
Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

SF-FSDA: SOURCE-FREE FEW-SHOT DOMAIN ADAPTIVE
OBJECT DETECTION WITH EFFICIENT LABELED DATA FACTORY

Han Sun
EPFL
Switzerland
han.sun@epfl.ch

Rui Gong
ETH Zurich
Switzerland
gongr@vision.ee.ethz.ch

Konrad Schindler
ETH Zurich
Switzerland
schindler@ethz.ch

Luc Van Gool
ETH Zurich
Switzerland
vangool@vision.ee.ethz.ch

ABSTRACT

Domain adaptive object detection aims to leverage the knowledge learned from a labeled source
domain to improve the performance on an unlabeled target domain. Prior works typically require the
access to the source domain data for adaptation, and the availability of sufficient data on the target
domain. However, these assumptions may not hold due to data privacy and rare data collection.
In this paper, we propose and investigate a more practical and challenging domain adaptive object
detection problem under both source-free and few-shot conditions, named as SF-FSDA. To overcome
this problem, we develop an efficient labeled data factory based approach. Without accessing the
source domain, the data factory renders i) infinite amount of synthesized target-domain like images,
under the guidance of the few-shot image samples and text description from the target domain; ii)
corresponding bounding box and category annotations, only demanding minimum human effort, i.e.,
a few manually labeled examples. On the one hand, the synthesized images mitigate the knowledge
insufficiency brought by the few-shot condition. On the other hand, compared to the popular pseudo-
label technique, the generated annotations from data factory not only get rid of the reliance on the
source pretrained object detection model, but also alleviate the unavoidably pseudo-label noise due
to domain shift and source-free condition. The generated dataset is further utilized to adapt the
source pretrained object detection model, realizing the robust object detection under SF-FSDA. The
experiments on different settings showcase that our proposed approach outperforms other state-of-
the-art methods on SF-FSDA problem. Our codes and models will be made publicly available.

1 INTRODUCTION

Object detection, which aims at recognizing and localizing the object instances of certain classes in an image, is
a fundamental problem in computer vision. Driven by the rapid development of deep learning and the availability
of large-scale datasets, object detection has achieved great advancement over the past decade Ren et al. (2015); Liu
et al. (2016); Redmon et al. (2016); Carion et al. (2020). However, the performance and generalization ability of
the detection system is highly dependent on the availability of manually labeled and diverse datasets, whose labor
cost for annotation can be extremely expensive. When applied to the images of a different distribution with training
images, the detection models typically exhibit poor generalization, which is common in real applications due to the
difference in weather, illumination, object appearance, etc. Thus, recently, domain adaptive object detection problem
has been studied Chen et al. (2018); Saito et al. (2019); Hsu et al. (2020a); Khodabandeh et al. (2019); VS et al.
(2021); Ramamonjison et al. (2021), which aims to transfer the knowledge learned from the labeled source domain to
the unlabeled target domain to train the robust cross-domain object detection model, reducing the effort and cost of
human annotation for the target domain.

Generally, existing domain adaptive object detection works reduce the domain shift between the source domain and the
target domain, by matching and aligning the source and target domain representations in some space (input space Hoff-
man et al. (2018); Inoue et al. (2018); Bhattacharjee et al. (2020) and/or feature space Chen et al. (2018); Deng et al.
(2021)) through the typical techniques of adversarial learning Rezaeianaran et al. (2021); Saito et al. (2019), pseudo-
label RoyChowdhury et al. (2019); Kim et al. (2019); Munir et al. (2021), and image translation Hsu et al. (2020b);
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Figure 1: (a) Traditional domain adaptive object detection (DA) problem vs. our proposed SF-FSDA problem. Our SF-
FSDA problem considers the few-shot and source-free conditions. (b) Our efficient labeled data factory can synthesize
abundant target domain like image samples and corresponding bounding box and category annotation automatically,
by providing the few-shot samples guidance, text guidance, and minimum human effort (i.e., few-shot manual label).
The efficient labeled data factory is initialized with publicly available pretrained GAN model weights, and does not
rely on the access to the source domain images and/or other public image dataset. The height of the cylinder represents
the number of image samples.

Inoue et al. (2018). They typically assume that, i) the source domain images are accessible when adapting to the target
domain, and/or ii) there are abundant images available in the target domain. However, both of these assumptions may
not hold in real applications. For example, the data privacy rules and the limited data transmission capacity can break
the assumption i), i.e., inducing the source-free condition, while the rare species image collection and the special med-
ical applications can hinder the assumption ii), i.e., causing the few-shot condition. Even though some more recent
works touch the domain adaptive object detection problem under the source-free condition Li et al. (2020b) or the
few-shot condition Wang et al. (2019), none of them consider the problem when both the source-free and few-shot
conditions exist at the same time. Instead, this work studies the domain adaptive object detection problem under
both source-free and few-shot conditions, named as SF-FSDA, i.e., the source domain images are not accessible when
adapting the object detection model to the target domain, and there are only a few samples available in the target
domain (see Fig. 1a).

The current available domain adaptive object detection approaches can tackle isolated one of the two conditions in SF-
FSDA, but cannot deal with the two conditions at the same time. More specifically, pseudo-label based techniques are
popularly utilized in source-free conditions Li et al. (2020b); Kundu et al. (2021), but are not capable of handling the
few-shot condition, since it relies on enough samples to reduce the pseudo-supervision noise brought by the domain
gap. In contrast, adversarial learning Motiian et al. (2017); Ganin & Lempitsky (2015) and image translation Luo
et al. (2020); Ma et al. (2019) based methods can operate under few-shot conditions, but require access to the source
domain.

In order to address the challenging SF-FSDA problem, we propose an efficient labeled data factory based method
(see Fig. 1b), which i) synthesizes abundant target domain like images guided by the few-shot samples and the text
description from the target domain, without accessing the source domain image; and ii) automatically generates the
corresponding object bounding box and category annotations, with the help of minimum human effort, i.e., few-shot
manual annotation. Compared to the existing image translation based approach Zhu et al. (2017); Park et al. (2020);
Huang et al. (2018); Liu et al. (2019); Isola et al. (2017), our proposed data factory based method does not require
the availability to the source domain (source-free condition), and effectively exploits the few-shot image (few-shot
condition) and text knowledge from the target domain for the image synthesis. The text knowledge provides the
general guidance, e.g., what the “comic” style images look like, while the few-shot images offer the specific guidance,
e.g., how the “comic” images on the target domain are like. The text knowledge can also prevent the overfitting effect
brought by the few-shot images. Thus, the text and few-shot images guidances promote each other to synthesize
the more target-domain like images. Besides, the data factory based method renders the object bounding box and
category annotation together with and guided by the image synthesis process, only requiring the few-shot manual
annotation. Our data factory model is initialized with publicly available GAN pretrained weights, which are irrelevant
to both the source and target domain. In this way, the efficient labeled data factory synthesizes the target domain
on both the image level and label level. Alternatively, applying the source domain trained object detection model on
our synthesized image can generate the pseudo-label, which however is noisy and low-quality due to the domain gap.
Instead, our efficient labeled data factory can synthesize the detection label without relying on the source trained object
detection model, generating higher quality annotation and easing the downstream domain adaptive object detection.
Then the source domain trained object detection model is fine-tuned on our synthesized images and annotations to
train the final object detection model.
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In a nutshell, the key contributions of this paper are three-fold. (1) We propose the domain-adaptive object detection
problem under the source-free and few-shot conditions, SF-FSDA, where there are only a few samples available on
the target domain, and only the source-pretrained model is accessible for the adaptation to the target domain. (2)
We develop the efficient labeled data factory based approach to SF-FSDA problem, where the efficient labeled data
factory can automatically synthesize a number of the target domain like images and corresponding object detection
labels, providing the text guidance, few-shot sample guidance and minimum human annotation. (3) The experimental
results on different benchmarks prove the effectiveness of the proposed method for the SF-FSDA problem, serving as
the strong baseline for further research.

2 RELATED WORK

2.1 IMAGE SYNTHESIS.

Recently, generative adversarial networks (GANs) Goodfellow et al. (2014) have become an active research area and
boosted numerous applications, especially image synthesis. It is demonstrated that, given proper training, GANs can
synthesize semantically meaningful data from standard data distributions. The current state-of-the-art GAN mod-
els Brock et al. (2018); Gao et al. (2019); Zhang et al. (2018) are able to generate high-quality realistic images of
diverse categories. Recent style-based generators Karras et al. (2019; 2020b;a; 2021) produce impressive results and
allow for style control via mapping noise vectors to a higher-dimensional semantic space, which inspires several exten-
sions such as image manipulation Patashnik et al. (2021b); Gal et al. (2021); Zhu et al. (2021), image editing Ling et al.
(2021); Bau et al. (2021), and dataset synthesis Zhang et al. (2021). Besides, various types of potential guidance Li
et al. (2020a); Ling et al. (2021); Dhamo et al. (2020); Collins et al. (2020); Patashnik et al. (2021a) are utilized for
controlling the image synthesis process, among which the most relevant to our work are text guidance and few-shot
image guidance. The text guidance is typically provided by the large-scale vision-language pretrained model Rad-
ford et al. (2021), by mapping the images and the text to the joint embedding space. More recent works Patashnik
et al. (2021b); Gal et al. (2021) then introduce the image and text consistency in the embedding space to regularize
image synthesis. The few-shot image guided image synthesis works Saito et al. (2020); Liu et al. (2019); Ojha et al.
(2021) aim to prevent image generation overfitting when only limited image samples are available. Different from the
aforementioned works, our proposed data factory exploits both the text guidance and the few-shot images guidance
together, promoting each other to further improve image synthesis in the target-domain (see ablation study in Sec. 4.2).
The label synthesis of our data factory is related to the work of Zhang et al. (2021), which, however, only focuses on
the dense prediction task, e.g., semantic segmentation, and does not consider the domain adaptation problem. Instead,
our proposed data factory tackles the domain adaptation problem with the few-shot samples and text guidance, and
investigates the synthesis of object detection annotations.

2.2 DOMAIN ADAPTIVE OBJECT DETECTION.

Domain adaptation aims to transfer knowledge between the label-rich source domain and the unlabeled target domain
to train the model that performs well on the target domain. In the past decades, it has been explored in different tasks,
e.g., image classification Tzeng et al. (2017); Gong et al. (2012); Ganin & Lempitsky (2015), semantic segmenta-
tion Tsai et al. (2018); Vu et al. (2019); Tranheden et al. (2021), and object detection Chen et al. (2018); Khodabandeh
et al. (2019); VS et al. (2021). Among the quite vast scope, the most relevant category to our work is domain adap-
tive object detection, where adversarial learning, image translation, and pseudo-label based methods are typically
proposed and studied. Recently, considering more practical scenarios, some works explore the source-free Li et al.
(2020b) or few-shot Wang et al. (2019) domain adaptive object detection problem, respectively. More specifically, Li
et al. (2020b) tackles the source-free Kundu et al. (2020a); Yang et al. (2021); Kundu et al. (2020b) domain adaptive
object detection problem with the pseudo-label based technique. And Wang et al. (2019) studies the few-shot Motiian
et al. (2017) domain adaptive object detection problem through adversarial learning based method. However, none of
the aforementioned works investigate both the source-free and few-shot conditions at the same time. In contrast, our
SF-FSDA problem touches both source-free and few-shot conditions simultaneously, which is more challenging and
practical. From the method aspect, instead of exploiting pseudo-label or adversarial learning, we synthesize the target
domain-like images and the corresponding bounding box and category annotations together with the efficient labeled
data factory, without accessing the source domain.

2.3 DOMAIN TRANSFER WITH AUXILIARY KNOWLEDGE.

In some domain transfer related works, e.g., domain adaptation, domain generalization and domain randomization,
the auxiliary knowledge from the public dataset is utilized as the bridge to connect the source domain and the target
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domain. For example, since the target domain image is not available for training, Yue et al. (2019) randomizes the style
of the source domain images utilizing the images from the public dataset ImageNet Deng et al. (2009), to improve
the generalization ability of the semantic segmentation model trained on the source domain. Wu et al. (2021) adopts
the auxiliary images from ImageNet to regularize the image classification model training in the adaptation process, to
prevent the model from forgetting. However, these works all require access to the auxiliary images, which might not
be practical due to data privacy regulations and data transmission capacity. Instead, our efficient labeled data factory
takes the publicly available GAN pretrained weights Karras et al. (2020b) as the auxiliary knowledge, which is more
flexible and renders unlimited and unified image and label synthesis.

3 METHOD

3.1 PROBLEM STATEMENT

For the problem of domain-adaptive object detection, we are given the labeled source domain S = {xi
s,y

i
s}

Ns
i=1 and

the unlabeled target domain T = {xi
t}

Nt
i=1, where xi

s,y
i
s represent the i-th image and the corresponding bounding

box and category annotations for object detection in the source domain, and xi
t denotes the i-th unlabeled image in

the target domain. Ns, Nt are the number of images in the source and target domain, respectively. Different from
traditional domain adaptive object detection problem, we tackle the source-free and few-shot target conditions, i.e.,
Ns ≫ Nt and {xi

s,y
i
s}

Ns
i=1 is not accessible during the adaptation process to {xi

t}
Nt
i=1, named SF-FSDA problem.

Technical Challenges. Compared to the traditional domain adaptive object detection problem, our proposed SF-FSDA
problem introduces more challenging source-free and few-shot conditions. Previous techniques for domain adaptive
object detection highly rely on adversarial feature learning Chen et al. (2018), image-to-image translation Inoue et al.
(2018), and pseudo-label based self-training RoyChowdhury et al. (2019). On the one hand, the challenge brought by
source-free condition is that, the previous adversarial feature learning and image-to-image translation based techniques
require access to source data during the adaptation process to align the distribution between the source and target
domains, making them not equipped to be engaged in our source-free setting. On the other hand, the challenge
induced by few-shot condition is that, the pseudo-label based self-training technique always relies on the availability
of abundant target domain images to reduce the prediction noise and improve the prediction confidence on the target
domain, which are difficult to operate in our few-shot setting. Thus, both the source-free and few-shot conditions
hinder the knowledge transfer between the source and target domains for object detection.

Motivation. As discussed in the aforementioned technical challenges, the source-free and few-shot conditions make it
difficult to adapt guided by the object detection task. Thus, we aim to firstly adapt on the image level, i.e., synthesize
the target domain like image. However, different from the previous image translation methods that rely on the access
to the source domain and the target domain at the same time, the adaptation, guided by the few-shot samples and text
from the target domain, on the publicly available trained GAN model provides more flexibility without accessing the
source domain data. Moreover, in order to provide reliable guidance for the downstream object detection task, the
method for synthesizing the corresponding object detection label is developed. Inspired by the observation that the
trained GAN model encodes the rich knowledge related to the object category and position implicitly in the latent
feature space, we introduce the label synthesis branch to produce the object category and bounding box annotation
automatically, providing only minimum human effort, i.e., few-shot manual annotation.

3.2 EFFICIENT LABELED DATA FACTORY FOR SF-FSDA PROBLEM

In order to deal with the SF-FSDA problem, we propose the efficient labeled data factory based method, as shown in
Fig. 2. Since the SF-FSDA problem touches the source-free setting, the whole training stage will be divided into, i)
source-pretraining stage, ii) image and label synthesis stage and iii) target-adaptation stage. In the i) source-pretraining
stage, the object detection model is trained on the source domain. Then in the ii) image and label synthesis stage, the
efficient labeled data factory is driven by the few-shot image sample and text guidance from the target domain to
synthesize the image with the image synthesis branch, and the label synthesis branch automatically synthesizes the
corresponding object detection label by only providing the few-shot manual annotation. In the iii) target-adaptation
stage, the synthesized image and corresponding label synthesized in stage ii) are exploited to fine-tune the source
pretrained object detection model in stage i).

Image Synthesis with Few-Shot Image Guidance. Given a publicly pretrained GAN model with the generator G,
we aim to learn an adapted generator Gt guided by the few-shot image samples {xi

t}
Nt
i=1 from the target domain T .

Following Ojha et al. (2021), the distance consistency regularization, Ldist, is utilized to preserve the original content
and diversity of the image samples, and the anchor-based relaxed realism is adopted to further prevent the overfitting
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Figure 2: (a) Method overview. The well labeled PASCAL VOC dataset is taken as the source domain, while there
are only few-shot unlabeled Comic samples available in the target domain. The aim is to train the domain-adaptive
object detection model under the source-free and few-shot condition, i.e., only the source pretrained model and few-
shot target domain samples are available for the adaptation to the target domain. The efficient data factory module
is composed of the image synthesis branch and the detection label synthesis branch. The image synthesis branch
is guided by the few-shot samples and text from the target domain, to synthesize the target domain-like image. The
detection label synthesis branch aims to automatically synthesize the bounding box and category label, with the help of
minimum human effort, i.e., few-shot manual annotation. (b) Image synthesis overview. The image synthesis branch
is driven by the few-shot image samples guidance and the text guidance.

to the few-shot image samples. In more detail, the distance consistency regularization samples a batch of N + 1 noise
vectors and uses their pairwise similarities in feature space to construct an N -way probability distributions for each
image. The N -way probability of the image generated by the i-th noise vector is given by:

ymi = Softmax
(
{sim (Gm (zi) , G

m (zj))}∀i̸=j

)
yt,mi = Softmax

(
{sim (Gm

t (zi) , G
m
t (zj))}∀i̸=j

)
,

(1)

where similarity denotes the cosine similarity of activations at the mth layer between generator G and Gt. The
probability distributions converted from the similarities of the adapted model and the given publicly pretrained model
are encouraged to be uniform by computing KL-divergence across the intermediate layers. With the anchor-based
relaxed realism, a dual-discriminator training approach is deployed to prevent overfitting to the few-shot samples. An
anchor region is defined as a subset of the entire input latent space Z . When sampled from these regions, we use a full
image discriminator Dimg . Outside of them, we enforce adversarial loss using a patch-level discriminator Dpatch to
avoid overfitting to the few-shot samples.

We observe minor collapse in style with the training strategy in Ojha et al. (2021) under our setting, i.e., the same
color or pattern before successful adaptation. Different from Ojha et al. (2021), we relax the distance consistency
regularization during different training phrases to allow a reasonable extent of object shape adaptation while still
keeping the original image content. In the initial training phases, we compute the distance consistency only of the
deep layers (i.e., after 6th layer) of the generator. After training for certain epochs, we adapt the training strategy and
only compare consistency on the shallow layers (i.e., before 10th layer) for detailed style adaptation and to preserve
the content.

The objective of image synthesis with few-shot image guidance is,

G∗
t = argmin

Gt

max
Dimg ,Dpatch

Ladv (Gt, Dimg , Dpatch ) + λ1Ldist (Gt, G) , (2)

where Ladv represents the adversarial loss, and λ1 is the hyper-parameter to balance the adversarial loss and the
distance consistency regularization loss.

Image Synthesis with Text guidance. Besides the few-shot image samples from the target domain, the text description
about the target domain is available with no effort required, e.g. “cartoon” and “watercolor.” To fully exploit and
transfer the knowledge from the target domain to imitate its distribution, text guidance from the target domain can
be leveraged to guide the image synthesis of the data factory with the help of contrastive language-image pre-training
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(CLIP) models Radford et al. (2021). The main idea is to train the GAN model to make the generated images shift along
the direction of the textually-described path in the CLIP embedding space Gal et al. (2021). Original and target texts
are both self-defined to provide the desired shifting guidance. In order to obtain the image shifting direction during
training, a dual-generator strategy is also deployed. We fix the pretrained generator G to keep generating original
images for comparison while optimizing the target generator Gt. Then the changing directions of text guidance and
images can be expressed by,

∆T = Etext (Ttarget )− Etext (T )

∆I = Eimg (Gt(z))− Eimg (G(z)) ,
(3)

where Etext and Eimg denote CLIP text and image encoders, respectively. T and Ttarget represent the text description
of the pretrained GAN model and the target domain, e.g., “photo” and “comic.” z is the input noise variable, i.e.,
z ∈ Z . The directional loss introduced by text guidance can thus be described as,

Ldirection(G,Gt, T, Ttarget) = 1− ∆I ·∆T

|∆I||∆T |
. (4)

Combined with the few-shot image guidance training objective in Eq.(2), our final training objective with both the
few-shot image guidance and the text guidance can be derived as,

G∗
t = argmin

Gt

max
Dimg ,Dpatch

Ladv (Gt, Dimg , Dpatch )

+ λ1Ldist (Gt, G)

+ λ2Ldirection (Gt, G, T, Ttarget) ,

(5)

where λ2 is the hyper-parameter to balance the text guidance and other terms.

Image Synthesis Training Strategy. In order to further prevent the model from overfitting the few-shot image sam-
ples, we adopt the freezing strategy during the training. More specifically, the shallow layers of the original generator
are frozen, while shallow layers of the discriminator are also frozen accordingly to further ensure a stable training
process. The training strategy is simple yet effective in preventing overfitting under few-shot conditions.

Label Synthesis. We can now get unlimited target-like samples with a successfully adapted image synthesis branch.
Previous research has proved that StyleGAN2 Karras et al. (2020b) learns a well-disentangled semantic latent space,
where each channel controls some meaningful properties at different scales. Intuitively, feature maps generated by
those channels should be semantically informative enough to act as extracted features for downstream tasks, e.g.,
segmentation and detection. Based on this assumption, we develop our object detection branch and get our training
data with the following procedure: We sample a set of latent codes {zi}Na

i=1 and generate their corresponding images
{Gt(zi)}Na

i=1. Here Na denotes the number of manual annotations required to train the object detection task. Then we
manually annotate these samples as our training data. During the training process, we deploy the generator Gt as our
backbone network and concatenate the intermediate convolutional feature maps generated by the latent codes as our
encoded features for the matching images. A prediction head is built on these extracted features and trained for the
object detection task.

Inspired by Zhou et al. (2019), we use keypoint representations where each object is represented by its center point
and the size of its bounding box. To detect objects presented in a synthesized image x̄t ∈ RW×H×3, our goal is to
predict a downsampled keypoint heatmap ŷ ∈ [0, 1]

W
r ×H

r ×C . C denotes the number of classes for the prediction
task, r represents the downsampling stride, and W,H are the width and height of the image. A prediction ŷx,y,c = 1
represents a detected keypoint of class c, while ŷx,y,c = 0 means background. For loss propagation, ground truth
heatmap y is generated by converting each ground truth keypoint p ∈ R2 to its low-resolution equivalent p̃ =

⌊
p
r

⌋
and

splatting those points using a Gaussian Kernel. The training loss is defined as a variant of focal loss Lin et al. (2018),

Lk=
−1

N

∑
xyc

{
(1− ŷxyc)

α
log (ŷxyc) if yxyc = 1

(1− yxyc)
β
(ŷxyc)

α
log (1− ŷxyc) otherwise,

(6)

where α and β are hyper-parameters of the focal loss, while N is the number of keypoints in image x̄t for normaliza-
tion.

A local offset ô ∈ RW
r ×H

r ×2 is predicted and shared among all classes to recover the precise center point locations in
compensation for the error caused by downsampling. The sizes of bounding boxes ŝ ∈ RW

r ×H
r ×2 of each class c are

regressed around the predicted center points, using a single shared prediction as well. Offset loss is computed only at
locations of predicted keypoints p̃, while size loss is computed for each detected object k with its predicted size ŝpk
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around the center point pk and the ground truth bounding box size sk. Both keypoint offset and size predictions are
trained with L1 loss,

Loff =
1

N

∑
p

∣∣∣ôp̃ −
(p
r
− p̃

)∣∣∣
Lsize =

1

N

N∑
k=1

|ŝpk
− sk| .

(7)

A two-layer convolutional head is built as the label synthesis branch for predicting ŷ, ô, and ŝ each and trained with a
weighted sum of loss terms for these tasks,

Ldet = Lk + λoffLoff + λsizeLsize, (8)

where λoff and λsize represent the hyper-parameters to balance the offset, size and keypoint prediction training loss.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

In-Domain Experiments. In order to verify the validity of our proposed efficient labeled data factory for automat-
ically producing the images and corresponding object category and bounding box labels, we conduct the in-domain
experiments, where our efficient labeled data factory is used to generate the images and object bounding box and cat-
egory annotations, without domain adaptation. Then, the generated images and labels are exploited to train the object
detection model, to recognize the object instances on the same or similar domain, i.e., in-domain object detection.
More specifically, in our experiment, the object detection model is trained on the natural images and annotations (see
Fig. 3c) synthesized by our data factory, and tested on the PASCAL VOC datset.

SF-FSDA Cross-Domain Experiments. For the purpose of proving the helpfulness of our proposed efficient labeled
data factory for domain adaptation, the SF-FSDA cross-domain experiments are explored, where the data factory is
trained with the guidance of the text and/or the few-shot samples from the target domain. Furthermore, the synthesized
images and labels are utilized to fine-tune the source domain pretrained object detection model, to adapt the model to
the target domain, i.e., SF-FSDA cross-domain object detection. In our experiments, we aim at realizing SF-FSDA,
under PASCAL VOC (source) → Clipart and Comic (target), respectively.

Dataset. PASCAL VOC: PASCAL VOC 2007 & 2012 datasets Everingham et al. (2010) contain natural objects
with manually labeled bounding box and category annotations. In the in-domain experiments, the test set with cat
and car objects is utilized to evaluate the performance of the object detection model. In the SF-FSDA cross-domain
experiments, the training set including labeled car and cat images is taken as the source domain for training. Clipart1k:
Clipart1k dataset Inoue et al. (2018) covers clipart images, exhibiting a large domain shift compared to PASCAL VOC
dataset. In the SF-FSDA cross-domain experiments, 12 unlabeled images are exploited as the few-shot target samples
for training, and the test set containing cat and car objects is taken for the model performance evaluation on SF-FSDA.
Comic2k: Comic2k dataset Inoue et al. (2018) consists of comic images, indicating a clear domain gap compared
to PASCAL VOC dataset. In the SF-FSDA cross-domain experiments, 5 unlabeled images are regarded as the few-
shot target domain for training, and the test set containing cat and car objects is adopted for the model performance
evaluation on SF-FSDA.

Training Details. Image Synthesis: The data factory is based on the StyleGAN2 structure and initialized with the
publicly available cat and car image synthesis pretrained weights in Karras et al. (2020b). Label Synthesis: As the
minimum human effort, we manually label 10 synthesized images. Source Pretraining and Target Adaptation: The
object detection model in the source pretraining and target adaptation stage is based on the Single Shot MultiBox
Detector (SSD) Liu et al. (2016) model. We synthesize 200 and 250 samples in total in the in-domain and cross-
domain experiments, respectively.

Baseline Setup. In Table 1 and Table 3, the “Few-Shot FT” represents that the object detection model is fine-tuned
on the few-shot manually-labeled images from our data factory. In Table 3, the “CycleGAN”, “MUNIT” and “CUT”
conduct the corresponding image translation methods between the synthesized images from the pretrained StyleGAN2
model and the few-shot target domain images to generate the target domain-like images, and adopt the same annota-
tions generated by our data factory. Oracle performance in Table 1 is reached by training the object detection model on
the training set of PASCAL VOC. Oracle performance in Table 3 is obtained by Inoue et al. (2018) for the traditional
domain adaptive object detection, which is not few-shot or source-free.
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Table 1: In-domain experiments on PASCAL VOC. The results are reported on average precision (AP).

MethodClasses Few-Shot FT Ours Oracle
Cat 50.86 64.37 86.48
Car 41.57 52.73 72.18

Table 2: Comparison of label generation ways, pseudo label vs. our data factory, PASCAL VOC→ Clipart.

Label Generation
Class Pseudo-Label Our Label Synthesis
Cat 25.75 32.50
Car 53.52 55.67

4.2 EXPERIMENTAL RESULTS

Through the quantitative and qualitative in-domain and SF-FSDA cross-domain experimental results, we show that our
proposed model effectively synthesizes the image samples and the corresponding object bounding box and category
labels, and mitigates the source and target domain gap through the guidance of text and few-shot target examples.

In-Domain Experiments. As shown in Table 1 and Fig. 3c, our synthesized images and corresponding bounding
box labels can be used to train the model for the object detection on the same/similar domain, improving the few-shot
object detection performance from 50.86%, 41.57% to 64.37%, 52.73% on the “Cat” and “Car” objects detection,
respectively. It opens up a new avenue for the few-shot object detection task, by manually labeling object bounding
box in a few images, synthesizing enough image samples and bounding box labels automatically with our proposed
efficient labeled data factory, and then training the object detection model with the synthesized images and labels.

SF-FSDA Cross-Domain Experiments. In Table 3 and Fig. 3d-g, the quantitative and qualitative results are shown on
the benchmark, PASCAL VOC→ Clipart, Comic, respectively. Taking the PASCAL VOC→ Clipart benchmark as the
example, compared with the pure source baseline, all of the image style adaptation based methods bring performance
improvement, verifying the benefits of the style adaptation based methods for narrowing the domain gap. Among the
image style adaptation based methods, it is shown that our proposed data factory based method surpasses other image
translation based methods, CycleGAN Zhu et al. (2017), MUNIT Huang et al. (2018), and CUT Park et al. (2020). It
proves the advantage of our method for synthesizing the target-domain like image, with the guidance of both the few-
shot samples and the text knowledge. Moreover, compared with the few-shot manual annotations, the automatically
synthesized annotations can further improve the performance from 30.94%, 52.97% to 32.50%, 55.67%. It verifies
the effectiveness of the automatically generated images and annotations for the SF-FSDA problem. Similarly, on the
PASCAL VOC→ Comic benchmark, the effectiveness of our proposed method for SF-FSDA is also validated.

Ablation Study. In our proposed efficient labeled data factory for SF-FSDA, the style of the generated samples is
guided by the few-shot image samples and/or the text guidance. In order to explore the effect of different types of
guidance, we compare the performance of different ablations of the full model. From the quantitative comparison in
Table 4a, it is shown that both the few-shot samples and text guidance contribute to the final image synthesis results.
From the qualitative results shown in Fig. 3h-j, taking the “comic” style as the example, the text guidance provides
the general knowledge on what the “comic” images look like, while the few-shot images guidance indicates how the
“comic” images are on the target domain. Moreover, the text knowledge from the target domain prevents overfitting
to the few-shot samples. On the other hand, it is proven that our model is flexible, still reaching effective synthesis
results even when one of the text and few-shot samples guidance is not available. Moreover, the ablation study on the
freezing strategy during training is conducted, which is shown in Fig. 3k-l and Table 4b. It is shown that the freezing

Table 3: SF-FSDA cross-domain experiments.

MethodClasses Source Few-Shot FT CycleGAN MUNIT CUT Ours Oracle
PASCAL VOC → Clipart

Cat 17.25 30.94 27.01 21.46 24.57 32.50 35.07
Car 43.04 52.97 55.11 54.62 54.72 55.67 57.38

PASCAL VOC → Comic
Cat 16.36 33.01 23.51 37.28 36.81 37.74 39.99
Car 39.02 51.05 42.20 41.31 46.68 54.68 52.76
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Table 4: Ablation study, PASCAL VOC → Clipart (Cat).

Ablations
Source Only Few-Shot Only Text Few-shot+Text
17.25 28.24 18.60 32.50

(a) Ablation study for the text and few-shot images guidance
from the target domain, measured with AP performance on
Clipart.

Ablations
w/o freezing w freezing

0.64 0.68
(b) Ablation study for freezing strategy during image syn-
thesis training, measured with the LPIPS distance Ojha
et al. (2021)(↑).

PA
SC

A
L 

   
 C

lip
ar

t
PA

SC
A

L 
   

 C
lip

ar
t

PA
SC

A
L 

   
 C

om
ic

(d) Our Synthesis (e) CycleGAN (f) CUT (g) MUNIT

(h) Text + Few-Shot (i) Few-Shot (j) Text

(k
) w

/o
 fr

ee
zi

ng
(l)

 w
/ f

re
ez

in
g

(a
) C

lip
ar

t E
xa

m
pl

e

PA
SC

A
L 

   
 C

om
ic

(b
) C

om
ic

 E
xa

m
pl

e

(c) GAN w/o DA.

Figure 3: (a)-(b) are the exemplar images from the Clipart1k and Comic2k dataset. (c) are the synthesized images
from the publicly available pretrained GAN weights, without conducting domain adaptation and used in Table 1. It is
notable that our data factory does not have the requirement of on which style images the GAN model is pretrained, and
we just adopt the publicly available pretrained weights provided in Karras et al. (2020b). (d) are the synthesized image
and annotations from our proposed data factory in Table 3. (e)-(g) are the results generated by other image translation
methods in Table 3. (h)-(j) are the ablations for guidance as in Table 4a. (k)-(l) are the ablations w/ and w/o freezing
strategy as in Table 4b.

strategy for the image synthesis training can help prevent overfitting to the few-shot samples in the target domain and
preserve the diversity of the image synthesis results.

Source Domain Pretraining. To investigate the impact of a source domain pretrained object detection model on SF-
FSDA, we conducted a comparison of the SF-FSDA performance with and without the pretrained model for the cat
of PASCAL VOC→Clipart dataset. For the experiment with pretrained model, the pretrained object detection model
on source domain is fine-tuned with our generated images and labels on the target domain as done in Sec. 3.2. For the
experiment without pretrained model, the object detection model is trained from scratch with our generated images
and labels on the target domain. Our results show that the SF-FSDA performance significantly improves with the use
of a pretrained model from a large-scale source domain, yielding 32.50% accuracy with source pretrained compared to
17.74% without source pretrained. This suggests that leveraging a pretrained model from a relevant large-scale source
domain can provide substantial benefits for the success of SF-FSDA.

Number of Synthesized Image Samples Study. In order to figure out the effect of the number of synthesized images
and annotations from the efficient labeled data factory, the object detection performance with different numbers of
synthesized images and samples are shown in Fig. 4. It is shown that the object detection performance improves as
more images and annotations are synthesized.

Pseudo Label vs. Our Label Synthesis. Under the cross-domain experiments setting, an alternative way to our label
synthesis through the efficient labeled data factory is to apply the source domain pretrained object detection model
on our synthesized images to generate the pseudo-label. In Table 2, the pseudo-label and the label synthesis with
our efficient labeled data factory ways for label generation are compared. It is shown that our synthesized label with
the data factory performs better than the pseudo-label for the SF-FSDA problem. It is because the pseudo-label is
noisy and of low quality, resulting from the difference between the source domain and the synthesized images and the
source-free condition. In contrast, our efficient labeled data factory synthesizes the annotation with the help of the
image synthesis and few-shot manual annotations, bringing high-quality automatic annotations.
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Figure 4: Left: Object detection performance with different numbers of synthesized images and annotations, under the
setting of Table 1. Right: Synthesized images quality comparison between our proposed data factory and other image
translation based methods, measured with FID score (↓).
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Figure 5: (a) Multiple objects “window” and “bed” are synthesized and labeled in a single indoor scene image. (b)
Manual label number for training label synthesis branch study. It is observed that increasing manual label number for
training label synthesis branch helps generate more precise bounding box and detect more accurate objects.

Multiple Objects in a Single Image. In order to further prove the effectiveness of our proposed method for the
scenario that there are multiple objects in a single image, we conduct the experiment where the indoor scene images
are synthesized and the corresponding “window” and “bed” objects label are generated. The qualitative experimental
results are shown in Fig. 5. It is shown that our method can effectively synthesize and label the image where multiple
objects appear in a single scene.

Manual Label Number Study. In order to study the influence of the manual label number for training label synthesis
branch, we change the manual label number and train the efficient labeled data factory on the cat category, whose label
synthesized results are shown in Fig. 5. It is proven that increasing manual label number for training label synthesis
branch helps generate more precise bounding box and detect more accurate objects.

5 CONCLUSION

We propose and tackle the SF-FSDA problem, which studies the domain adaptive object detection problem under
source-free and few-shot conditions. In order to overcome the problem, we present a new efficient labeled data factory
based method, which can synthesize the infinite target domain-like images and corresponding annotations without
relying on the source domain. The image synthesis branch is guided by the few-shot image samples and text from the
target domain, and the image annotation branch only requires the minimum human effort (i.e., few-shot manual labels)
to generalize the label to the rest of the synthesized images. The synthesized target domain-like images and annota-
tions are further utilized to fine-tune the source domain pretrained object detection model. The proposed approach is
validated in various settings and surpasses other methods, demonstrating its effectiveness for SF-FSDA problem.

REFERENCES

David Bau, Alex Andonian, Audrey Cui, YeonHwan Park, Ali Jahanian, Aude Oliva, and Antonio Torralba. Paint by
word. arXiv preprint arXiv:2103.10951, 2021.

Deblina Bhattacharjee, Seungryong Kim, Guillaume Vizier, and Mathieu Salzmann. Dunit: Detection-based unsuper-
vised image-to-image translation. In CVPR, 2020.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

10



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. In ECCV, 2020.

Lluis Castrejon, Yusuf Aytar, Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Learning aligned cross-modal
representations from weakly aligned data. In CVPR, 2016.

Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Domain adaptive faster r-cnn for object
detection in the wild. In CVPR, 2018.

Edo Collins, Raja Bala, Bob Price, and Sabine Susstrunk. Editing in style: Uncovering the local semantics of gans. In
CVPR, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

Jinhong Deng, Wen Li, Yuhua Chen, and Lixin Duan. Unbiased mean teacher for cross-domain object detection. In
CVPR, 2021.

Helisa Dhamo, Azade Farshad, Iro Laina, Nassir Navab, Gregory D Hager, Federico Tombari, and Christian Rup-
precht. Semantic image manipulation using scene graphs. In CVPR, 2020.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual
object classes (voc) challenge. IJCV, 88(2):303–338, 2010.

Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-guided domain
adaptation of image generators, 2021.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, 2015.

Hongchang Gao, Jian Pei, and Heng Huang. Progan: Network embedding via proximity generative adversarial net-
work. In SIGKDD, 2019.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation. In
CVPR, 2012.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In ICML, 2018.

Cheng-Chun Hsu, Yi-Hsuan Tsai, Yen-Yu Lin, and Ming-Hsuan Yang. Every pixel matters: Center-aware feature
alignment for domain adaptive object detector. In ECCV, 2020a.

Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Maneesh Singh, and Ming-Hsuan
Yang. Progressive domain adaptation for object detection. In WACV, 2020b.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image translation. In
ECCV, 2018.

Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiyoharu Aizawa. Cross-domain weakly-supervised object
detection through progressive domain adaptation. In CVPR, 2018.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial
networks. In CVPR, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks.
In CVPR, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training generative
adversarial networks with limited data. In NeurIPS, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In CVPR, 2020b.

11



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In NeurIPS, 2021.

Mehran Khodabandeh, Arash Vahdat, Mani Ranjbar, and William G Macready. A robust learning approach to domain
adaptive object detection. In ICCV, 2019.

Seunghyeon Kim, Jaehoon Choi, Taekyung Kim, and Changick Kim. Self-training and adversarial background regu-
larization for unsupervised domain adaptive one-stage object detection. In ICCV, 2019.

Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu, et al. Universal source-free domain adaptation. In CVPR,
2020a.

Jogendra Nath Kundu, Naveen Venkat, Ambareesh Revanur, Rahul M V, and R. Venkatesh Babu. Towards inheritable
models for open-set domain adaptation. In CVPR, 2020b.

Jogendra Nath Kundu, Akshay Kulkarni, Amit Singh, Varun Jampani, and R Venkatesh Babu. Generalize then adapt:
Source-free domain adaptive semantic segmentation. In ICCV, 2021.

Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS Torr. Manigan: Text-guided image manipulation. In
CVPR, 2020a.

Xianfeng Li, Weijie Chen, Di Xie, Shicai Yang, Peng Yuan, Shiliang Pu, and Yueting Zhuang. A free lunch for
unsupervised domain adaptive object detection without source data. In AAAI, 2020b.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection, 2018.

Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim, Antonio Torralba, and Sanja Fidler. Editgan: High-precision
semantic image editing. In NeurIPS, 2021.

Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsuper-
vised image-to-image translation. In ICCV, 2019.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
Ssd: Single shot multibox detector. In ECCV, 2016.

Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang. Adversarial style mining for one-shot unsupervised domain
adaptation. In NeurIPS, 2020.

Liqian Ma, Xu Jia, Stamatios Georgoulis, Tinne Tuytelaars, and Luc Van Gool. Exemplar guided unsupervised image-
to-image translation with semantic consistency. In ICLR, 2019.

Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gianfranco Doretto. Few-shot adversarial domain adaptation. In
NeurIPS, 2017.

Muhammad Akhtar Munir, Muhammad Haris Khan, M Sarfraz, and Mohsen Ali. Ssal: Synergizing between self-
training and adversarial learning for domain adaptive object detection. In NeurIPS, 2021.

Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros, Yong Jae Lee, Eli Shechtman, and Richard Zhang. Few-shot
image generation via cross-domain correspondence. In CVPR, 2021.

Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired image-to-image
translation. In ECCV, 2020.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-driven manipulation
of stylegan imagery. In ICCV, 2021a.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-driven manipulation
of stylegan imagery. In ICCV, 2021b.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
supervision. In ICML, 2021.

Rindra Ramamonjison, Amin Banitalebi-Dehkordi, Xinyu Kang, Xiaolong Bai, and Yong Zhang. Simrod: A simple
adaptation method for robust object detection. In ICCV, 2021.

12



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object
detection. In CVPR, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region
proposal networks. In NeurIPS, 2015.

Farzaneh Rezaeianaran, Rakshith Shetty, Rahaf Aljundi, Daniel Olmeda Reino, Shanshan Zhang, and Bernt Schiele.
Seeking similarities over differences: Similarity-based domain alignment for adaptive object detection. In ICCV,
2021.

Aruni RoyChowdhury, Prithvijit Chakrabarty, Ashish Singh, SouYoung Jin, Huaizu Jiang, Liangliang Cao, and Erik
Learned-Miller. Automatic adaptation of object detectors to new domains using self-training. In CVPR, 2019.

Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate Saenko. Strong-weak distribution alignment for adaptive
object detection. In CVPR, 2019.

Kuniaki Saito, Kate Saenko, and Ming-Yu Liu. Coco-funit: Few-shot unsupervised image translation with a content
conditioned style encoder. In ECCV, 2020.

Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and Lennart Svensson. Dacs: Domain adaptation via cross-domain
mixed sampling. In WACV, 2021.

Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chandraker. Learning to adapt structured output
space for semantic segmentation. In CVPR, 2018.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In CVPR,
2017.

Vibashan VS, Vikram Gupta, Poojan Oza, Vishwanath A Sindagi, and Vishal M Patel. Mega-cda: Memory guided
attention for category-aware unsupervised domain adaptive object detection. In CVPR, 2021.

Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Mathieu Cord, and Patrick Pérez. Advent: Adversarial entropy
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APPENDIX

In this supplementary material, we provide the additional information for,

A detailed framework implementation and training parameters,

B detailed information about datasets involved in the experiments,

C additional qualitative experimental results,

D additional quantitative experimental results.

A FRAMEWORK IMPLEMENTATION

This section provides detailed implementation of the image synthesis and label synthesis branches of our proposed
efficient labeled data factory, and their corresponding training details.

A.1 IMAGE SYNTHESIS BRANCH

Network Structure. The network is built upon the structure of StyleGAN2 Karras et al. (2020b), with additional dual-
generator and dual-discriminator design to incorporate extra text guidance and relaxed realism strategy for avoiding
overfitting to few-shot image samples from the target domain.

To bring in the text guidance Gal et al. (2021), the dual-generator strategy is deployed. We have two generators, Gt

to be adapted, and a frozen G for image changing reference. The second generator G follows the same structure as
the original one, and remains frozen during the whole training process to keep generating original images without
adaptation.

In order to prevent the synthesized images from overfitting to the few-shot image samples of the target domain, the
dual-discriminator strategy is deployed, introducing the relaxed realism Ojha et al. (2021). As introduced in Sec. 3.2
of the main paper, the idea is to only discriminate the fake and real images on the image level with the discriminator
Dimg when the corresponding latent code z is sampled from a small anchor region. The image-level discriminator
Dimg follows the original design as in Karras et al. (2020b). When z is sampled outside of the region, we compute the
discriminator loss only on the patch level with the second discriminator Dpatch, which is the subset of the discriminator
Dimg . The two discriminators are trained at a designed frequency for the purpose of preserving image diversity while
still leveraging whole-image guidance. The process is controlled with the sampling frequency hyper-parameter λf ,
which indicates the frequency of sampling from the anchor region and computing the image-level loss instead of the
patch-level loss.

Training Parameters. We adjust the weight of image guidance λ1 and the weight of text guidance λ2 in Eq. (5) of
the main paper under different scenarios, to balance different guidances. Under the PASCAL VOC→Clipart setting,
we set both weights to 1.0. Under the PASCAL VOC→Comic setting, we increase the weight of text guidance to 5.0.
Another parameter is the sampling frequency from the randomly sampled small anchor region, λf , which decides how
often we compute the discriminator loss on the whole image level. We set the frequency to 2, alternatively computing
the loss on the image level and the patch level. The rest training details follow the StyleGAN2 Karras et al. (2020b)
with the augmentation strategy introduced in Karras et al. (2020a). The training iteration for image synthesis is set as
1000.

In order to avoid overfitting to the few-shot image samples from the target domain, we develop the freezing strategy
for image synthesis training (see the image synthesis training strategy part in Sec. 3.2 of the main paper). More
specifically, we adapt the generator Gt only on specific feature layers while freezing the rest part of the network. For
all the experiments, we only update the weights of intermediate layers from the third to the last one. Accordingly, we
freeze the image-level and the patch-level discriminator, Dimg and Dpatch, except for the final layer.

A latent code z is randomly sampled for each image with a dimension of 512 for detection labeling. In order not
to generate low quality images, the latent code is truncated by the average latent code to avoid sampling from low
probability density region. More details can be found in Sec. B “Truncation trick in W” of Karras et al. (2019).

A.2 LABEL SYNTHESIS BRANCH

Network Structure. Our label synthesis branch is built by utilizing StyleGAN2 Karras et al. (2020b) generator
acquired in the image synthesis step as the backbone network, and then adding different prediction heads on this basis.
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One-Shot Target With Freezing Strategy Without Freezing Strategy

Figure 6: Qualitative results comparison, with/without freezing strategy for image synthesis training, under the one-
shot target domain condition. It is shown that the freezing strategy can help to improve the image generation diversity
and to prevent overfitting to the one-shot target domain effectively.

For the backbone network, we take the intermediate feature map with the resolutions (4, 8, 16, 32, 64) considering the
memory consumption. Then we upsample those feature maps with bilinear interpolation to the resolution of 128, and
concatenate them together to feed forward to the three prediction heads for keypoint, offset, and bounding box size
predictions, respectively. The prediction head is composed of, 3×3 convolutional layer, ReLU, and 1×1 convolutional
layer.

Training Parameters. We mainly follow the training parameters and details in Zhou et al. (2019). We set the hyper-
parameters in Eq. (7) to λoff = 1.0 and λsize = 0.5. We adopt the SGD optimizer for training, with the learning
rate as 0.0001 and the weight decay as 0.0001. Keypoints are predicted on a heatmap with the resolution of 128. The
training iteration for label synthesis is set as 1000.

B DATASETS INFORMATION

In Sec. 4.1 of the main paper, we provide the information about the datasets which are involved in our experiments.
We here further provide additional datasets information.

PASCAL VOC. PASCAL VOC 2007 & 2012 dataset Everingham et al. (2010) contains natural images. Each image
in PASCAL VOC dataset includes the object class, pixel-level semantic label, and object bounding box annotations,
serving as an important benchmark for the image classification, semantic segmentation and object detection tasks.
Our experiment is related to the object detection task on PASCAL VOC dataset. PASCAL VOC dataset customizes
the license, especially the images collected from the Flickr website, i.e., PASCAL VOC dataset grants the limited,
non-transferable, non-sublicensable, revocable license to access and use the data.

Clipart1k. Clipart1k dataset includes the clipart images collected from the CMPlaces dataset Castrejon et al. (2016)
and two image search engines Inoue et al. (2018). Clipart1k is meant for the education and research purposes only.

Comic2k. Comic2k dataset covers the comic images collected from BAM! Wilber et al. (2017). Comic2k dataset is
meant for the education and research purposes only.

Watercolor2k. Watercolor2k dataset contains the watercolor images collected from BAM! Wilber et al. (2017), which
are meant for the education and research purposes only.

C ADDITIONAL QUALITATIVE RESULTS

C.1 FREEZING STRATEGY FOR ONE-SHOT TARGET DOMAIN

In Fig. 5 (k)-(l) of the main paper, we show the qualitative comparison results for the ablation study with/without the
freezing strategy of image synthesis training. In order to further prove the validity of the freezing strategy under the
extreme case, we here provide the qualitative comparison in Fig. 6 under the one-shot target domain condition, i.e.,
there is only one image available on the target domain. From Fig. 6, it is shown that the freezing strategy is especially
important for improving the image generation diversity and preventing overfitting to the one-shot image samples under
the challenging one-shot condition.
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Clipart ( Guided by Few-shot Keith Haring Style Images) Clipart (Guided by Few-Shot Joan Miro Style Images)

Figure 7: Image synthesis results on human face. The image synthesis is guided by the text guidance “clipart” and the
few-shot image samples guidance from “Keith Harring” and “Joan Miro” style paintings. The first column of the left
part and the right part is the example of the “Keith Harring” and “Joan Miro” painting style.

C.2 ADDITIONAL IMAGE SYNTHESIS RESULTS ON HUMAN FACE

In Sec. 4 of the main paper, we provide the experimental results for SF-FSDA under the PASCAL VOC→Clipart,
Comic settings, to synthesize the cat and car objects. In order to further prove the ability of our data factory for image
synthesis, we utilize our proposed data factory to synthesize other objects, human face, guided by the few-shot images
and the text. The few-shot image guidance includes different artistic style paintings and the provided text guidance
is “clipart”. The qualitative results shown in Fig. 7 prove that our proposed data factory effectively synthesizes the
target-domain like images under the text and the few-shot image samples guidance.

C.3 ADDITIONAL IMAGE SYNTHESIS RESULTS ON ADVERSE WEATHER SIMULATION

In order to show the possible application of our method to different scenarios, e.g., autonomous driving, we conduct
experiments adapting original images of the car category to reflect adverse weathers, e.g., snowy weather. Fig. 3
shows the adapted synthesized images under adverse weather conditions. For the adaptation, text description from the
“sunny” to the “snowy” and “foggy” together with 5 style images of street scenes under “snowy” and “foggy” weather
are provided as guidance. As shown in the Fig. 8, our data factory is effective for synthesizing the adverse weather
images.

C.4 QUALITATIVE RESULTS ON THE TARGET DOMAIN

In Sec. 4 of the main paper, we show the quantitative robust object detection results on the Clipart1k and Comic2k
datasets. In order to further prove the effectiveness of our proposed data factory for robust object detection, we here
show the qualitative object detection results on the target domain, i.e., Clipart1k and Comic2k. From the qualitative
results in Fig. 9, it is shown that our proposed efficient labeled data factory adapts the source pretrained object detection
model to the target domain, and improves the object detection performance on the target domain effectively.

C.5 ADDITIONAL BASELINE COMPARISON RESULTS

In Fig. 5(d)-(g) of the main paper, we show the qualitative comparison results between our proposed efficient labeled
data factory method and other image translation based methods, CycleGAN Zhu et al. (2017), CUT Park et al. (2020),
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Few-Shot Target Synthesized Snowy Image

Figure 8: Image synthesis results on car, with few-shot image and text guidance of “snowy” and “foggy”.

and MUNIT Huang et al. (2018). We here provide additional comparison results in Fig. 10 to validate that our
proposed efficient labeled data factory can synthesize the images and corresponding object bounding box and category
annotations effectively.

C.6 SF-FSDA: PASCAL VOC→WATERCOLOR

In Sec. 4 of the main paper, we show quantitative and qualitative experimental results for SF-FSDA under the PASCAL
VOC→Clipart and Comic settings. In order to further verify the validity of our proposed efficient labeled data factory
method for SF-FSDA, we conduct the additional SF-FSDA experiments under the PASCAL VOC→Watercolor setting.
Compared to the few-shot fine-tuning baseline as done in Table 3 and Table 4 of the main paper, our proposed efficient
labeled data factory based method further improves the object detection performance from 49.03%, 64.47% to 52.06%,
65.56% for cat and car categories, respectively. In Fig. 11, we show the image and label synthesis results from our
data factory, under the PASCAL VOC→Watercolor setting.

C.7 COMPARISON TO STYLEGAN-NADA

In order to further validate the effectiveness of our proposed method, we compare our method with recent language
guided image synthesis method, StyleGAN-NADA Gal et al. (2021). As shown in Fig. 12, it is observed that the
images synthesized by our method are more like Clipart image than StyleGAN-NADA, benefiting from the additional
few-shot samples guidance and the freezing training strategy for image synthesis.

C.8 TARGET DOMAIN IMAGE GUIDANCE SAMPLES NUMBER STUDY

To explore the effect of target samples number for the image synthesis branch, we compare the image synthesis results
guided by varying numbers of target samples for training. Our experimental findings, as illustrated in Fig. 13, indicate
that our method is able to avoid collapse even with one-shot guidance. However, we observe that using too few
examples results in a lack of intra-style differences, ultimately resulting in monochromatic images with a uniform
background.

C.9 FREEZING STRATEGY STUDY

We investigate the freezing strategy hyperparameter choice by experimenting with different sets of frozen parameters.
We conduct experiments by unfreezing different numbers of layers of the generator and report our findings in Fig. 14.
Specifically, we observe that unfreezing too many layers of the image generator leads to corrupted and blurred gener-
ation results, while freezing too many layers limits the model’s flexibility for adaptation, resulting in the collapse to
monochromatic local patterns. We also experiment with different freezing strategies for the discriminator and find that
unfreezing more layers often leads to imbalanced training. Therefore, for all our experiments, we only unfreeze the
last linear layer of the discriminator.
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PASCAL      Clipart PASCAL      Comic

Figure 9: Qualitative object detection results on the target domain, Clipart and Comic. “Before Adaptation” represents
the object detection results when applying the source-pretrained object detection model to the target domain. “After
Adaptation” shows the object detection results after fine-tuning the source-pretrained model on the synthesized images
and labels from our proposed data factory. The image without detected bounding box indicates that the model cannot
detect the objects in the image.

D ADDITIONAL QUANTITATIVE RESULTS

D.1 COMPARISON TO FEW-SHOT LABELED TARGET DOMAIN IMAGES

In order to further prove the effectiveness of our proposed approach, we compare our approach to the few-shot labeled
target domain images, where the few-shot target domain images are labeled and then are used to fine-tune the source-
pretrained object detection model. The number of manually labeled few-shot target domain images is the same as
that of manually labeled synthesized images used for training label synthesis branch in the efficient labeled data
factory. Under the PASCAL VOC → Clipart “cat” category setting in Table 3 of the main paper, the few-shot labeled
target domain images fine-tuning baseline reaches the performance 29.97%, while our approach reaches 32.50%. It is
because our efficient labeled data factory can synthesize a large number of images and corresponding label, while the
few-shot labeled target domain samples are insufficient.

D.2 TARGET DOMAIN SAMPLES NUMBER STUDY

As observed in Fig. S1 of the supp. and Fig. 3(d) of the main paper, more target samples can improve the diversity of
the synthesized image samples and prevent overfitting. Quantitatively, corresponding to Fig. 3(d), the object detection
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(b) Our Synthesis (c) CycleGAN (d) CUT (e) MUNIT(a) GAN w/o DA.
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Figure 10: Comparison between data factory and other image translation based methods. (b) is synthesized from
our proposed efficient labeled data factory, while (c)-(e) are generated from the image-translation based methods,
CycleGAN, CUT and MUNIT.

performance under PASCAL VOC → Clipart “cat” category is 32.50%, outperforming the performance corresponding
to Fig. S1, 23.15%.
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Watercolor Style Our Synthesis

Figure 11: Image and label synthesis results for SF-FSDA, under the PASCAL VOC→Watercolor setting. The text
guidance is “watercolor”, and the few-shot image samples guidance is the watercolor image from Inoue et al. (2018).
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Figure 12: Comparison with StyleGAN-NADA Gal et al. (2021) for Clipart image synthesis.

D.3 MULTI-DOMAIN STUDY

To evaluate the effectiveness of our method in multi-target domain scenarios, we conduct experiments on multiple
target domains and report the results in Table 5. Our efficient labeled data factory achieves reliable performance on
this task. Specifically, as depicted in the table, we observe that transferring from one target domain to another can even
improve the performance compared to direct adaptation from the original source pretrained model. This highlights the
potential of our method to be used in real-world scenarios with multiple target domains.
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Figure 13: Image synthesis results guided by different number of image guidance samples (1, 3, 5, 12) from the target
domain (Clipart).

Figure 14: Image synthesis results obtained by fine-tuning different layers of the image generator. Specifically, we
denote unfreezing and fine-tuning the first to the last layer of the image generator as 1-6, respectively.

Table 5: Multi-target domain SF-FSDA results. We evaluate our SF-FSDA model’s performance on two adaptation
scenarios: PASCAL VOC → Comic and PASCAL VOC → Clipart → Comic. In the first scenario, we adapt the
PASCAL VOC trained model on Comic-style training samples synthesized by our data factory. In the second scenario,
we first adapt the PASCAL VOC trained model to Clipart-style training samples synthesized by our data factory, and
then further adapt it to the Comic-style training samples synthesized by our data factory.

Class PASCAL VOC → Comic PASCAL VOC → Clipart → Comic
Cat 37.74 40.14
Car 54.68 57.02

D.4 MANUAL LABEL SAMPLES NUMBER STUDY

We investigated the impact of the manual labels number on the SF-FSDA performance, whose results are presented
in Table 6. The experimental results reveal that the SF-FSDA performance improves with an increase in the number
of manual labels. However, the rate of improvement decreases as the number of manual labels becomes larger. After
balancing stability and efficiency, we selected the number of manual labels as 10.

Table 6: SF-FSDA performance on the Comic target domain for Cat category, with varying numbers of manually
labeled samples utilized for label synthesis.

Number of Manual Labels
5 10 20 50 100

37.04 37.74 38.54 39.25 39.87
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