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ABSTRACT

In this paper, we present a novel method for learning reward-agnostic hierarchical representations
of Markov Decision Processes. Our method works by partitioning the state space into subsets, and
defines subtasks for performing transitions between the partitions. At the high level, we use model-
based planning to decide which subtask to pursue next from a given partition. We formulate the
problem of partitioning the state space as an optimization problem that can be solved using gradient
descent given a set of sampled trajectories, making our method suitable for high-dimensional prob-
lems with large state spaces. We empirically validate the method, by showing that it can successfully
learn useful hierarchical representations in domains with high-dimensional states. Once learned, the
hierarchical representation can be used to solve different tasks in the given domain, thus generalizing
knowledge across tasks.

1 INTRODUCTION

In reinforcement learning, an agent attempts to learn behaviors through interaction with an unknown environment. By
observing the outcome of actions, the agent has to learn from experience which action to select in each situation to
maximize the expected cumulative reward. To learn, the agent has to balance exploration, i.e. discovering the effect of
actions on the environment, and exploitation, i.e. repeating action choices that have proven successful in the past.

In hierarchical reinforcement learning (Barto & Mahadevan, 2003), the task is decomposed into subtasks, and the
solutions to the subtasks are combined to form a solution to the overall task. If each subtask is easier to solve than the
overall task, the decomposition can significantly speed up learning. The subtasks can also help explore the environ-
ment more efficiently, since one high-level decision typically brings the learning agent multiple steps in a promising
direction, rather than exploring locally one step at a time.

In most applications of hierarchical reinforcement learning, the subtask decomposition is provided by a domain expert
that exploits extensive domain knowledge to define appropriate subtasks. Though many automatic methods have
been proposed, learning a useful subtask decomposition from experience is still mostly an open research question.
In addition, several of the proposed methods are not appropriate for high-dimensional problems since they maintain
statistics about individual states.

In this paper, we propose a novel method for learning a hierarchical representation for reinforcement learning. The
idea is to partition the state space into subsets and define subtasks that perform transitions between the partitions.
We formulate the problem of learning a hierarchical representation as an optimization problem that can be solved
using gradient descent given a set of sampled trajectories. The resulting method can be applied to high-dimensional
states (e.g. images) and combined with state-of-the-art function approximation techniques for reinforcement learning.
In experiments, we show that our method can learn useful subtask decompositions in several domains with high-
dimensional observations in the form of images. We also show that the learned hierarchical representation can be used
to transfer knowledge to new, previously unseen tasks, thus generalizing knowledge across tasks.

1.1 RELATED WORK

Hierarchical reinforcement learning using hand-crafted subgoals to guide exploration, either as part of the value func-
tion representation (Nachum et al., 2018a; Schaul et al., 2015; Sutton et al., 2017), or as pseudo-rewards (Eysenbach
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et al., 2019; Florensa et al., 2017), can solve hard exploration tasks with sparse rewards more efficiently than a flat
learner, even for high-dimensional states.

Early work on learning hierarchical representations for reinforcement learning focused on analyzing the state tran-
sition graph (Menache et al., 2002; Şimşek et al., 2005), clustering nearby states (Mannor et al., 2004), discovering
common substructure (Pickett & Barto, 2002) or identifying landmarks (McGovern & Barto, 2001; Şimşek & Barto,
2004; Solway et al., 2014a). However, most of these methods rely on enumerating states, which is not possible in
high-dimensional domains. Lakshminarayanan et al. (2016) used a spectral clustering algorithm on the state space
representation learned using an unsupervised model prediction network (Oh et al., 2015). Their method scales to
high-dimensional states but strongly relies on the latent representation of the neural network and does not perform
clustering directly on the original state space.

Skill learning (Konidaris & Barto, 2007; Da Silva et al., 2012) identifies initiation sets of options by searching back-
ward from a given set of target states where options terminate. Similar to our method, skills can be reused in a range of
similar tasks. The option-critic framework (Bacon et al., 2017) and similar algorithms such as MODAC (Veeriah et al.,
2021) use gradient descent to learn the components of each option from trajectories. However, the resulting options are
not easily interpretable, unlike our options that always transition between partitions. DDO (Fox et al., 2017) leverages
an Expectation-Maximization algorithm to train a hierarchy of options end-to-end for imitation learning. Unlike our
method, they do not explicitly consider initiation sets of options.

Corneil et al. (2018) learn a latent state model given a sequence of observations, akin to learning a mapping from
states to abstract states, using a neural network architecture similar to a variational autoencoder. Shang et al. (2019)
use variational inference to construct a partition similar to ours, but unlike our model-free option learning, the option
policies are trained using dynamic programming, which requires knowledge of the environment dynamics. Bagaria
et al. (2023) introduces the concept of proto-goals, a generalization of goals. Their approach assumes prior knowledge
of the proto-goal space, which may not always be available. One advantage of their representation is that the proto-
goal space only needs to contain useful goal components and can be extended to a combinatorially larger goal space
with logical operations. In contrast to our work, they do not learn a partition of the state space.

Machado et al. (2017) use learned proto-value functions to identify subtask structure, in which a proto-value function
becomes a local reward function for a given option. Eysenbach et al. (2019) build distance estimates between pairs
of states, and use the distance estimate to condition reinforcement learning in order to reach specific goals, which is
similar to defining temporally extended actions. Ghosh et al. (2018) learn an actionable representation that encodes
distances between states in terms of the KL-divergence between the policies that transition to them. They assume
access to a trained goal-conditioned policy capable of reaching any state. Nachum et al. (2018a;b) propose a two-level
hierarchy where a high-level policy operates on a compact goal space and selects sub-goals for a low-level goal-
conditioned policy. The compact goal space is either known or learned through interaction with the environment.
Unlike these works, our method is designed to balance the size of the partitions, and create partitions that are strongly
connected (cf. the properties listed in Appendix A).

Several authors have used state space partitions to handcraft hierarchical structures. Ecoffet et al. (2019) use a partition
to learn to play Montezuma Revenge, using random search to find transitions between the partitions. Wen et al. (2020)
take advantage of equivalent partitions with the same local dynamics to reuse option policies in multiple partitions.
When the number of termination states of options is relatively small, the resulting algorithm has much better sample
complexity properties than flat learning.

2 BACKGROUND

In this section we define Markov decision processes and hierarchical reinforcement learning in the form of the options
framework. For any finite set X , let ∆(X) = {p ∈ RX :

∑
x∈X p(x) = 1, p(x) ≥ 0 (∀x)} be the probability simplex

on X , i.e. the set of all probability distributions on X .

2.1 MARKOV DECISION PROCESSES

A finite Markov decision process (MDP) (Puterman, 2014) is a tupleM = ⟨S,A, P, r⟩, where S is a finite state space,
A is a finite action space, P : S × A → ∆(S) is a transition kernel and r : S × A → R is a reward function. At
time t, the learning agent observes a state st ∈ S, takes an action at ∈ A, obtains a reward rt with expected value
E[rt] = r(st, at), and transitions to a new state st+1 ∼ P (·|st, at). We refer to (st, at, rt, st+1) as a transition.

A stochastic policy π : S → ∆(A) is a mapping from states to probability distributions over actions. The aim of
reinforcement learning is to compute a policy π that maximizes some notion of expected future reward. In this work,
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we consider the discounted reward criterion, for which the expected future reward of a policy π can be represented
using a value function V π , defined for each state s ∈ S as

V π(s) = E

[ ∞∑
t=1

γt−1r(St, At)

∣∣∣∣∣S1 = s

]
.

Here, random variables St and At model the state and action at time t, respectively, and the expectation is over the
action At ∼ π(·|St) and next state St+1 ∼ P (·|St, At). The discount factor γ ∈ (0, 1] is used to control the relative
importance of future rewards, and to ensure V π is bounded.

As an alternative to the value function V π , one can instead model expected future reward using an action-value function
Qπ , defined for each state-action pair (s, a) ∈ S ×A as

Qπ(s, a) = E

[ ∞∑
t=1

γt−1r(St, At)

∣∣∣∣∣S1 = s,A1 = a

]
.

The value function V π and action-value function Qπ are related through the well-known Bellman equations:

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a),

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′).

The aim of learning is to find an optimal policy π∗ that maximizes the value in each state, i.e. π∗(s) = argmaxπ V
π .

The optimal value function V ∗ and action-value function Q∗ satisfy the Bellman optimality equations:

V ∗(s) = max
a∈A

Q∗(s, a),

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′).

2.2 MODEL-BASED METHODS

If the reward function r and transition probabilities P are known (and the state and action spaces are not very large), we
can use dynamic programming methods such as Value Iteration to compute an estimate Q̂ of the optimal action-value
function, using the following update rule:

Q̂t+1(s, a)← r(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′

Q̂t(s
′, a′).

Value iteration repeatedly computes Q̂t+1 for all state-action pairs (s, a) until ∥Q̂t+1 − Q̂t∥∞ < ε for some desired
accuracy ε, i.e. until the difference between subsequent iterations is small enough.

2.3 FUNCTION APPROXIMATION

Since the state space S is usually large, it is common to define a set of features Φ, and an associated mapping ϕ : S →
Φ from states to features. Value-based methods such as Deep Q-learning (Mnih et al., 2013) maintain an estimate
Q̂θ : Φ × A → R of the optimal action-value function, defined on features instead of states and parameterized on a
vector θ. Given a transition ⟨st, at, rt, st+1⟩, DQN updates the parameter vector according to the gradient method:

θ ← θ + α
(
TQ̂−Q̂θ(s, a)

)
∇θQ̂θ(s, a)

where TQ̂ is a target value based on optimal bellman equation calculated as:

TQ̂ = r (s, a) + γmax
a′

Q̂θ (s
′, a′)
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Figure 1: Results on Key-Door0 gridworld environment. On the left the Key-Door0 gridworld environment, on the
right the corresponding learned deterministic compression functions, where different colors represent different abstract
states z ∈ Z.

2.4 OPTIONS

Given an MDPM = ⟨S,A, P, r⟩, an option is a temporally extended action o = ⟨Io, πo, βo⟩, where Io ⊆ S is an
initiation set, πo : S → ∆(A) is a policy and βo : S → [0, 1] is a termination function (Sutton et al., 1999). An option
can be applied in any state s ∈ Io, selects actions using policy πo, and terminates in a state s′ ∈ S with probability
βo(s′). A primitive action a ∈ A is a special case of an option ⟨Ia, πa, βa⟩ with initiation set Ia = S, πa(a|s) = 1
and βa(s) = 1 (∀s), i.e. the option can be applied in any state, terminates with probability 1 in any state, and the
associated policy always selects action a with probability 1.

Given a set of options O, we can form a semi-Markov decision process (SMDP) S = ⟨S,O, P ′, R′⟩, where P ′ and R′

model the transition probabilities and expected reward of options. Such an SMDP enables a learning agent to act and
reason on multiple timescales. At the top level, the learning agent observes a state st, selects an option ot, executes
option ot until termination, and observes the next state st+k, where k is the time it takes option ot to terminate. The
reward Rt =

∑t+k−1
u=t γu−tru is the discounted sum of rewards obtained during the execution of option o. Hence

(st, ot, Rt, st+k) is a high-level transition, and with minor modifications, reinforcement learning algorithms can be
adapted to estimate an optimal SMDP policy π∗, even when the SMDP dynamics P ′ and R′ are unknown.

To learn the option policy πo, it is common to define an option-specific reward function ro, which defines an option-
specific Markov decision processMo = ⟨S,A, P, ro⟩. The policy πo is then implicitly defined as the optimal solution
toMo. Even though the original definition of SMDPs considers options with fixed policies, in practice one can learn
the option policies and the SMDP policy in parallel.

3 CONTRIBUTION

In this section we present our main contribution, a method for learning a hierarchical representation of a given MDP.

3.1 COMPRESSION FUNCTION

The first step is to learn a compression function from MDP states to abstract states. We first define a set Z of abstract
states that will represent the partitions of the state space. Without loss of generality, the elements of Z are simply
integers, i.e. Z = {0, . . . , |Z|−1}, where |Z| is an input parameter of the method. Our goal is to learn a parameterized
compression function fψ : S → ∆(Z) that maps MDP states to probability distributions over abstract states. Ideally,
fψ should be deterministic, but the learning framework we consider favors probabilistic compression functions.

Intuitively, for abstract states to represent partitions of the state space, on a given trajectory the abstract state should
remain the same most of the time, and only change occasionally. We formalize this intuition as a loss term, which will
later be part of the objective that the learner attempts to minimize. Let τ = ⟨st, at, rt, st+1⟩ be a transition, and let
T = {τ1, . . . , τm} be a set of transitions. The loss associated with T is given by

LZ(T ) = −
∑
τ∈T

∑
z∈Z

fψ(z|st) log fψ(z|st+1).

Here,−
∑
z∈Z fψ(z|st) log fψ(z|st+1) is the cross-entropy loss for consecutive states st and st+1 in τ , measuring the

distance between the distributions fψ(·|st) and fψ(·|st+1).
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On its own, the above loss term will not yield a meaningful compression function, since it can be minimized by
mapping all states to the same abstract state. To ensure that all abstract states appear in the compression, we define a
second loss term equivalent to the negative entropy of the compression function across the same set of transitions T .
Given an abstract state z ∈ Z, let F (z|T ) = 1

|T |
∑
τ∈T fψ(z|st) be the average probability of being in z across the

first state st of each transition τ ∈ T . We define a loss term

LH(T ) = −H(F (·|T )) =
∑
z∈Z

F (z|T ) logF (z|T ),

where H(F (·|T )) is the entropy of the function F (·|T ). This loss is minimized when the probabilities of abstract
states are uniform, i.e. each abstract state is equally likely.

Finally, as already stated, we would like the compression function fψ to be as deterministic as possible. For this
reason, we define a third loss term equivalent to the entropy of the compression function for individual states. We use
the same set of transitions T , and define this loss term as

LD(T ) =
1

|T |
∑
τ∈T

H(fψ(·|st)) = −
1

|T |
∑
τ∈T

∑
z∈Z

fψ(z|st) log fψ(z|st).

This loss term is minimized when the compression function fψ(·|st) is deterministic, i.e. assigns probability 1 to a
single abstract state, for the first state st of each transition τ ∈ T .

The overall loss function L(T ) is a combination of the three individual loss terms, i.e.

L(T ) = LZ(T ) + wHLH(T ) + wDLD(T ), (1)

where wH and wD are weights that we can tune to determine the relative importance of each loss term. Note that
for wD = −1, LZ(T ) + wDLD(T ) is the average Kullback-Leibler divergence between fψ(·|st) and fψ(·|st+1);
however, our intention is to use positive values of wD.

To train our compression function we use experience replay (Mnih et al., 2013) to randomize the transitions in T .
We first sample a set of trajectories using some exploration policy, which constitutes our memory. However, learning
directly from consecutive transitions along the same trajectory is inefficient, due to the strong correlations between
the samples. Instead, we form the set of transitions T by randomly sampling individual transitions from the memory.
Randomizing the sampled transitions this way breaks the correlations and therefore reduces the variance of the updates.

We discuss the properties of the learned representation in Appendix A.

3.2 HIERARCHICAL REPRESENTATION

Once we have learned a compression function fψ for a given MDP M = ⟨S,A, P, r⟩, we use it to define a set of
options O and an SMDP S. First, we introduce a deterministic compression function g : S → Z, defined in each
state s as g(s) = argmaxz fψ(z|s). Given an abstract state z ∈ Z, let Sz be the subset of states that map to z,
i.e. Sz = {s ∈ S : g(s) = z}.
Our algorithm then uses the compression function in an online manner, by exploring the environment and finding
abstract transitions, i.e. consecutive states st and st+1 such that g(st) ̸= g(st+1). Let Y ⊆ Z × Z be the subset of
pairs of distinct abstract states (z, z′) that appear as abstract transitions while exploring, i.e. there exist two consecutive
states st and st+1 such that g(st) = z and g(st+1) = z′. For each pair (z, z′) ∈ Y , we introduce an option oz,z′ =
⟨Io, πo, βo⟩ whose purpose is to perform an abstract transition from z to z′. Option oz,z′ is applicable in abstract state
z, i.e. Io = Sz , and terminates as soon as we reach an abstract state different from z, i.e. βo(s) = 0 if s ∈ Sz and
βo(s) = 1 otherwise.

To learn the policy πo of option oz,z′ , we define an option-specific Markov decision process Mo = ⟨Sz, A, P, ro⟩.
Note thatMo needs only be defined for states in Sz , since option oz,z′ always terminates outside this set. The local
reward function ro is defined for each state-action pair as ro(s, a) = r(s, a), i.e. equal to the environment reward. We
also introduce a bonus +1 for terminating in a state s such that g(s) = z′. As a consequence, the policy πo has an
incentive to leave abstract state z, and prefers to transition to abstract state z′ whenever possible.

Let O = {oz,z′ : (z, z′) ∈ Y} be the set of options for performing abstract transitions, and let Oz = {o ∈ O : Io =
Sz} be the subset of options applicable in abstract state z. We define an SMDP S = ⟨S,O, P ′, R′⟩, i.e. the high-level
choices of the learning agent are to select abstract transitions to perform. Once the individual option policies have been
trained, exploration is typically more efficient since the single decision of which option to execute results in a state that
is many steps away from the initial state. In addition, one can approximate the SMDP policy as π : Z → ∆(O), i.e. the

5



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

choice of which option to execute only depends on the current abstract state. This has the potential to significantly
speed up learning if |Z| ≪ |S|.
The system is trained using a Manager-Worker architecture (Dayan & Hinton, 2000). The Manager performs tabular
Value Iteration over the SMDP. The motivation for using tabular learning is that the number of abstract states |Z|
is typically small, even if states are high-dimensional. On the other hand, the Worker uses off-policy value based
methods to learn the policies of the options oz,z′ .

3.3 CONTROLLABILITY

According to the definition of the option reward function ro, option oz,z′ is equally rewarded for reaching any boundary
state between abstract states z and z′. However, all boundary states may not be equally valuable, i.e. from some
boundary states, the options in Oz′ may have a higher chance of terminating successfully. To encourage option oz,z′
to reach valuable boundary states and thus make the algorithm more robust to the choice of compression function g,
we add a reward bonus when the option successfully terminates in a state s′ belonging to abstract state z′.

One possibility is that the reward bonus depends on the value of state s′ of options in the set Oz′ . However, this
introduces a strong coupling between options in the set O: the value function Vz,z′ of option oz,z′ will depend on the
value functions of options in Oz′ , which in turn depend on the value functions of options in neighboring abstract states
of z′, etc. We want to avoid such a strong coupling since learning the option value functions may become as hard as
learning a value function for the original state space S.

Instead, we introduce a reward bonus which is a proxy for controllability, by counting the number of successful
applications of subsequent options after oz,z′ terminates. Let M be the number of options that are selected after oz,z′ ,
and let N ≤M be the number of such options that terminate successfully. We define a controllability coefficient ρ as

ρ(z) =
N

M
. (2)

We then define a modified reward function r̄o which equals ro except when oz,z′ terminates successfully,
i.e. r̄o(s, a, s′) = ro(s, a, s′) + ρ(z) if s′ ∈ z′. In experiments we use a fixed horizon M = 4 after which we
consider successful option transitions as irrelevant.

3.4 TRANSFER

The hierarchical representation in the form of the SMDP S defined above can be used to transfer knowledge between
tasks. Concretely, we assume that the given MDP M can be extended to form a task by adding states and actions.
Imagine thatM models a navigation problem in a given environment. A task can be defined by adding objects in the
environment that the learning agent can manipulate, while navigation is still part of the task.

Formally, given an MDPM = ⟨S,A, P, r⟩, a task T is an MDPMT = ⟨S × ST, A∪AT, P ∪ PT, r ∪ rT⟩. The states
in ST represent information about task-specific objects, and the actions in AT are used to manipulate these objects.
The transition kernel PT : (S × ST) × AT → ∆(ST) governs the effects of the actions in AT, which may depend on
the states of the original MDP (e.g. the location of the agent). Finally, the reward function rT : (S × ST)× AT → R
models the reward associated with actions in AT.

To solve a task, we can replace the MDP M with the learned SMDP S = ⟨S,O, P ′, R′⟩, forming a task SMDP
ST = ⟨S × ST, O ∪ AT, P

′ ∪ PT, R
′ ∪ rT⟩. Here, the options in O are used to navigate in the original state space

S, while the actions in AT are used to manipulate the task-specific objects. If the policies of the options in O have
been previously trained, the task SMDP ST can significantly accelerate learning compared to the task MDPMT. To
ensure that the learning agent can navigate to individual objects inside a partition of Z, we consider states in ST to be
different abstract states; hence our algorithm will automatically add options for manipulating objects.

4 EXPERIMENTAL RESULTS

The experiments are designed to answer the following questions 1:

• Is the learned compression function suitable for learning a hierarchy?

• Does the learned hierarchy transfer across different tasks in the same environment?

1The code is publicly available at: https://github.com/lorenzosteccanella/HRL-MDP
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Figure 2: Results on geometric variations of the NineRooms0 gridworld environments. The first row represents
the environments, and the second row illustrates examples of the corresponding learned deterministic compression
functions, where different colors represent different abstract states z ∈ Z.

• How does our HRL algorithm compare against state-of-the-art flat algorithms, such as Self Imitation Learn-
ing (Oh et al., 2018) and Double-DQN with Prioritized Experience Replay (Schaul et al., 2016)?

• How does our HRL algorithm compare against state-of-the-art HRL algorithms such as Option Critic (Bacon
et al., 2017)?

4.1 LEARNING A COMPRESSION FUNCTION

We designed two different empty navigation environments without tasks, KeyDoor0 (c.f. Figure 1), with grid size
10 × 10, where an agent (blue square) always starts in position (1, 1), has to collect a key (yellow square). And
NineRooms0 (c.f. Figure 2), a nine rooms grid environment with grid size 19× 19 where at each episode the agent is
placed at a random initial position, which promotes exploration. For all the environments the states are (x, y)-positions
which are mapped to images, and the discrete action space is A = {up, down, left, right}.
The first step of our procedure consists in a pre-training phase where we form a replay memory of trajectories. We use
a random exploration policy to repeatedly generate trajectories from the random initial states, using a fixed episode
length of 100. During this phase, we can vary the number of trajectories generated to test the robustness of the
approach.

We then use the replay memory and a number of abstract states |Z| = 2 for KeyDoor0 and |Z| = 9 for NineRoom0
to train the compression function fϕ using the AdamW optimizer (Loshchilov & Hutter, 2017) by minimizing the
loss in equation 1 over 4000 iterations, randomly sampling a set of 32 transitions T from the replay memory in each
iteration. The learned compression functions for 1000 trajectories are shown in Figures 1 and 2, respectively.

To asses the robustness of our procedure, in Figure 2 we evaluate how the compression function changes by introducing
different geometries of the NineRooms0 environment. As we can see, if we make the room sizes imbalanced, the
resulting compression function does not exactly match the shape of the rooms, due to the second term LH of the loss
in equation 1, which promotes all abstract states z to be equally likely. However, the resulting compression function
still partitions the states and translates into a correct SMDP.

In Figure 4, we evaluate how the size of the replay memory affects the accuracy of the compression function in terms
of the absolute error deviation with respect to a correct representation. For this experiment we use the left-most room
in Figure 2 with balanced room sizes, and vary the number of trajectories in the replay memory. When the replay
memory contains at least 200 trajectories, the procedure converges to an absolute error very close to 0, while less than
200 trajectories results in an increasing absolute error.

We present additional experiments with learning a compression function in the MountainCar environment in Appendix
D. We also list all the hyperparameters of the algorithm in Appendix E.
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Figure 3: The discovered invariant SMDP on
the NineRooms0 environment.

Figure 4: Absolute error of the compression function, evaluated
on increasing replay memory size.

4.2 HIERARCHICAL REINFORCEMENT LEARNING

Following the pre-training phase, we can use the learned compression function to solve any task in the same envi-
ronment. In what follows we use the compression function learned on the left-most room in Figure 2 with a replay
memory of 1000 trajectories. We distinguish between a manager in charge of solving the task SMDP ST and workers
in charge of solving the option MDPsMo.

4.2.1 MANAGER

Our algorithm iteratively grows an estimate of the SMDP S. Initially, the agent only observes a single state s ∈ S
and associated abstract state z = g(s). Hence the state space Z contains a single abstract state z, whose associated
option set Oz is initially empty. In this case, the only alternative available to the agent is to explore. For each abstract
state z, we add an exploration option oexplorationz = ⟨z, πexplorationz , βz⟩ to the option set O. This option has the same
initiation set and termination condition as the options in Oz , but the policy πexplorationz is an exploration policy that
selects actions uniformly at random, terminating when it leaves abstract state z or exhausts a given budget.

Once the agent discovers a neighboring abstract state z′ of z, it adds z′ to the set Z and the associated option oz,z′ to
the option set O. The agent also maintains and updates a directed graph whose nodes are abstract states and whose
edges represent the neighbor relation. Hence next time the agent visits abstract state z, one of its available actions is
to select option oz,z′ . When option oz,z′ is selected, it chooses actions using its policy πz,z′ and updates πz,z′ based
on the rewards of the option MDPMo. Figure 3 shows an example representation discovered by the algorithm on the
NineRooms0 environment.

Algorithm 1 in the appendix shows the pseudo-code of the algorithm. As explained, Z is initialized with the abstract
state z of the initial state s, and O is initialized with the exploration option oexplorationz . In each iteration the algorithm
selects an option o which is applicable in the current abstract state z. If we transition to a new abstract state z′, it is
added to Z and the exploration option oexplorationz′ and transition option oz,z′ are appended to O. The process then
repeats from the next state s′.

The subroutine GETOPTION that selects an option o in the current abstract state z can be implemented in different
ways; we use an ϵ-greeedy policy. Since the set of abstract states Z is small, the manager performs tabular Value
Iteration over the task SMDP ST. In order to recognize new goal states, while exploring we define any terminal state
in the environment as a new abstract state z; hence the manager will introduce options for reaching this terminal state.

4.2.2 PLANNING WITH A LEARNED SMDP

We have seen how the state space of the task SMDP ST is discovered online given a compression function g(s). In
order to apply a model-based method on this learned compression function, we still need to be able to estimate the
transition kernel PST and reward function rST of ST.

Estimating the transition probability associated with an option oz,z′ of our task SMDP is not easy, since the policy πo is
trained online while exploring the environment, making the transition probability non-stationary. In order to alleviate
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Figure 5: Results in the KeyDoor environment.

the cost of estimating the transition probability, we assume that oz,z′ will become deterministic once the training phase
terminates, i.e. P̂ST(z

′|z, oz,z′) = 1. Though this is an approximation, the aim of option oz,z′ is precisely to reach
abstract state z′, and constructing the SMDP is intended to simplify the high-level decision making.

On the other hand, for each state-option pair (z, o) of the task SMDP ST, we estimated the task SMDP reward rST as an

average of the reward encountered in the environment r̂ST(s, o) =
∑N(z,o)

i=1 Ri(z,o)

N(z,o) , where N(z, o) counts the number
of times the state-option pair (z, o) has been observed, and Ri is the cumulative reward obtained while applying option
o for the i-th time.

Since the model changes over time, the subroutine UPDATEPOLICY updates the Q values of the Manager at regular
intervals by applying value iteration on the learned SMDP ŜT.

4.2.3 WORKERS

The workers are in charge of learning the policies of each option oz,z′ in O, allowing the manager to transition
between two abstract states z, z′. We use Double DQN (van Hasselt et al., 2015), a version of DQN that addresses the
overestimation of Q-values, combined with Prioritized Experience Replay (PER) (Schaul et al., 2016) that improves
the way experience is sampled from the Experience Replay. The rewards that the worker observes are defined in the
Hierarchical Representation Section and implemented in the routine TRAINOPTION from Algorithm 1 in the appendix.

Since Double DQN is able to evaluate Q-values off-policy, one can relabel failed transitions to speed up learning of
the correct option behavior, similar to Hindsight Experience Replay (Andrychowicz et al., 2017). The architecture is
made of a neural network Qθ parametrized on θ, and a frozen target network Qθ̄ used to alleviate the non-stationarity
of the targets TQ = r(s, a) + γ maxa′ Qθ(s

′, a′).

The parameters of the neural network are updated as:

θ ← θ + α (TD−Qθ(s, a))∇θQθ(s, a),

where TD is the target value computed as:

TD = r (s, a)+γQθ̄

(
st+1, argmax

a
Qθ (st+1, a)

)
.

The target network is then updated with Polyak updates (Heess et al., 2015):

θ̄ = τ θ + (1− τ) θ̄.

4.3 EXPERIMENTS

In our experiments, we evaluate the performance of our agent in two environments, on a KeyDoor environment in
Figure 5 where an agent has to collect a key (yellow square) and open a door (green square) and a NineRooms
environment in Figure 6 where an agent has to reach the goal (green square). In both environments the initial position
is fixed to (1, 1). In the NineRooms environment, we defined three variants where the goal is positioned at an increasing
distance from the initial state to make exploration harder, c.f. NineRooms1, NineRooms2 and NineRooms3 in Figure 6.
Results are averaged over 5 seeds and each experiment is run for 100,000 iterations. Even though the compression
function is given, the goal location is unknown, so the agent has to explore the environment in order to find the goal
location for the first time.

We set the maximum number of steps in the environment to 40 for the KeyDoor environment and to 200 for NineRooms
environment, making exploration hard, especially in NineRooms3 where the goal is at the maximum distance from the
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Figure 6: Results on the variations of nine room gridworld environments where the goal (green square) is placed at an
increasing distance from the agent (blue square). From left to right: NineRoom1, NineRoom2, NineRoom3.

initial state. Results in Figures 5 and 6 show the total reward with a running average smoothing of 100 episodes and
shaded standard deviation. In the KeyDoor environment, the agent receives a reward of +1 only once it opens the door
(green square) with the key (yellow square) while in NineRooms the agent receives a reward of +1 when it reaches the
goal position (green square) and a reward of 0 elsewhere.

We compare our algorithm against state-of-the-art flat reinforcement learning agents designed to perform well in sparse
reward settings, namely Self Imitation Learning (SIL) (Oh et al., 2018) and Double DQN with Prioritized Experience
Replay (DQN-PER) (Schaul et al., 2016), implemented on top of the Reinforcement Learning framework Machin (Li,
2020). Moreover, we include a comparison to state-of-the-art Hierarchical Reinforcement Learning (HRL) algorithm,
namely Option Critic (OC) (Bacon et al., 2017), for which we tune the number of options selecting the best performing
alternative. We refer to OC-2 as the algorithm with 2 options and OC-4 as the algorithm with 4 options. We also include
a comparison to a transfer learning variant of Option Critic, OC-TRANSFER-4, where the agent is trained in sequence
on environments NineRooms1, NineRooms2 and NineRooms3.

We refer to ”HRL” as our algorithm in which the task SMDP ST is learned online while exploring, but the compression
function g is given. ”HRL-TRANSFER” refers to our algorithm where the agent is first pretrained in order to learn
the options in KeyDoor0 and NineRooms0 in Figure 1 and Figure 2 without any task and then exposed respectively
to KeyDoor and NineRooms1, NineRooms2, NineRooms3 in sequence. In this case, the algorithm benefits from the
transfer of the SMDP S while the manager policy (i.e. Q-values) are reset to 0 after training in each environment.

We can observe that the HRL algorithm learns faster than SIL, DQN-PER and OC in all the environments. SIL
and DQN-PER both rely only on random exploration, but once they find a positive reward, they can exploit it. In
contrast, the exploration of HRL and HRL-TRANSFER are aided by the hierarchical structure. Both SIL, DQN-
PER and OC present high variance, and for some seeds they are not even able to solve the task, given the budget of
100,000 iterations. We can also observe that HRL-TRANSFER does improve over HRL, and we would argue that
this improvement could be larger if we choose harder tasks were the option policies for transitioning between abstract
states become harder to learn.

5 CONCLUSION

We present a novel method for learning a hierarchical representation from sampled transitions in high-dimensional
domains. The idea is to generate abstract states that partition the original state space, and introduce options for
performing transitions between abstract states. Experiments show that the learned representation can successfully be
used to solve multiple tasks in the same environment, significantly speeding up learning compared to a flat learner.

An important direction for future work is to sample trajectories using a more informed exploration policy, since learn-
ing the compression function depends on having a variety of trajectories in different states. Another possible extension
is to interleave representation learning with policy improvement, which may successively improve the quality of the
sampled trajectories. Yet another possibility is to correct the compression function in states from which some abstract
transitions are not possible.
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A REPRESENTATION PROPERTIES

In this section, we discuss the property of the representation presented in this paper. We adapt the definition of a state
partition from Wen et al. (2020).

Definition 1 Given an MDP M = ⟨S,A, P, r⟩, consider a partition of the states S into L disjoint subsets Z =

{Si}Li=1, i.e. S = S1 ∪ · · · ∪ SL and Si ∩ Sj = ∅ for each pair (Si, Sj) ∈ Z2.

We define an induced subMDPMi = ⟨Si ∪ Ei, A, Pi, ri, Ei⟩ as follows:

• Si is the internal state set, and the action space is still A.

• The exit state set Ei is defined as Ei = {e ∈ S\Si : ∃(s, a) ∈ Si ×A s.t. P (e | s, a) > 0}. Is important to
notice that the exit state set Ei will belong to a different partition in Sj ∈ Z with j ̸= i that is reachable in
one step from some state in Si.

• The state space ofMi is Si ∪ Ei.

• Pi : Si × A → ∆(Si ∪ Ei) and ri : Si × A× (Si ∪ Ei) → R are respectively the restriction of P and r to
domain Si ×A.

• The subMDPMi terminates once it reaches a state in Ei (i.e., an exit state).

We start to introduce some properties that a state partition should have to define a good representation for Hierarchical
Reinforcement Learning.

• Induced subMDP must be easy to solve:
The maximum size of an induced subMDP M is defined as:

Definition 2 M = maxi |Si ∪ Ei|.

If M is small, all subMDPs have small size |Si ∪ Ei| ≤ M , so they would be relatively easy to solve. This
definition characterizes the hardness in terms of the state space size of a subMDP. Complexity results with
tabular representation have shown that finite MDPs can be solved in polynomial time in the size of the state
space and action space (Littman et al., 2013) when the transition matrix P is known, proving that the smaller
the state space size is, the easier it is to solve the MDP.
Note that this is the easiest and most general definition of hardness since it does not take into account the
reward ri nor transition probability Pi inside the subMDPs.

• Bottleneck states:
The set of all exit states for a given partition is defined as:

Definition 3 E = ∪Li Ei.

If |E| is small, intuitively we have a few states that connect the sub-problems. We can think of these as
“bottleneck” states inM, which have been shown before to enable computationally efficient planning (see
e.g. Sutton et al. 1999; McGovern & Barto 2001; Stolle & Precup 2002; Şimşek & Barto 2008; Solway et al.
2014b).
We highlight that a trade-off exists between the maximal size of an induced subMDP M and the size of the set
of all exit states |E|. It is desirable for M to be small to simplify the solving process for every subMDP. How-
ever, trivially partitioning every single state as an independent subMDP can result in a significant increase in
the size of |E|.

• Strongly connected SubMDPs:
Another desired property of a partition Z is that it should induce strongly-connected subMDPs.

Definition 4 A subMDPMi is strongly connected if for each pair of states si, sj ∈ Si ∪ Ei there exists a
policy π which, when starting in si, reaches sj with a positive probability.

This property ensures that when we enter a subMDPMi we can choose a policy π that with positive proba-
bility will let us reach a desired exit state e ∈ Ei.

We now motivate why the methodology presented in this paper learns representations that respect these properties.
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• Induced subMDP must be easy to solve: The parametrized compression function fψ : S → ∆(Z) proposed
in this paper is able to control and balance the size of each subMDP by tuning the number of regions |Z|
to fit on the state space S. Moreover, the second term in the loss proposed in Equation 1 constrains the
representation to balance the probabilities of belonging to regions, forcing the region size to be balanced and
allowing us to control the maximum size M of each induced subMDP.

• Bottleneck states: The compression function presented here implicitly favors partitions that minimize the set
of all exit states E as we can see in Figures 1 and 2. From the loss in Equation 1 we can tell that the two terms
LZ and LH will be minimized when the compression function fψ clusters strongly connected states together
and at the same time balances the probabilities of belonging to regions. By tuning the weights wH we could
allow different sizes of regions and better match clusters that minimize the set of all exit states E .

• Strongly connected SubMDPs: By minimizing the first term in Equation 1 we incentivize partitions that
induce strongly connected subMDPs. The learned representation demonstrates a coupling to the behavior
policy used to collect the dataset, which indirectly defines the distance between states (i.e. which states
should be clustered together).

B ADDITIONAL EMPIRICAL EVALUATION

In this section we present an additional empirical evaluation of our approach to learn a compression function, comple-
menting the analysis reported in the main text.

Concretely, we evaluate our approach in the MountainCar environment, in which the state consists of the current
location and velocity of the agent. In this environment, we collected a replay memory consisting of 200 trajectories
of length 200 using a sub-optimal policy that can reach the goal state and can approximately cover all the state space,
and learned a compression function with 20 abstract states.

In Figure 7 we show the result of this compression function where different colors represent different abstract states
z ∈ Z. Note that the compression function is able to cluster together states that are close in the environment, i.e. states
where the car is at similar position and velocity. In particular, states with low velocity near the center are not very
similar to states with high velocity in the same location, and this is captured by the compression function.

Figure 7: Results of the compression function in the MountainCar environment (axes represent location and velocity);
different colors represent different abstract states z ∈ Z

C COMPUTATIONAL COMPLEXITY DISCUSSION

The proposed algorithm relies on off-policy DQN to learn the options while at the SMDP level we used tabular SMDP
Q-learning on a small finite state space with a negligible computational cost.

The computational complexity of the proposed algorithm scales with the number of offline updates that we perform to
train the options. This parameter can be tuned to adapt to the computational budget available.
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D PSEUDO-CODE

Pseudo-code of the HRL algorithm at the manager level.

Algorithm 1 MANAGER

1: Input: environment e, previously discovered SMDP S in case of transfer learning, compres-
sion function g

2: s← initialstate
3: z ← g(s)
4: if z ̸∈ Z then
5: Z ← Z ∪ {z}
6: O ← oexplorationz

7: end if
8: πT ← initial policy
9: o← None

10: while within budget do
11: if o is None or Terminate then
12: o← GETOPTION(πT, z, O)
13: R = 0
14: end if
15: s′, r, done← e(o(s))
16: TRAINOPTION(o, s, r, s′, done)
17: R = R + r
18: z′ ← g(s′)
19: if z′ ̸∈ Z then
20: Z ← Z ∪ {z′}
21: O ← O ∪ {oexplorationz′ , oz,z

′
z }

22: end if
23: if z ̸= z′ then
24: UPDATEPOLICY(πT, z, o, R, z′)
25: o← GETOPTION(πT, z

′, O)
26: end if
27: if s′ is terminal and s′ not in Z then
28: O ← O ∪ {oz,s′z }
29: Z ← Z ∪ {s′}
30: end if
31: (z, s)← (z′, s′)
32: end while
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E HYPERPARAMETERS

Table 1 reports the values of the hyperparameters used to train the compression function and the HRL agent.

Table 2 reports the value of the hyperparameters used to train the DQN-PER and SIL agents.

Hyperparameters Value
Worker Hyperparameters

Neural Network
Architecture

CONV1(32, (7, 7), (1, 1))
FC1(32)
FC2(32)

Activation Function Relu
Learning rate 0.001
Optimizer Adam
E-Greedy decay 0.9998
Batch size 100
Target network
poliak update 0.05

Discount Factor 0.95
Replay buffer size 5 ∗ 105
Replay type: PrioritizedExperience Replay
Exponent for prioritization 0.6
Bias Correction 0.1
Manager Hyperparameters
E-Exploration to learn the model 0.995
Discount Factor 0.95
Compression Function Hyperparameters

Neural Network
Architecture

CONV1(16, (1, 1), (1, 1))
BatchNorm2D(16)
CONV2(32, (5, 5), (1, 1))
BatchNorm2D(32)
CONV3(32, (3, 3), (1, 1))
BatchNorm2D(32)
FC1(64)
BatchNorm1D(64)
FC1(1)

Activation Function Selu
wH , wD on GridWorld 0.2, 0.1
wH , wD on Mountain Car 2, 0.1
Learning rate 0.001
Optimizer AdamW
Batch size 32, 64
Epochs 4000

Table 1: Hyperparameters used to train HRL and HRL-Transfer agents.
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Hyperparameters Value
DQN-PER Hyperparameters
Same as Worker
SIL Hyperparameters
Neural Network
Architecture Same as Worker

Discount Factor 0.95
Replay type: Prioritized Experience Replay
Exponent for prioritization 0.6
Bias Correction 0.1

Additional Hyperparameters Same as reported in
Self Imitation Learning paper

OC Hyperparameters
Neural Network
Architecture Same as Worker

Discount Factor 0.99
N of Options Best between [2, 4, 8]
Rollout Length 5
Entropy weight 0.001

Table 2: Hyperparameters used to train SIL, DQN-PER and OC agents.
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