wft
k = {w1

k, ..., w
n
k , ..., w

(k−1)×n
k , w

(k−1)×n+1
k , ..., wk×n

k } (3)

They are all trained using Tk, the model top learned in the kth state. The Wft
k layer is biased toward new classes

since it is learned with all samples from the current state, but only with the representation of past classes stored in
Mk−1 (Hou et al., 2019; Rebuffi et al., 2017; Wu et al., 2019). This group of methods focuses on CIL plasticity at the
expense of stability (Belouadah et al., 2021; Masana et al., 2021).

Transfer-based methods (Belouadah & Popescu, 2018; Hayes et al., 2020; Hayes & Kanan, 2020; Petit et al., 2023)
freeze the feature extractor F1 = {B1, T1} after the initial non-incremental state. All the classes observed during the
CIL process are learned with F1 as features extractor. The classification layer can be written as:

Wfix
1 = {w1

1, ..., w
n
1 , ..., w

(k−1)×n
1 , w

(k−1)×n+1
1 , ..., wk×n

1 } (4)

All classifier weights from Eq. 4 are learned with image features provided by F1, the feature extractor learned initially,
inducing a bias toward initial classes. It is suboptimal for classes learned in states k ≥ 2 because their samples were
not used to train F1. These methods focus on CIL stability at the expense of plasticity (Masana et al., 2021).

3.2 PlaStIL DESCRIPTION

PlaStIL is motivated by recent studies which question the role of distillation in CIL, particularly for large-scale
datasets (Belouadah et al., 2021; Masana et al., 2021; Prabhu et al., 2020). Instead of Mk−1 needed for distilla-
tion, PlaStIL uses two or more model tops T which have an equivalent number of parameters at most. PlaStIL is
inspired by feature transferability works (Neyshabur et al., 2020; Yosinski et al., 2014) which show that higher layers
of a model, included in T , are the most important for successful transfer learning. Consequently, the initial layers B
are frozen and shared throughout the incremental process. A combination of model tops which includes T1, the one
learned in the first incremental state, and those of the most recent state(s) is used in PlaStIL. Similar to transfer-based
CIL methods (Belouadah & Popescu, 2018; Hayes et al., 2020; Hayes & Kanan, 2020; Petit et al., 2023), T1 ensures
stability for classes first encountered in past states for which a dedicated top model is not available. Different from
existing methods, model top(s) are available for the most recent state(s), thus improving the overall plasticity of PlaS-
tIL. The number of different model tops which can be stored instead of Mk−1 depends on the number of higher layers
which are fine-tuned in each incremental state. The larger the number of layers in T , the larger its parametric footprint
is and the lower the number of storable model tops will be.

The method is illustrated in Figure 2 with a toy example which includes K = 4 IL states, with n = 2 new classes per
state and which assumes that up to three model tops can be stored. Up to the third state, PlaStIL stores a model top per
state and corresponding classifier weights are learned for each model top. In the fourth state, one of the model tops
needs to be removed in order to keep the parameters footprint bounded. Consequently, T2 is removed and the initial
model top T1 is used. Note that T1 is used to learn classifier weights for all classes when they occur initially. These
initial weights are stored for usage in later incremental states in order to cover all past classes for which dedicated
model tops cannot be stored. The storage of the initial weights generates a small parameters overhead but its size
is small and does not increase over time. If the classifier weights are d-dimensional, the number of supplementary
parameters is n× d. Moreover, this overhead can be easily compensated by the choice of number of parameters in T
and the number of such model tops which are stored. In Figure 2, initial classifier weights w3

1 and w4
1 are first learned

in state 2 but only used in state 4, when T2 is no longer available. In state 4, T1 is used for classes which first occurred
in states 1 and 2 (classifiers weights w1

1 to w4
1). T3 is reused along with its classifier weights w5

3 and w6
3 , learned for

the classes which were learned in state 3. Finally, classifier weights of new classes w7
4 and w8

4 are learned with T4.
This results into a hybrid classification weights layer which is defined as:

Whyb
k = {w1

1, ..., w
j×n
1 , ..., wj×n+1

j+1 , ..., w
(j+1)×n
j+1 , ..., w

(k−1)×n+1
k , ..., wk×n

k } (5)

where we assume that k − j + 1 models can be stored, with 2 ≤ j ≤ k; the blocks of classes learned with features
from different model tops are color coded.
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Figure 2: PlaStIL overview using a toy example with K = 4 CIL states and n = 2 new classes learned per state.
The global memory footprint is equivalent to that of distillation-based methods, but this memory is used differently.
We assume that a model base and at most three model tops can be used. A base B, is learned in the initially and then
frozen, as is T1 which is needed to ensure stability. Initial classifier weights are trained using T1 in each state and
reserved for future use. Classifier weights which are actually used in each state are highlighted in red. In state 4, the
recent model tops (T4 and T3) are included to ensure plasticity. Classifier weights w7

4 and w8
4 , associated to the new

classes from state 4 are learned with features provided by T4. w5
3 and w6

3 were learned with T3 features in state 3,
when they were new. w1

1 to w4
1 were learned with T1 features, in states 1 and 3. w5

1 to w8
1 are reserved for future use.

T2 is discarded to keep the total memory footprint of PlaStIL bounded. Best viewed in color.

In Equation 5, classifier weights of the first j incremental states are learned with the features provided by initial model
top T1. Those of the most recent states (j + 1 to k) are learned with features provided by model tops Tj+1 to Tk. An
advantage of the layer from Equation 5 is that it ensures a good balance between stability, via T1 and plasticity, via
Tj+1 to Tk. The number of storable model tops varies inversely with the number of layers that they include. We report
results with three top depths in Section 4. A choice between internal and external classifiers has to be made for the
implementation of this classification layer. Experiments from Belouadah et al. (2021) indicate that external classifiers
are easier to optimize when transferring features from M1 to subsequent incremental states.

PlaStILis primarily intended for a CIL scenario under the assumption that the parametric budget should not increase
over time. If memory is allowed to grow over time, the method could store a larger number of model tops. The model
top creation and removal policy could be adapted depending on the continual learning scenario being explored. For
instance, if classes were grouped semantically, as it is the case in task-incremental learning, it might be better to create
model tops for states which include classes which are most dissimilar from those of the initial model. Another inter-
esting scenario assumes that past classes can be revisited, with new samples of them arriving later in the incremental
process. In this case, model tops could be created for the current state if the amount of samples for revisited classes is
smaller than those associated to existing tops. Such a top creation policy would be based on the assumption that the
less revisiting there is, the more likely a new top would be due to the fact that the current state includes more novelty.
In practice, the total number of stored model tops will depend on the total budget available on the device. When the
memory budget is reached, one of the selection strategies listed above can be applied depending on the characteristics
of the continual learning process. In Subsection 4.5, we show that the creation of model tops for the most recent
states is a good solution for class incremental learning. While interesting, the adaptation of PlaStILto other continual
learning scenarios is out of the immediate scope and is thus left for future work.

4 EXPERIMENTS

We evaluate PlaStIL with three large-scale datasets designed for different visual tasks. We compare it to a representa-
tive set of EFCIL methods. We vary the total number of states K using K ∈ {5, 10, 20} because the length of the CIL
process has strong effects on EFCIL performance (Masana et al., 2021). The evaluation metric is the top-1 accuracy
averaged over all incremental states. Following a common practice in CIL (Castro et al., 2018; Hou et al., 2019; Wu
et al., 2019), the performance on the initial state is excluded because it is not incremental.
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4.1 DATASETS

We thus select large-scale datasets which provide a more realistic scenario for evaluation compared to medium-scale
ones which are still used (Smith et al., 2021; Wu et al., 2021). We run experiments with:

• ILSV RC (Russakovsky et al., 2015) - the well-known subset of ImageNet (Deng et al., 2009) built for the epony-
mous competition and also used in CIL (Castro et al., 2018; Hou et al., 2019; Rebuffi et al., 2017; Wu et al., 2019).
The training and testing sets are composed of 1,231,167 and 50,000 images, respectively.

• Landmarks - a subset of a landmarks recognition dataset (Noh et al., 2017) which includes a total of over 30000
classes. We select the 1000 classes having the largest number of images. The training and testing sets are composed
of 374,367 and 20,000 images, respectively.

• iNaturalist - a subset of the dataset used for the iNaturalist challenge (Van Horn et al., 2018). The full version
includes 10000 fine-grained classes for natural species. We sample 1000 classes from different super-categories to
obtain a diversified subset. The training and testing sets are composed of 300,000 and 10,000 images, respectively.

4.2 STATE-OF-THE-ART METHODS

We compare PlaStIL with the following existing methods:

• LwF (Rebuffi et al., 2017) - is a CIL version of the initial method from Li & Hoiem (2016). It tackles forgetting
using a distillation loss.

• SIW (Belouadah et al., 2020) - uses a vanilla FT backbone and tackles catastrophic forgetting by reusing the past
classifiers learned when these classes were first learned.

• LUCIR (Hou et al., 2019) - adapts distillation to feature vectors instead of raw scores to preserve the geometry of
past classes and also pushes for inter-class separation. Note that while initially proposed for CIL with memory, this
method showed strong performance in EFCIL too (Belouadah et al., 2021).

• SPB-M (Wu et al., 2021) - is a recent method which focuses on balancing plasticity and stability in exemplar-free
CIL. We report results with the multi-perspective variant, which has the best overall performance in Wu et al. (2021).
SPB-M provides very competitive performance compared to LUCIR when half of the dataset is initially available.

• PASS (Zhu et al., 2021) - uses prototypes of past classes in combination with distillation in order to counter
catastrophic forgetting.

• REMIND Hayes et al. (2020) - encodes knowledge about past classes by storing compressed image representa-
tions. It is compared with our method by allocating the amount of storage used for model tops in our method to
compressed representations of past samples.

• FeTrIL (Petit et al., 2023) - is a very recent method which focuses on generating pseudo-features for past classes
by using a geometric translation of features of similar new classes.

• DSLDA (Hayes & Kanan, 2020) - is based on Gaussian functions defined in the features space by specific mean
class vectors and a covariance matrix which is shared among all classes. This method is interesting since its classi-
fication layer provides an efficient inter-class separability mechanism.

• DeeSIL (Belouadah & Popescu, 2018) - freezes the initial model uses linear SVCs (Cortes & Vapnik, 1995) for the
final layer, which is trained independently for each state.

The first four methods fine-tune models incrementally. REMIND trains model tops using a compressed replay buffer
and is very relevant for comparison here. DSLDA and DeeSIL are transfer-based, and PlaStIL can be applied to
them. They were implemented using their original optimal parameters. Whenever the original experimental settings
were different from the ones used here, the correct functioning of the baselines was carefully checked. The obtained
accuracy was coherent with the results reported in the original papers and/or in comparative studies such as Belouadah
et al. (2021); Masana et al. (2021) in all cases. See details about the reproduced results in the appendix.

We experiment with three versions of PlaStIL designed to ensure that its parameters footprint is equivalent to (or lower
than) that of distillation-based methods. We assume that the incremental process is in the kth state and test:

• PlaStIL1 - fine-tunes model tops T limited to the last convolutional layer of ResNet-18, which includes approxi-
mately 21.45% of the model parameters. Consequently, we can fit T1, Tk−3, Tk−2, Tk−1 and Tk in memory.

• PlaStIL2 - fine-tunes T which includes the last two convolutional layers of ResNet-18, which includes approximately
42.9% of the model parameters. We can fit T1, Tk−1 and Tk in the allowed parameters memory.

• PlaStILall - trains all the layers of the current model in kth state and we can only use T1 and Tk in each IL state.

PlaStIL variant test different variants of the compromise between the number of model tops and their depth. PlaStIL1

fine-tunes only the last convolutional layer of model tops and maximizes the number of such storable models. PlaS-
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CIL Method mem on disk ILSVRC Landmarks iNaturalist

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

FT (lower bound) 44.59MB 26.6 18.3 12.2 31.3 21.0 13.4 25.6 17.5 11.4
LwF (Rebuffi et al., 2017) (CVPR’17) 44.59MB 24.0 21.1 17.4 36.9 34.7 28.0 23.9 21.5 16.3
SIW (Belouadah et al., 2020) (BMVC’20) 44.59MB 38.3 35.2 26.8 66.4 55.7 41.4 38.6 30.9 17.2
LUCIR (Hou et al., 2019) (CVPR’19) 89.18MB 50.4 37.4 24.4 89.5 75.0 50.5 54.9 39.4 24.8
SPB-M (Wu et al., 2021) (ICCV’21) 89.18MB 38.9 37.3 30.4 81.6 70.4 57.1 46.7 39.6 29.8
PASS (Zhu et al., 2021) (CVPR’21) 89.18MB 39.4 35.9 29.8 65.0 55.1 42.3 48.0 40.9 31.8
REMIND (Hayes et al., 2020) (ECCV’20) 89.18MB 52.2 44.8 35.9 83.3 77.5 72.2 50.6 39.4 31.3
FeTrIL (Petit et al., 2023) (WACV’23) 44.59MB 54.7 49.1 42.8 86.1 81.2 77.7 52.9 45.3 38.7
DSLDA (Hayes & Kanan, 2020) (CVPRW’20) 45.59MB 51.3 45.4 39.2 82.7 78.5 74.5 49.7 42.1 34.8
w/ PlaStIL1 93.44MB 56.8 50.1 42.2 86.8 82.1 76.1 53.8 45.6 36.6
w/ PlaStIL2 87.52MB 58.3 50.6 42.5 87.8 82.1 76.0 56.1 46.2 36.9
w/ PlaStILall 91.18MB 57.7 49.8 41.9 86.9 81.3 75.5 56.2 46.3 37.4
DeeSIL (Belouadah & Popescu, 2018) 44.59MB 52.4 45.4 37.5 87.4 80.8 73.8 52.7 43.5 33.9
w/ PlaStIL1 88.44MB 58.6 51.8 41.9 92.1 86.4 78.1 56.8 47.5 36.4
w/ PlaStIL2 84.52MB 59.2 50.2 39.7 92.2 85.1 76.7 57.3 46.9 36.0
w/ PlaStILall 89.18MB 57.7 48.6 39.0 90.7 83.4 75.3 58.2 47.1 35.6
Joint (upper bound) 73.0 97.4 75.6

Table 1: Average top-1 accuracy with three numbers of states K per dataset. PlaStIL is applied on top of DeeSIL
and DSLDA. Best results - in bold, second best - underlined.

tILall provides optimal transfer since all layers are trained with new data but can accommodate only the current model.
PlaStIL2 provides a compromise between top depth and the number of storable models.

We also provide results for: (1) vanilla fine-tuning (FT ) - a baseline that does not counter catastrophic forgetting at
all, and (2) Joint - an upper bound which consists of a standard training in which all data are available at once.

4.3 IMPLEMENTATION

A ResNet-18 (He et al., 2016) architecture was used as a backbone in all experiments. All methods were run with the
published optimal parameters and minor adaptation of the codes to unify data loaders: FT (Belouadah et al., 2020),
LwF (Rebuffi et al., 2017), LUCIR (Hou et al., 2019), SIW (Smith et al., 2021), DSLDA (Hayes & Kanan, 2020),
DeeSIL (Belouadah & Popescu, 2018) and FeTrIL (Petit et al., 2023). SPB-M (Wu et al., 2021) has no public
implementation and we reimplemented the method. We verified its correctness by comparing the accuracy obtained
with our implementation (60.1) to the original one (59.7) for ILSV RC split tested by the authors (Wu et al., 2021).
All methods were implemented in PyTorch (Paszke et al., 2019), except for LwF which uses the Tensorflow (Abadi
et al., 2015) implementation of LwF from Rebuffi et al. (2017) because it provides better performance compared to
later implementations Javed & Shafait (2018); Wu et al. (2019). The training procedure from Hayes et al. (2020)
was used to obtain initial models for all transfer-based methods. These initial models were trained for 90 epochs,
with a learning rate of 0.1, a batch size of 128, and a weight decay of 10−4. We used stochastic gradient descent for
optimization and divided the learning rate by 10 every 30 epochs. Detailed parameters are presented in the appendix.

4.4 MAIN RESULTS

The results presented in Table 1 show that all PlaStIL variants improve over the transfer-based methods to which they
are added for all tested datasets and CIL configurations. The gains are generally higher for K = 5 states, but remain
consistent for the K = {10, 20}. For instance, PlaStIL1 gains 6.2, 6.4 and 4.4 points for ILSV RC split into 5, 10,
20 states, respectively. The best overall performance is obtained with PlaStIL1, followed by PlaStIL2 and PlaStILall

applied on top of DeeSIL. A combination of recent model tops which fine-tune only the last convolutional layer is
best here. Our method appled to DeeSILprovides best performance for 5 and 10 incremental states. Gains are equally
interesting for DSLDA, and particularly for K = 20. This baseline has better performance than DeeSILfor all three
datasets when K = 20 . The application of PlaStILon top of DSLDAleads to slightly better performance compared
to the version built on top of DeeSILfor ILSV RC (42.5 vs. 41.9) and iNaturalist (37.4 vs 36.4). The better
behavior of DSLDA for longer incremental sequences is explainable since this method features a global inter-class
separability component. In contrast, DeeSIL only separates classes within each state and its discriminative power is
reduced when each state includes a low number of classes.

Distillation-based methods have lower performance compared to transfer-based methods for the tested large-scale
datasets. This result is coherent with previous findings regarding scalability problems of distillation (Belouadah et al.,
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Figure 3: Incremental accuracy across all states for K = 10. Plots for for K = 5 and K = 20 are presented at Figure 7
in the appendix. Plots are presented for the best methods from Table 1.

2021; Masana et al., 2021; Prabhu et al., 2020). The difference between PlaStIL applied to DeeSIL and DSLDA
and distillation-based methods is very consequent. It is in the double-digits range compared to LUCIR, the best
distillation-based method, for five configurations out of nine tested. This difference reaches a maximum value of 27.6
top-1 accuracy points for Landmarks with K = 20 states and a minimum of 2.7 points for the same dataset with
K = 5 states. SPB-M is a recent method which compares very favorably with LUCIR when half of the dataset
is allowed in the initial state (Wu et al., 2021). However, its behavior is globally similar to that of LUCIR, with
performance gains for K = 20 states and losses for K = 5. This happens because SPB-M is more dependent on
the representativeness of the initial model compared to LUCIR since it features a strong stability component. LwF
and SIW , the two other methods which update models in each incremental state have even lower performance than
LUCIR and SPB-M . The comparison with REMIND is also favorable in all tested configurations. This indicates
that, given an identical memory budget, the use of model tops is more effective than the use of a replay buffer made of
compressed samples of the past . PlaStIL is also better than FeTrIL on 7 configurations out of 9, and ranks similarly
(0.3% and 0.7%) on the remaining two. It can be explained by the fact that on the long run the pseudo-feature generator
of FeTrIL favors the stability. However, on shorter runs, for K = 5 states, PlaStIL beats it by 4.5%, 6.1% and 5.3%.
All EFCIL methods need a supplementary budget to ensure the plasticity-stability balance. The takeaway from the
comparison of PlaStIL with mainstream methods is that this budget is much better spent on partially fine-tuned model
tops than on storing the previous model needed for distillation.

The results per dataset show that ILSV RC and iNaturalist are harder to solve compared to Landmarks. The gains
obtained by PlaStIL are smaller for Landmarks since the progress margin is more reduced. The performance gap
between the evaluated methods and Joint is large. The fact that the gap widens with the number of incremental states
has specific explanations for the two types of methods. Past knowledge becomes harder to preserve when the number
of fine-tuning rounds increases in LUCIR, SPB-M , SIW , LwF . For transfer-based methods, past knowledge is
encoded using a weaker feature extractor. PlaStIL reduces the gap with Joint, but the results reported here show that
exemplar-free class-incremental learning remains a very challenging problem.

We propose a more detailed presentation of the incremental accuracy in Figure 3. These results confirm the large gap
between the proposed methods and distillation-based ones. SPB-M has lower performance at the start of the process,
but then becomes better than LUCIR, because of the representativeness of the initial model, as previously explained.

4.5 METHOD ANALYSIS

We conduct an analysis of PlaStIL in terms of model footprint and number of operations needed to infer test image
predictions. These experiments are run using PlaStIL applied on top of DeeSIL since this variant has the best overall
results. They are important in order to highlight the merits and limitations of the proposed method.

Model footprint. Incremental learning algorithms are particularly useful in memory-constrained environments. Their
model footprint is thus an important characteristic. Distillation-based methods require the storage of models Mk

and Mk−1 to preserve past knowledge. Transfer-based methods only need M1, but they optimize stability at the
expense of plasticity. The three versions of PlaStIL, whose performance is presented in Table 1, store B1, the initial
model base and a variable number of model tops. Each of the four recent model tops used by PlaStIL1 fine-tunes the
last convolutional layer of ResNet-18 (He et al., 2016), which accounts for 21.45% of total number of the model’s
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Figure 4: Top-1 accuracy gains obtained with the three variants of PlaStIL applied to DeeSIL with different thresholds
for the rank of the top new class among the predictions generated with Equation 4. Results are shown for ILSV RC
with K = 10 states. The corresponding percentage of supplementary inferences needed for each threshold is also
plotted. Interesting gains are obtained starting with a recent class predicted in the second position, which requires
approximately 25% of supplementary inferences for PlaStIL1. Best viewed in color.

parameters. The parametric footprint of PlaStIL1 is thus lower than that of distillation-based methods. PlaStIL2 has
the same footprint as PlaStIL1 since it stores two tops which account for 42.9% of ResNet-18 parameters each. As
an ablation of PlaStIL, we also present results with a single model top, regardless of its fine-tuning depth .Naturally,
PlaStILall obtains the best results in this configuration, but interesting gains are still obtained with model tops which
fine-tune one or two final convolutional layers in PlaStIL1 and PlaStIL2, respectively.

Inference complexity. The classification layer defined in Equation 5 is fed with features from the initial and the
updated model top(s), for past and recent classes, respectively. By default, PlaStIL inferences requires an extraction
of features for all used model tops. This supplementary inferences cost varies for PlaStIL variants due to the different
number of parameters in the model top(s) that they use. This supplementary computational cost can be reduced if
predictions are first computed using the initial model only, as defined in Equation 4. Then, subsequent model tops are
used only if one of their classes is strongly activated for the test image. A top is used for inferences only if at least
one of its associated classes is ranked among the top classes of the of the classification layer from Equation 4. The
closer to 1 this rank threshold is, the smaller the added computational cost will be since fewer tops are likely to be
used for inference. However, a restriction to small ranks might also discard useful model tops and thus reduce the
positive effect of PlaStIL. Evaluation is done with top ranks of new class in Wfix

k between 1 and 10 to examine the
trade-off between inference complexity and performance. The obtained accuracy, as well as the added inference cost,
for the three variants of PlaStIL applied over DeeSIL are presented in Figure 4. The results show that performance
gains relative to DeeSIL raise sharply. The best balance between performance gains and added costs is obtained for
PlaStIL1. This is explained by the fact that T have the lowest number of parameters for this variant. Their activation
can be done in a finer manner, resulting in a reduced overall inference cost. Interesting PlaStIL gains are obtained
starting with a recent class being ranked second position by DeeSIL. The accuracy curve becomes practically flat if
a recent class is ranked beyond the third position by the baseline. The results presented in Figure 4 provide further
support to the fact that PlaStIL1 is the most appropriate choice as plasticity layer added on top of DeeSIL.

Choice of model tops. The main experiments used model tops created for the most recent incremental states. Other
top creation and removal policies are possible, and we compare the one proposed here with an oracle which performs
an optimal selection of tops. The oracle selects model tops associated to different states so as to maximize the average
incremental accuracy of the CIL process by aggregating the accuracy of different incremental states computed on the
test set. The results from Table 2 indicate that the creation of tops for the most recent states provides a performance
level which is close to the optimal one achievable by the oracle. This is probably explained by the fact that the evaluated
CIL scenarios use a random assignment of classes to states. Other selection strategies might be more appropriate if
the assumptions made about the order of arrival of classes or data were different, as discussed in Subsection 3.2.

5 CONCLUSION

We proposed a new method which adds a plasticity layer to transfer-based methods in exemplar-free CIL. Plasticity
is improved by training dedicated model tops which fine-tune a variable number of deep models layers for one or
more recent incremental states. The predictions of the different model tops used by our method are integrated in a
hybrid classification layer. Model tops improve accuracy compared to the transfer-based method to which they are
added to in order improve plasticity. These improvements are obtained by introducing supplementary parameters so
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CIL Method ILSVRC Landmarks iNaturalist

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

DeeSIL (Belouadah & Popescu, 2018) 52.4 45.4 37.5 87.4 80.8 73.8 52.7 43.5 33.9
w/ PlaStIL1 58.6 51.8 41.9 92.1 86.4 78.1 56.8 47.5 36.4
w/ PlaStIL1+oracle 58.6 51.8 42.1 92.1 86.4 78.7 56.8 47.8 36.8
w/ PlaStIL2 59.2 50.2 39.7 92.2 85.1 76.7 57.3 46.9 36.0
w/ PlaStIL2+oracle 59.3 50.3 40.1 92.2 85.2 77.3 57.5 47.1 36.5
w/ PlaStILall 57.7 48.6 39.0 90.7 83.4 75.3 58.2 47.1 35.6
w/ PlaStILall+oracle 57.9 48.7 39.3 90.7 83.7 75.8 58.3 47.5 36.0

Table 2: Comparison of PlaStIL with a version that knowing the final composition of the different states will only
fine-tune the relevant states (PlaStIL +oracle). The average gains are of +0.2% with PlaStIL +oracle.

as to have a total footprint which remains lower than that of distillation-based methods. The comparison of these
methods with PlaStIL is clearly favorable to the latter. The takeaway is that the parameters allocated to the previous
model in distillation-based approaches are better spent on partially fine-tuned model tops. This finding is aligned with
those reported in recent comparative studies which question the usefulness of distillation in large-scale CIL with or
without memory (Belouadah et al., 2021; Masana et al., 2021; Prabhu et al., 2020). We believe that future studies
should consider transfer-based methods to assess progress in exemplar-free CIL in a fair and comprehensive manner.
We plan to optimize the stability-plasticity compromise for EFCIL to further improve the encouraging results reported
here. First, we will try to devise a classifier which predicts the most probable initial state for each test sample,
following the proposal made in Verma et al. (2021). If successful, this prediction would reduce the classification
space to individual states and remove the need for a hybrid classification layer. Second, we will investigate the use of
pretrained representations learned with larger amounts of supervised or semi-supervised data, as proposed in Dhamija
et al. (2021); Hayes et al. (2020); Wang et al. (2023). Such models can be seamlessly integrated in the PlaStIL pipeline.
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A APPENDIX

In this appendix, we provide:

• implementation details for all tested approaches;
• details about datasets used in experiments;
• results for features transferability among datasets.
• discussion on the different disk-memory usages
• additional detailed comparative accuracies

A.1 IMPLEMENTATION DETAILS

As already mentioned in Section 4.3, we used the authors’ optimal parameters to run all baselines. A ResNet-18
model (He et al., 2016) and an SGD optimizer with momentum = 0.9 are used for all methods. We explicitly list
the learning parameters of each method hereafter:

A.1.1 LEARNING FROM SCRATCH

This type of learning is used to train models of the initial state (because it is not incremental), and also Joint, the
upper bound method where all classes are learned with all their data at once.

Following Belouadah et al. (2020), Joint and the first models of FT and SIW (Belouadah et al., 2020) are run for
120 epochs using batch size = 256 and weight decay = 0.0001. The lr is set to 0.1 and is divided by 10 when the
error plateaus for 10 epochs.

For REMIND (Hayes et al., 2020), Deep-SLDA (Hayes & Kanan, 2020), DeeSIL (Belouadah & Popescu, 2018),
FixedNCM (Rebuffi et al., 2017), FeTrIL (Petit et al., 2023) and PlaStIL (ours), we follow Hayes et al. (2020)
and run the model for 90 epochs using lr = 0.1, batch size = 128, weight decay = 0.00001. The lr is set to its
initial value decayed by 10 every 30 epochs. The lr is constrained to do not decrease beneath 0.001.

For LUCIR, LwF , the first model is trained in the same manner than subsequent models (detailed below), following
the authors of Hou et al. (2019); Rebuffi et al. (2017).

A.1.2 INCREMENTAL LEARNING

Here, we describe the hyper-parameters used to train the models incrementally for model-update-based methods.

• FT (Belouadah et al., 2020) - IL models are trained for 35 epochs with batch size = 256, momentum = 0.9
and weight decay = 0.0001. The learning rate is set to lr = 0.1/t at the beginning of each incremental state
(t ≥ 2) and is divided by 10 when the error plateaus for 5 consecutive epochs.

• LwF (Rebuffi et al., 2017) - all models are trained for 60 epochs using lr = 1.0, batch size = 128, and
weight decay = 0.0001. The learning rate is divided by 5 at epochs 20, 30, 40, and 50.

• LUCIR (Hou et al., 2019) - all models are trained for 90 epochs using lr = 0.1, batch size = 128 and
weight decay = 0.0001. The lr is divided by 10 at epochs 30 and 60. The method-specific parameters are
the same as those from the original paper (Hou et al., 2019) and can also be found once we release the codes
and configuration files.

• SIW (Belouadah et al., 2020) - is trained using the same hyper-parameters of FT following the authors.
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Init. dataset Landmarks iNaturalist ILSV RC iNaturalist Landmarks ILSV RC

IL dataset ILSV RC Landmarks iNaturalist

Deep-SLDA (Hayes & Kanan, 2020) 19.3 29.2 67.8 60.1 16.1 35.2
DeeSIL (Belouadah & Popescu, 2018) 21.6 29.6 70.5 61.9 16.2 36.1
DeeSIL w/ PlaStIL1 28.1 33.8 76.8 68.3 21.4 39.2
Joint 72.98 97.41 75.60

Table 3: Average top-1 incremental accuracy in a dataset transfer learning configuration. Results are given for trans-
ferring between all pairs of initial and target datasets. All experiments are run with K = 10 states. Best results are in
bold.

Dataset #Train #Test µ(Train) σ(Train)
ILSV RC (Russakovsky et al., 2015) 1,231,167 50,000 1231.2 70.2
Landmarks (Noh et al., 2017) 374,367 20,000 374.4 103.8
iNaturalist (Van Horn et al., 2018) 300,00 10,000 300.0 0.0

Table 4: Summary of datasets. µ is the mean number of train images per class and σ is the standard deviation

• SPB-M (Wu et al., 2021) - all models are trained for 90 epochs using lr = 0.1, batch size = 128 and
weight decay = 0.0001. The lr is divided by 10 at epochs 30 and 60. The method-specific parameters are
the same as those from the original paper (Wu et al., 2021) and can also be found once we release the codes
and configuration files. Note that SPB-M (Wu et al., 2021) has no available code, we implemented it by
modifying significantly the code of LUCIR (Hou et al., 2019), and verified its correctness on the results the
authors provided in their paper.

• REMIND (Hayes et al., 2020) - method-specific parameters are the same as those from the original paper,
and run from the available code, using the advised version of pytorch

We reimplemented the method, and verified its correct functioning using the protocol from the original paper. If the
paper is accepted we will publish the code of every implementation we wrote in order to facilitate reproducibility.

A.2 DATASETS DETAILS

The datasets used in evaluation are designed for three visual classification tasks: object, natural species and landmark
recognition. Their main statistics are in tables 4.

A.3 FEATURE TRANSFERABILITY.

The results from Table 1 show that transfer-based methods work well when features are transferred within the same
dataset. In Table 3, we examine the behavior of PlaStIL in a transfer scenario which involves a domain gap. The
transfer is done between all pairs of initial and incremental datasets. The results show that PlaStIL1 is more resilient to
transfer compared to the transfer-based baselines. The best results are obtained with ILSV RC as initial models and
iNaturalist and Landmarks as incremental datasets. This is intuitive since ILSV RC contains more diversified
concepts and produces more generic features. It also has more samples per class compared to the other two datasets
and its feature extractor is more robust. The accuracy obtained with a transfer from ILSV RC is comparable with
that of best distillation-based methods from Table 1. The results with iNaturalist as initial dataset are lower, but still
interesting. Performance is lower when the domain shift between the initial and the target datasets is more important
and if the initial model is learned on domain-specific data. This is, for instance, the case when Landmarks is used to
train the initial model since this dataset only includes geographic landmarks. Note that transfer would be more efficient
if larger initial datasets were used to reinforce the initial representation, as proposed in Belouadah & Popescu (2018);
Hayes & Kanan (2020). However, for fairness, our focus is on transfer experiments which use the same number of
initial classes as in Table 1.

A.4 DISK-MEMORY USAGE.

The results of Figure 6 demonstrate that as the number of tops increases, the accuracy of the model improves. However,
it is important to note that this improvement in accuracy comes at the cost of increased memory usage on disk. This
trade-off between accuracy and resource usage is a crucial consideration for optimizing model performance in practice
in an exemplar-free setting.
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Figure 5: Top-1 incremental accuracy of three versions of PlaStIL applied to DeeSIL when using a single model top
with variable fine-tuning depth. DeeSIL is a limit case in which the whole feature extractor is frozen. Best viewed in
color.
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Figure 6: Effect of varying the number of additional tops on incremental accuracy, on ILSV RC with K ∈ {5, 10, 20}.
As the number of tops increases, the accuracy of the model improves. However, this comes at the cost of increased
memory usage on disk. Best viewed in color.

Results from Table 5 show that PlaStILstrategy of storing model tops suits better the experiments than storing com-
pressed representation vectors, even for a larger memory on disk.

15



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

CIL Method mem on disk ILSVRC Landmarks iNaturalist

K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

REMIND (Hayes et al., 2020) (ECCV’20) 89.18MB 52.2 44.8 35.9 83.3 77.5 72.2 50.6 39.4 31.3
REMIND (Hayes et al., 2020) (ECCV’20) 133.78MB 52.3 44.9 36.2 83.4 79.3 75.8 50.9 43.8 35.0
REMIND (Hayes et al., 2020) (ECCV’20) 222.96MB 52.3 44.4 39.7 84.2 81.0 78.0 53.7 46.5 37.8
DeeSIL (Belouadah & Popescu, 2018) 44.59MB 52.4 45.4 37.5 87.4 80.8 73.8 52.7 43.5 33.9
w/ PlaStIL1 88.44MB 58.6 51.8 41.9 92.1 86.4 78.1 56.8 47.5 36.4
w/ PlaStIL2 84.52MB 59.2 50.2 39.7 92.2 85.1 76.7 57.3 46.9 36.0
w/ PlaStILall 89.18MB 57.7 48.6 39.0 90.7 83.4 75.3 58.2 47.1 35.6

Table 5: Average top-1 accuracy with three numbers of states K per dataset, comparison with REMIND with
different budgets for the storage of their compressed vectors (1, 2 and 4 times the size of a ResNet18 on disk). Best
results - in bold, second best - underlined.

A.5 DETAILED COMPARATIVE ACCURACIES.

In this section, we presented the incremental accuracy across all states for K = 5 and K = 20. These results confirm
the large gap between the proposed methods and distillation-based ones.

1 2 3 4 5
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1 
ac

cu
ra

cy

ILSVRC, K = 5
PlaStIL1=58.6
FeTrIL=54.7
LUCIR=50.4
SPB-M=38.9
DSLDA=51.3
DeeSIL=52.4

PlaStIL1=58.6
FeTrIL=54.7
LUCIR=50.4
SPB-M=38.9
DSLDA=51.3
DeeSIL=52.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1 
ac

cu
ra

cy

ILSVRC, K = 20
PlaStIL1=41.9
FeTrIL=42.8
LUCIR=24.4
SPB-M=24.3
DSLDA=39.2
DeeSIL=37.5

PlaStIL1=41.9
FeTrIL=42.8
LUCIR=24.4
SPB-M=24.3
DSLDA=39.2
DeeSIL=37.5

1 2 3 4 5
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1 
ac

cu
ra

cy

Landmarks, K = 5
PlaStIL1=92.1
FeTrIL=86.1
LUCIR=89.5
SPB-M=81.6
DSLDA=82.7
DeeSIL=87.4

PlaStIL1=92.1
FeTrIL=86.1
LUCIR=89.5
SPB-M=81.6
DSLDA=82.7
DeeSIL=87.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1 
ac

cu
ra

cy

Landmarks, K = 20
PlaStIL1=78.1
FeTrIL=77.7
LUCIR=50.5
SPB-M=57.1
DSLDA=74.5
DeeSIL=73.8

PlaStIL1=78.1
FeTrIL=77.7
LUCIR=50.5
SPB-M=57.1
DSLDA=74.5
DeeSIL=73.8

1 2 3 4 5
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1 
ac

cu
ra

cy

iNaturalist, K = 5
PlaStIL1=56.8
FeTrIL=52.9
LUCIR=54.9
SPB-M=46.7
DSLDA=49.7
DeeSIL=52.7

PlaStIL1=56.8
FeTrIL=52.9
LUCIR=54.9
SPB-M=46.7
DSLDA=49.7
DeeSIL=52.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Incremental state

0%

20%

40%

60%

80%

100%

To
p-

1 
ac

cu
ra

cy

iNaturalist, K = 20
PlaStIL1=36.4
FeTrIL=38.7
LUCIR=24.8
SPB-M=29.8
DSLDA=34.8
DeeSIL=33.9

PlaStIL1=36.4
FeTrIL=38.7
LUCIR=24.8
SPB-M=29.8
DSLDA=34.8
DeeSIL=33.9

Figure 7: Incremental accuracy across all states for K = 5 and K = 20. Plots for K = 10 are presented in Figure 3
in the main paper. Plots are presented for the best methods from Table 1. Best viewed in color.
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