
Deep Learning Over-Parameterization: the Shallow Fallacy

Pierre Baldi∗

University of California, Irvine

Abstract

A major tenet of conventional wisdom dictates that
models should not be over-parameterized: the num-
ber of free parameters should not exceed the number
of training data points. This tenet originates from
centuries of shallow learning, primarily in the form
of linear or logistic regression. It is routinely applied
to all kinds of data analyses and modeling and even
to infer properties of the brain. However, through a
variety of precise mathematical examples, we show
that this conventional wisdom is completely wrong
as soon as one moves from shallow to deep learning.
In particular, we construct sequences of both linear
and non-linear deep learning models whose number
of parameters can grow to infinity, while the training
set can remain very small (e.g. a single example). In
deep models, the parameter space is partitioned into
large equivalence classes. Learning can be viewed
as a communication process where information is
communicated from the data to the synaptic weights.
The information in the training data only needs to
specify an equivalence class of the parameters, and
not the exact parameter values. As such, the num-
ber of training examples can be significantly smaller
than the number of free parameters.

1 Introduction
A long held form of conventional wisdom is that in
order to train a model with n parameters one should
have at least n training examples, and preferably
more. The origin of this statistical “dogma” stems
from linear regression and other forms of shallow
learning1. The soundness of this dogma appears to
be obvious from our experiences with linear regres-
sion. As a result, the dogma is routinely repeated
and used in myriads applications of statistics to mod-
eling data across all areas of human inquiry, often
well beyond shallow learning, and to inspire a fear,
if not a disgust, for the so-called over-parameterized
models. The dogma is also routinely used in a variety
of “back-of-the-enveloppe” calculations, for instance
to infer properties of the human brain. Here we
show, through a variety of examples, that this cen-
tral dogma is valid only for shallow learning and
that it is completely wrong for deep learning. Hence,
in deep learning it may not be unwise to get rid of

∗Corresponding Author: pfbaldi@uci.edu
1The distinction between deep and shallow learning is

associated with the presence or absence of hidden units.

the conventional wisdom entirely.

Origins: Since the discovery of least square linear
regression by Gauss and Legendre in the late 1700s
(e.g. [1]), one of the most central dogma of statis-
tics has been that a model should not have more
parameters than data points. In general, a system
of n linear equations in n unknown variables, has a
unique solution. However, this is not a character-
istic of linear systems alone. The same holds true
immediately for logistic regression [2–4]. Since the
logistic function is monotone increasing, it has a
unique inverse and by inverting the targets one can
reduce logistic regression to a linear system. While
this is true for single linear or logistic neurons, the
same result holds for a shallow layer of linear or logis-
tic neurons, since in this case each neuron operates
and learns independently of all the other neurons.
Similar observations can be made for single-variable
polynomial regression. Thus, in short, the origin
of the conventional wisdom can easily be traced
back to shallow learning and basic results in linear
algebra. Finally, the widespread aversion for over-
parameterized models stems also from our sense of
elegance and simplicity, as embodied in the principle
of Occam’s razor.

Applications: While the dogma makes sense for
shallow learning situations, it is often applied to
deep learning situations. For instance, many articles
have been published in the literature recommending
that deep learning models ought to have training
sets that are 10 times [5] or 50 times [6] bigger than
the number of free parameters. Obviously, these ar-
bitrary, constant, and widely discording prescriptive
multiplicative factors should be viewed with a grain
of suspicion. Another standard application of the
dogma is to infer properties of complex, non-shallow
systems, like the brain. For instance, Geoff Hinton
and others like to point out that the human brain
has on the order of 1015 synapses, while human
lives last on the order of 3 × 109 seconds. Assum-
ing one training example per second, or even 1000
training examples per second, the brain does not
have enough training examples to train its army of
synapses. From this false premise, one may draw
all kinds of conclusions from “the brain must be do-
ing something special” to “the majority of synapses
must be hardwired”. However, as we shall see, all
these conclusions are worthless: they may be false
or true since they are derived from a false premise.
The false premise is obtained by applying a statisti-

Proceedings of the 5th Northern Lights Deep Learning Conference (NLDL), PMLR 233, 2024.
LM 2024 Pierre Baldi. This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

cal principle, correctly observed in shallow learning
situations, to deep learning situations.

2 Evidence Against Dogma
Preliminary evidence that something may be wrong
with the dogma comes from at least three directions:
Bayesian statistical theory, statistical ensembles, and
deep learning practice.
First, from a purely Bayesian perspective, select-

ing the complexity of a model based on the amount
of training data makes no sense at all, as there is
in general no relationship between the two. Using a
prior that favors simple models may be convenient,
or satisfy tradition, however there is no intrinsic
epistemological reason for selecting such a prior. If
anything, a situation with few data points may be
a sign that data are hard or expensive to acquire.
In turn, this is possibly the sign of an underlying
complex phenomenon, which may call for a com-
plex model rather than a simple one. Using a prior
that favors models with few parameters is analogous
to searching for one’s car keys at night under the
only lamp present in a dark parking lot: there is no
epistemological reason for the keys to be under the
lamp. But what about Occam’s razor? As noted in
[7, 8], such a prior is not needed to implement this
razor which naturally emerges from the Bayesian
framework. To simply see this, imagine having an
overall class of models comprising two sub-classes:
simple models (S) and complex models (C). Imagine
that a priori one has no preference between the two
classes S and C, and likewise that within each class
one has no preference among the models in that
class. Let s and c denote the value of the constant
prior probability shared by all the models in class S
and in class C respectively. Thus the overall prior
distribution must satisfy: s|S|+ c|C| = 1 where |S|
and |C| represent the volumes of the corresponding
classes. Because the complex models have more pa-
rameters, in general, |S| << |C|. As a result, we
must have: s >> c. In short, simple models will
automatically have a much higher prior probability,
and this effect will tend to be reflected also in the
posterior probabilities.

Second, there is the widespread use and effective-
ness of statistical ensembles, where the outputs of
many different models are combined together, for in-
stance through simple averaging. This combination
alone generally results in a deep overall model, even
if the individual models are shallow. And even if the
number of parameters of each individual model sat-
isfies the dogma, obviously as the number of models
in the ensembles is increased, there is a point where
the overall model starts to violate the dogma. Per-
haps surprisingly, the over-parameterization aspect
of ensembles does not seem to have systematically
worried statisticians.

Finally, and perhaps most importantly, it has

been observed several times that in deep learning
practice that over-parameterized models can work
well, with no significant sign of overfitting. However,
this phenomenon has been used either to criticize
deep learning, or is regarded as some kind of oddity
or a mystery (e.g. [9–11]), possibly requiring novel
strategies for combating the over-fitting curse. As
a side note, it is possible to show that even over-
parameterized linear or logistc regression can work
with proper reguarization [12]. If w denotes the
number of parameters of a deep architecture and k
the number of training examples, we do have many
successful examples where w > k. But how large
can this discrepancy be? For instance, do we need
k to be at least 10% of W? And if not, is there an
ϵ > 0 such that at least ϵw examples are needed
for successful training? This paper shows that the
answer to this question is no.

Here we set out to prove why the conventional
wisdom is simply wrong when it comes to deep
learning. In particular we give several examples
of large networks with many parameters that can
be trained with far fewer examples in both the lin-
ear and non-linear cases. We consider primarily
the supervised learning framework, but through the
use of autoencoder architectures we show that the
same basic ideas can be applied to the unsupervised,
or semi-supervised, learning frameworks. At the
linear end of the spectrum of models, we look at
deep, fully-connected,linear networks. At the other
extreme non-linear end of the spectrum, we look
at deep, fully-connected, unrestricted Boolean net-
works. And in the middle of the spectrum, we look
at deep fully-connected networks of linear threshold
gates.

Notation: We use the notation A(n0, n1, . . . , nL)
to denote a deep feedforward architectures with ni

units in layer i, where the input layer is layer 0 and
the output layer is layer L.

3 Linear Networks
Deep feed-forward linear networks have been stud-
ied for quite some time (e.g. [13–16]) in the context
of least square linear regression. One of the main
theoretical results is that, in the fully-connected
case, the error functions of these networks do not
have any spurious local minima. All the critical
points where the gradient of the error function is
zero are either global minima or saddle points. As a
result, properly applied stochastic gradient descent
will tend to converge to a global minimum. The
structure of the global minima and the saddle points
can be understood in terms of Principal Component
Analysis (PCA). Clearly, as the depth of these mod-
els is increased the number of parameters can grow
to infinity. But what are the requirements on the
size of the corresponding training sets?

Simplest Deep Linear Model: To begin with,

2

we consider an architecture A(1, 1, . . . , 1), with a
single linear neuron in each layer. For simplicity
we assume that there are no biases, but the same
analysis can easily be extended to the case with
biases. The weights are w1, . . . , wL and the neural
network behaves as a multiplier, in the sense that
given an input x the output is simply: y = Px
with P =

∏
i wi. This is a deep linear regression

architecture with L parameters. The supervised
training data consists of input-target pairs of the
form (x, t) that provide information about what the
overall multiplier P should be. Taking expectations
over the training data, let E(tx) = α and E(x2) = β.
The error E is the standard least square error. It
is easy to check that the error is convex in P and
that at the optimum one must have α− βP = 0 or
P = α/β. It can be shown (see [17]) that, except for
trivial cases, given any initial starting point, gradient
descent or even feedback alignment will converge to
a global minimum satisfying P = α/β.

While the architecture has an arbitrary large num-
ber of parameters L, in principle a single training
example is sufficient to determine the value of the
correct multiplier. The value of the overall prod-
uct P partitions the space of synaptic weights into
equivalence classes: all the architectures which pro-
duce the same value P are equivalent. The training
data need only to provide enough information for
selecting one equivalence class, but not the value of
the individual weights within the equivalence class.
Thus there is a manifold of equivalent solutions sat-
isfying the optimal relationship P = α/β and the
volume of this manifold grows with the number L of
parameters. However the training set can remain as
small as a single training example, a clear violation
of the dogma.

Of course, here and everywhere else in the follow-
ing examples, one may wonder what could be the
purpose of having L layers, when a single layer could
be sufficient to implement the same overall input-
output function. There could be multiple purposes.
The most obvious one is that the volume of the solu-
tions grows with the depth of the architectures and
this may facilitate learning. But in addition, one
must also think about the possible constraints that
may be associated with physical neural systems, as
opposed to the virtualized simulations we carry out
on digital computers. In the example above, for in-
stance, there could be constraints on the magnitude
of the individual weights. Deep Linear Models
with No Bottlenecks: One may tempted to think
that the example above relies on having a single
neuron per layer. However, this is not the case and
exactly the same phenomena is observed for a linear
regression architectures of the form A(n, n, . . . , n)
where all the layers have size n and the weights are
given by matrices W1, . . . ,WL. Again, in vector-
matrix form, the input output relationship is given

by: y = Px with P = WLWL−1 . . .W1. Again it is
easy to see that this architecture has Ln2 parame-
ters. The overall input-output function corresponds
to a single n× n matrix P . But in order to specify
such a linear map, we only need to specify the im-
ages of the canonical basis of Rn, in other words, n
training examples in general position are sufficient,
again violating the dogma. Note that this prop-
erty remains true if the architectures also contains
expansive hidden layers of size greater than n, or
if the input and output layers have different sizes
and all the hidden layers have size greater than the
input and output layer (i.e. the hidden layers do not
affect the rank of the optimal overall input-output
function).

Deep Linear Models with Bottlenecks: In the
previous two examples, all the layers have the same
size, or are expansive. However it is easy to re-
lax this assumption and consider compressive archi-
tectures. To begin with, consider a purely linear
compressive autoencoder architecture of the form
A(n,m, n), with m < n. In this case, the bottle-
neck layer imposes a rank restriction on the overall
transformation. It is well known [13] that not only
the quadratic error function of such an autoencoder
has no spurious local minima, but all its critical
points correspond, up to changes of coordinates
in the hidden layer, to projections onto subspaces
spanned by eigenvectors of the data covariance ma-
trix. The global minima is associated with PCA
using projections onto a subspace of dimension m.
Obviously one can include additional linear layers of
size greater or equal to m between the input layer
and the bottleneck layer, or between the bottleneck
layer and the output layer, arbitrarily increasing the
total number of parameters, but without affecting
the essence of the optimal solution. The minimal
training set to specify the optimal solution consists
of m vectors of size n to specify the image hyper-
plane of the projection, providing another egregious
violation of the dogma. Again there are large equiva-
lence classes of parameters associated with the same
overall performance (e.g. in the linear case with a
single bottleneck, we have P = AB = ACC−1B;
thus the overall map P is defined up to invertible
transformations applied to the hidden layer). The
results in [13, 14] show that the same observations
can be made for arbitrary fully connected deep lin-
ear architectures (i.e. beyond autoencoders) and not
only in the real-valued case, but also in the complex-
valued case [16]. Next we show that exactly the
same phenomena can be observed in non-linear deep
architectures. Among the non-linear model to be
discussed, we will examine first the most non-linear
model of all which is the unrestricted Boolean model,
where each neuron implements a Boolean function,
with no restrictions on the kinds of Boolean func-
tions. An unrestricted Boolean neuron with n inputs

3

implements a function f with 2n parameters, since
one must specify one binary value for each of the
2n possible entries of the truth table of f . Then
we will consider also the case of Boolean neurons
implemented by linear threshold functions.

4 Non-Linear Networks: Unre-
stricted Boolean

The Simplest Deep Non-Linear Model: We
can use the same architecture A(1, . . . , 1) as in the
first example above. In the Boolean unrestricted
model, each Boolean function from one neuron to
the next is either the identity or the negation (NOT).
So there is one binary degree of freedom associated
with each layer and again the number of degrees of
freedom grows linearly with the depth. The overall
input-output function is either the identity, or the
negation, and a single training example is sufficient
to establish whether the overall function ought to be
the identity or its negation. Thus again the dogma
is violated.

To get a slightly more interesting non-linear ex-
ample, we can use the same architecture A(1, . . . , 1)
as in the first example above, with L weights
w1, . . . , wL. The difference is that all the neu-
rons have a non-linear activation function g(x) =
x2 (more generally we could use for instance
g(x) = xk). Thus the overall input-output func-
tion is given by: y = (wL.....(w2w1x)

2))2......)2 =

w2
Lw

4
L−1 . . . w

2L
1 x2L , or y = Px2L with P =∏

w2L−2i+2
i . Thus in this case the multiplier P

realized by the architecture is positive. Again the
number of parameters is L and it can be arbitrar-
ily large. As in the linear case, a single training
example of the form (x, t) is sufficient to deter-
mine the multiplier P , with a manifold of equiva-
lent solutions corresponding to parameters satisfying
P =

∏
w2L−2i+2

i = α/β, with this time α = E(tx2)
and β = E(x4), when α > 0. If α < 0, the optimum
is obtained for P = 0 which can be achieved by hav-
ing at least one of the weights of the architectures
equal to zero. In short, in both examples treated in
this subsection, the dogma is again violated.

Deep Non-Linear Models with No-
Bottlenecks: Consider an architecture
A(n0, . . . , nL) where each neuron can imple-
ments any Boolean function of the neurons in the
previous layer. The error function is the Hamming
distance between target and output vectors. For
simplicity, let us first assume that all the layers have
the same size n. The overall input-output function
is a Boolean map from Hn to Hn, where Hn denotes
the n-dimensional hypercube. This architecture has
Ln2n parameters, since each unrestricted Boolean
neuron with n inputs has 2n free parameters. The
overall input-output map can be specified using
only n2n examples. It can easily be implemented

with 0 error through a large class of equivalent
networks. As the number of layers L goes to infinity
the number of parameters goes to infinity, while the
number of required training examples remains fixed
and is determined entirely by the size of the input
and output layers. This can easily be generalized
to a Boolean unrestricted architecture of the form
A(n0, . . . , nL), as long as there are no bottleneck
layers. In such an architecture, the total number of
parameters is given by:

∑L
i=1 ni2

ni−1 . The number
of necessary and sufficient training examples needed
to specify the overall input-output function is given
by: nL2

n0 , and thus again the dogma is violated.
The case with bottle-neck layers is treated below.

Deep Non-Linear Models with Bottlenecks
For simplicity, consider first an unrestricted
Boolean compressive autoencoder with architecture
A(n,m, n) and m < n. The error function is the
Hamming distance between the input vector and
the output vector. The hidden layer can have 2m

states. Thus if the number of training examples is
at most 2m, it can be realized by the architecture
with 0 Hamming distortion, since every input can
be mapped to a unique hidden representation and
the corresponding representation can be mapped
back to the same input using unrestricted Boolean
gates. Obviously if additional layers of size at least
m are added between the input layer and the hidden
layer, or between the hidden layer and the output
layer, the number of parameters can be arbitrarily
increased, while maintaining the same fixed training
set and the ability to implement it exactly with no
Hamming distortion. Thus in this regime the dogma
is again violated.

In the more interesting regime where the number
of training examples exceeds 2m, then there must
be clusters of training examples that are mapped
to the same hidden representation. It is easy to
see that for optimality purposes the corresponding
representation must be mapped to the binary vec-
tor closest to the center of gravity of the cluster,
essentially the majority vector, in order to minimize
the Hamming distortion. Thus, in short, in this
regime the optimal solution corresponds to a form
of optimal clustering with respect to the Hamming
distance with, in general, 2m clusters. As a back-
of-the-envelope calculation, assuming the clusters
are spherical, these can be described by providing
two points corresponding to a diameter. Thus in
principle, a training set of size 2× 2m = 2m+1 could
suffice. The number of parameters of the architec-
ture is given by: m2n + n2m which far exceeds the
number of training examples. And even without the
assumption of spherical clusters, it is clear that the
number of parameters far exceeds the number of
training examples, and that the gap can be made
as large as possible, just by adding additional layers
of size at least m between the input and the hidden

4

layer, or the hidden layer and the output layer. Thus
again the dogma is grossly violated.
Finally, we turn to deep non-linear architecture

where the neurons are linear or polynomial threshold
gates. Linear threshold neurons, or perceptrons, are
very similar to sigmoidal (e.g. logistic) neurons.

5 Non-Linear Nets: Linear or
Polynomial Threshold Gates

Here each neuron in the architecture is a linear or
polynomial threshold function of degree d. In the
linear threshold case (d = 1), any neuron with n
inputs x = (x1, . . . , xn) produces an output equal to
sign(

∑
i wixi)) in the -/+ case; or H((

∑
i wixi)) in

the 0/1 case, where H denotes the Heaviside func-
tion. Such a neuron has n synaptic parameters. In
the polynomial case of degree d, the output of a
neuron has the form sign(p(x)) in the -/+ case; or
H(p(x)) in the 0/1 case, where p(x) = p(x1, . . . , xn)
is a polynomial of degree d. The number of pa-
rameters of a polynomial threshold neuron increases
accordingly. As usual, a bias can also be added or,
equivalently, one of the input variables is considered
to be constant and equal to 1.
The Simplest Deep Non-Linear Model: We
can use the same architecture A(1, . . . , 1) as in the
first example above. Linear or polynomial threshold
neurons can realize the identity and the negation,
depending on whether the corresponding incoming
weight is positive or negative. So the result here
is similar to the Boolean unrestricted case. For in-
stance for linear threshold gates, without the bias,
the number of parameters is equal to L. The number
of negative weights determines how many negations
are present in the chain. A single input-ouput exam-
ple determines whether the overall chain should be
the identity or the negation. Thus again the dogma
is violated.
Deep Non-Linear Models with Bottlenecks:
We can again start with a compressive autoencoder
architecture with shape A(n,m, n) and m < n and
linear threshold neurons with the Hamming error
function. In the most interesting case where the
number of examples exceeds 2m, then the optimal
solution corresponds to the optimal approximation
to the optimal Hamming clustering that can be
achieved using linear threshold gates. The num-
ber of parameters of this architecture is 2nm which
is not necessarily less than the number 2m+1 of re-
quired training examples, under the spherical cluster
assumption. However, as in the similar previous ex-
amples, the number of parameters can be increased
arbitrarily by adding additional layers of size at least
m between the input and the hidden layer, or be-
tween the hidden layer and the output layer. Thus
once again there are large equivalence classes in pa-
rameter space (e.g. applying permutations to the
neurons in a given layer) and the dogma is grossly

violated.

6 Discussion
Shallow learning, in particular linear regression, al-
ready contains many of the central themes of ma-
chine learning: from the use of a parameterized
family of models, to model fitting by error mini-
mization, to prediction. However, when transition-
ing to deep learning, linear regression is misleading
in three major aspects. First, it has an analytic
closed-form solution. Second, it is interpretable (or
visualizable, at least in low dimensions). Third, it
requires that the number of training examples be
equal or even exceed the number of parameters in
order to completely determine the solution. The first
two points are now well established and accepted.
However, the third point persists in subtle but per-
nicious ways. It is simply time to think about deep
models in a different way, without the expectation
that over-parameterization must necessarily lead to
over-fitting. This is not to say, of course, that over-
parameterized deep learning models cannot overfit,
but expecting them to do so just because they are
over-parmaterized is unwise.

Over-parameterized models tend to partition the
parameter space into large equivalence classes. All
the parameter settings within one class are equiva-
lent in terms of overall performance. Neural learning
can be viewed as a communication process where
information is communicated from the training data
to the synaptic weights. The training data needs
to contain enough information to select one of the
equivalence classes, but not any particular setting of
the weights within that class. Thus the information
needed to specify one equivalence class is much less
than the information required to specify a particular
setting of the weights. Furthermore, the structure
of the deep models and the partitioning into equiva-
lence classes is such that often it may not even be
possible for the training data to be able to specify
each individual weight of the architecture.
Consider an architecture with w parameters. At

the proper level of quantization of the weights and
the error function, the architecture may partition
the space of weights into e equivalence classes. Thus
log2 e bits are needed to specify one of the equiva-
lence classes. If the training data provides less than
log2 e bits of information, then it does not contain
enough information to select a relevant equivalence
class and overfitting may occur. If the training
data provides log2 e bits of information to select an
equivalence class, then there is no overfitting and
providing more data is not necessary. In the case of
a classification architecture with independent binary
inputs of length n, k training examples contain on
the order of kn bits of information. Thus the impor-
tant question is not whether k ≈ w (conventional
wisdom) but whether kn ≈ log2 e.

5

References

[1] A. M. Legendre. Nouvelles méthodes pour la
détermination des orbites des cometes. F. Di-
dot, 1805.

[2] P.-F. Verhulst. “Notice sur la loi que la popu-
lation suit dans son accroissement”. In: Corre-
spondence mathematique et physique 10 (1838),
pp. 113–129.

[3] J. Berkson. “A statistically precise and rela-
tively simple method of estimating the bio-
assay with quantal response, based on the
logistic function”. In: Journal of the American
Statistical Association 48.263 (1953), pp. 565–
599.

[4] J. S. Cramer. “The origins of logistic regres-
sion”. In: (2002).

[5] Y. S. Abu-Mostafa. “Hints”. In: Neural com-
putation 7.4 (1995), pp. 639–671.

[6] A. Alwosheel, S. van Cranenburgh, and C. G.
Chorus. “Is your dataset big enough? Sample
size requirements when using artificial neu-
ral networks for discrete choice analysis”. In:
Journal of choice modelling 28 (2018), pp. 167–
182.

[7] D. J. C. MacKay. “Bayesian Interpolation”.
In: Neural Computation 4 (1992), pp. 415–447.

[8] D. J. C. MacKay. “A Practical Bayesian
Framework for Backprop Networks”. In: Neu-
ral Computation 4 (1992), pp. 448–472.

[9] T. J. Sejnowski. “The unreasonable effective-
ness of deep learning in artificial intelligence”.
In: Proceedings of the National Academy of
Sciences 117.48 (2020), pp. 30033–30038.

[10] A. Canatar, B. Bordelon, and C. Pehlevan.
“Spectral bias and task-model alignment ex-
plain generalization in kernel regression and
infinitely wide neural networks”. In: Nature
communications 12.1 (2021), pp. 1–12.

[11] C. Zhang, S. Bengio, M. Hardt, B. Recht,
and O. Vinyals. “Understanding deep learn-
ing (still) requires rethinking generalization”.
In: Communications of the ACM 64.3 (2021),
pp. 107–115.

[12] P. L. Bartlett, P. M. Long, G. Lugosi, and A.
Tsigler. “Benign overfitting in linear regres-
sion”. In: Proceedings of the National Academy
of Sciences 117.48 (2020), pp. 30063–30070.

[13] P. Baldi and W. Heiligenberg. “How sen-
sory maps could enhance resolution through
ordered arrangements of broadly tuned re-
ceivers”. In: Biological Cybernetics 59.4,5
(1988), pp. 313–318.

[14] P. Baldi. “Linear learning: Landscapes and al-
gorithms”. In: Advances in neural information
processing systems 1 (1988).

[15] P. Baldi and K. Hornik. “Learning in Linear
Networks: a Survey”. In: IEEE Transactions
on Neural Networks 6.4 (1994). 1995, pp. 837–
858.

[16] P. Baldi and Z. Lu. “Complex-Valued Au-
toencoders”. In: Neural Networks 33 (2012),
pp. 136–147.

[17] P. Baldi. Deep Learning in Science. Cam-
bridge, UK: Cambridge University Press, 2021.

6

	Introduction
	Evidence Against Dogma
	Linear Networks
	Non-Linear Networks: Unrestricted Boolean
	Non-Linear Nets: Linear or Polynomial Threshold Gates
	Discussion

