
Deep Reinforcement Learning for Goal-Based Investing Under
Regime-Switching
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Abstract

Goal-based investing focuses on helping investors
achieve specific financial goals, shifting away from
the volatility-based risk paradigm. While numerous
methods exist for this type of problem, the major-
ity of them struggle to properly capture the non-
stationary dynamics of real-world financial markets.
This paper introduces a novel deep reinforcement
learning framework for goal-based investing that
addresses market non-stationarity through prompt
reactions to regime switches. It relies on the inte-
gration of regime probability estimates directly into
the state space. The experimental results indicate
that the proposed method significantly outperforms
several benchmarks commonly used in goal-based
investing.

1 Introduction

Goal-based investing (GBI) constitutes approaches
to investing that focus on helping investors attain
their well-defined short- and long-term financial
goals through portfolio management [1]. For ex-
ample, a long-term investor might desire to reach
a target wealth level by the time she retires. The
resulting objective can simply be expressed as a
binary function indicating whether the investment
goal has been achieved. Under such a paradigm,
risk is defined as the probability of not attaining
the desired goal(s). This stands in stark contrast to
classical portfolio optimization approaches, typically
based on mean-variance optimization [2], where
risk is represented by price volatility, with upside
and downside price movements treated equivalently.
Given that GBI requires dynamically responding to
time-varying features, such as the current wealth
level and the remaining time, it can be framed as a
problem of sequential decision-making under uncer-
tainty. Consequently, it can be naturally tackled by
deep reinforcement learning (DRL) techniques.

To ensure high performance under real-world con-
ditions, GBI frameworks should also account for
another dynamic: the non-stationarity of financial
markets [3], including abrupt regime switches. No-
tably, in classical portfolio optimization, regime-
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based asset allocation has been shown to enhance
portfolio risk and return, especially by mitigating
potential drawdowns through swift reactions to mar-
ket changes [4]. We hypothesize that such ad-
vantages could also be transferred to the GBI set-
ting. Motivated by this, in this paper, we extend
the previous work on DRL for GBI by introducing
regime-switching considerations. Our main contri-
bution is a novel DRL framework for GBI under
regime-switching that directly incorporates regime
probability estimates into the state space.

2 Literature Review

2.1 Goal-Based Investing

A range of different approaches to GBI [5–7] exist,
all of which rely on some type of time-dependent
risk mitigation.

A deterministic glide path is a simple and static
GBI strategy given by: αt = 1 − t

T , where αt rep-
resents the stock portfolio weight at time t, and T
the target time. As such, it depends only on the
fraction of the remaining time and does not take into
account dynamic market conditions or even more
sophisticated investment goals [8]. Nevertheless,
it has secured popularity among investors due to
its simplicity and intuitive nature, being commonly
used in retirement asset allocation.

Merton introduced a seminal work on lifelong
portfolio selection under uncertainty [5]. Several
assumptions were first made: a) the return rate r of
the riskless asset is set to be constant; b) the price
of the risky asset, St, follows a log-normal process
with the expected rate of return µ and volatility σ;
and c) the investor maximizes the Constant Relative
Risk Aversion (CRRA) utility U(x) = xγ/γ, γ < 1,
where 1−γ is the coefficient of relative risk aversion.
Under these settings, it is shown that maintaining
constant portfolio weights for each asset is optimal,
with the risky asset weight equal to αt =

µ−r
(1−γ)σ2 .

Bruder et al. [9] suggest limiting the cumulative
variance of the portfolio instead of using a utility
function to describe one’s risk aversion. The vari-
ance budget V 2 represents the maximum amount of
risk that the investor is willing to take on during

the investment period:
∫ T

0
α2
tσ

2X2
t dt ≤ V 2. The
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LM 2024 Tessa Bauman, Bruno Gašperov, Sven Goluža, & Zvonko Kostanjčar. This is an open access article distributed under the
terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/


optimal risky asset weight is given by: αt =
V

σ
√
TXt

.

Das et al. [10] propose a dynamic programming
approach that generates a wealth-dependent trading
strategy. In each timestep, the strategy performs
portfolio rebalancing by selecting a single portfolio
from the set of 15 predefined portfolios lying on the
efficient frontier, with the goal of maximizing the
probability of reaching the investment goal. The
proposed approach is flexible, as it can handle cash
infusions or withdrawals of arbitrary size, arbitrary
time periods, and multiple investment goals, while
also adjusting risk by regulating the selection of
predefined portfolios.

2.2 RL for Goal-Based Investing

Dixon and Halperin [11] introduce an algorithm for
GBI based on G-learning, a probabilistic extension
of Q-learning. It offers several advantages, including
its ability to tackle noisy data, lack of assumptions
about the data-generating process, and the use of
one-step rewards. Furthermore, they propose GIRL,
an augmentation of the algorithm to be used with
inverse RL. Das and Varma [7] approach GBI with
Q-learning, achieving the same results as those ob-
tained through dynamic programming. Moreover,
the authors provide a taxonomy of RL approaches
viable for this problem and emphasize its scalability
to large state and action spaces. Bauman et al. [12]
focus on robust GBI and propose a solution based on
DRL, which is demonstrated to outperform several
benchmarks. Zhang et al. [13] use modified hybrid
proximal policy optimization to bypass the need for
discretization when dealing with the GBI problem,
with results also showing superiority over traditional
methods.

2.3 HMMs for Regimes

The non-stationarity of financial markets can be
captured using of a Hidden Markov Model (HMM),
a probabilistic model comprising two distinct pro-
cesses: a Markov chain with hidden states, typically
denoted by X = (Xt : t ≥ 0), and an observable
process Y = (Yt : t ≥ 0) whose outcomes are di-
rectly affected by the outcomes of X. Since X is
unobservable, the goal is to learn about it indirectly
through Y . The process X satisfies the Markov as-
sumption P(Xt |Xt−1) = P(Xt |Xt−1, . . . , X0), i.e.,
given the current state, the future state is not condi-
tional on the prior (past) states. Furthermore, the
output independence property holds, meaning that
P(Yt |Xt) = P(Yt |Xt, . . . , X0). The hidden state
Xt is said to ”emit” the observable Yt.

HMMs have diverse applications in regime-based
asset allocation and beyond. Kritzman et al. [14]
show that, in the context of regime forecasting,
HMMs dominate over simple data partitions based

on thresholds. Furthermore, the authors successfully
leverage HMM-based modeling of regime shifts to
improve asset allocation. Kim et al. [15] utilize an
HMM for identifying the phases of individual assets
and suggest an investment approach that exploits
price trends effectively. Wang et al. [16] employ
an HMM to detect different market regimes and
propose an investment strategy that adjusts factor
investing based on the currently identified regime.

3 Data Generation

Our study employs a common two-asset model
for goal-based investing, aiming to balance capital
preservation and growth. While this model limits
portfolio diversity, it enables direct comparisons with
other approaches. We use monthly bond and stock
returns provided by R. Shiller 1. The dataset is split
into a training set (spanning 1870 to 1991) and a
testing set (from 1992 to 2022). The former is used
for training the HMM with Gaussian mixture obser-
vations which is then employed to generate numerous
trajectories. Creating more trajectories is impera-
tive because deep reinforcement learning requires a
substantial amount of data, and relying solely on
historical data is insufficient. The test set is reserved
solely for testing purposes. Since the data extends
back to 1870, we use inflation-adjusted returns, i.e.,
Consumer Price Index (CPI)-adjusted returns. The
CPI monitors the price change of consumer goods
and services purchased by households, making it a
popular measure of inflation and deflation.

3.1 Gaussian HMM

An HMM can be denoted by a quintuplet
⟨H,O, T,Ψ,Π⟩. Elements H, T , and Π describe
the behavior of the underlying Markov chain X =
(Xt : t ≥ 0), while O and Ψ specify the observable
process Y = (Yt : t ≥ 0).
More specifically, H represents the set of hid-

den Markov chain states, while T = (tij)i,j∈H de-
notes the transition matrix describing its transi-
tion probabilities, i.e., tij = P(Xt+1 = j |Xt = i).
Furthermore, Π = (πi)i∈H gives the initial proba-
bilities πi = P(X0 = i). Similarly, O represents
the set of values of the observable process Y and
Ψ = (ψik)i∈H, k∈O is the emission probabilities ma-
trix. Precisely, ψik = P(Yt = k |Xt = i), giving the
probability that the hidden state i ∈ H will emit
the observation k ∈ O.
In what follows, we assume the hidden Markov

chain X to have two states, H = {0, 1}, correspond-
ing to two market regimes. For the observable pro-
cess, we set Y = (Bt, St)t≥0, where Bt (St) denotes
bond (stock) return at time t. The underlying bi-
variate data, consisting of bond and stock returns,

1http://www.econ.yale.edu/~shiller/data.htm
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is assumed to come from a Gaussian mixture. Put
differently, the returns are presumed to follow a
Gaussian distribution conditional on the market
regime, i.e., Y|X=x ∼ N (µx,Σx), for x ∈ {0, 1}.
The estimation of the HMM parameters T,Ψ, and
Π from the historical data is performed using the
Baum-Welch algorithm [17], a special instance of
the Expectation-Maximization (EM) algorithm. Af-
ter 10,000 iterations of the algorithm, the following
emission parameters are obtained:

µ0 =
[
0.0087 0.0015

]
, Σ0 =

[
0.0009 0.0001
0.0001 0.0001

]

µ1 =
[
−0.0067 0.0057

]
, Σ1 =

[
0.0060 0.0004
0.0004 0.0008

]
.

Based on the attained parameters for the Gaussian
distributions of the observation process, we draw
the following conclusions:

• When the hidden process is in the first regime
(X = 0), both the mean values of stock and
bond returns are positive, with the former being
larger. Also, the stock volatility is higher than
the bond volatility.

• When the hidden process is in the second regime
(X = 1), the mean value of stock returns is neg-
ative, whereas the mean value of bond returns
is positive and greater than in the first regime.
Furthermore, the volatilities of both the stock
and bond returns are higher than in the first
regime, along with their covariance.

Fig. 1 shows the stock and bond returns from the
train set along with the estimated corresponding
regimes. It is clear that the low volatility periods
are appointed to the first regime, whereas the sec-
ond regime includes periods of high volatility and
financial recessions (e.g., the Great Depression and
the early 1980s recession).

The process of generating data to create trajecto-
ries for training the DRL agent was carried out in
two steps: first, by generating a sequence of hidden
states, and then by simulating observable values
from the corresponding distributions. This newly
generated data is utilized as the input for deep rein-
forcement learning.

4 Deep Reinforcement Learn-
ing Setting

The underlying problem is represented with a
discrete-time Markov decision process (MDP) and
treated as an episodic deep reinforcement learning
(DRL) task.
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Figure 1. Stock and bond returns with corresponding
regimes, i.e. hidden Markov states, from 1871 to 1991.

4.1 Markov Decision Process

An MDP is defined as a quintuplet ⟨S,A, P,R, γ⟩
consisting of a state space (S), action space (A), a
transition probability function (P : S × A × S →
[0, 1]) dictating state transitions given actions, a
reward function (R : S × A → R) assigning val-
ues to actions, and a discount factor (γ ∈ [0, 1])
determining the preference for short-term rewards.

The state at time t is defined as:

st =

(
t

T
,
Wt

WG
, ĥt−1

)
.

Here, T signifies the target date (also known as the
investment horizon), Wt represents the current total
wealth, andWG is the desired wealth goal. Note that
Wt = wb,tP

b
t + ws,tP

s
t , where P

b
t and P s

t represent
the prices of the riskless and risky assets at time
t, respectively. The weights wb,t and ws,t denote
the quantities of these assets held by the investor
at t. We assume wb, ws ≥ 0, i.e., short positions are
not permitted. The third feature of the state space
ĥt−1 accounts for the hidden regime - it represents
the estimate of the hidden Markov state from the
previous time step, and is given by:

ĥt = P(Xt = 0 |Yt = (Bt, St)).

The regime estimation involves determining the prob-
ability that the Markov model is in state 0 at time
t, given the observation Yt. (Considering there are
only two regimes, P(Xt = 1) = 1 − P(Xt = 0)).
This approach to regime detection takes into ac-
count not only the more probable regime but also
the uncertainty of the actual market state.

The action at time t is defined as at = ws,t, with
ws,t ∈ [0, 1], representing the portion of funds allo-
cated to the risky asset at time t. As ws+wb = 1, the
allocation to the risk-free asset is uniquely defined.

Binary reward functions are a natural choice in the
context of GBI, given that goals are either attained
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(1) or not (0). Therefore, a positive reward is granted
(at the end of the episode) only if the goal is attained
(rT = 1WT≥WG

).

4.2 Training Procedure

The interaction between the DRL agent and the
environment is given as follows. Each episode, gen-
erated by the HMM as described in 3.1, represents a
span of 10 trading years, comprising 120 time steps
aligning with trading months. The investor’s goal
is to achieve a 65% return on the initial investment,
i.e. the investor begins with 100 and has to achieve
the goal of 165. The previous month’s returns St−1

and Bt−1 are then used to estimate the hidden state
ht−1. Based on the entire state st, the agent then de-
cides on the fraction to invest in the risky (risk-free)
asset and allocates the wealth accordingly. When
the target date is reached, the episode ends and the
agent receives the reward.

4.3 Algorithm and neural network ar-
chitecture

The Proximal Policy Optimization (PPO) algorithm
is used [18] for learning RL policies. The key idea
behind PPO is to optimize a surrogate objective
function, which is clipped to avoid large policy up-
dates and thereby stay close to the old policy:

J(θ) = E [min (rθA(s, a), clipϵ(rθ)A(s, a))] ,

with clipϵ(x) = clip(x, 1− ϵ, 1 + ϵ) being a clip func-
tion with ϵ as a hyperparameter. E stands for the
empirical expectation, θ represents the policy pa-
rameters, and rθ is the probability ratio under the
new and previous policies. Finally, A(s, a) signifies
the advantage function. A feed-forward fully con-
nected neural network comprised of 2 hidden layers,
6 neurons each, is used, employing the ReLU activa-
tion function. The value of the discount factor γ is
set to 1, and the small learning rate of 0.0001 takes
into account the stochastic nature of the environ-
ment. The implementation is based on the use of
the Stable Baselines3 [19] and PyTorch frameworks.

5 Results

5.1 Benchmarks

To assess the DRL agent’s performance, the entire
set of benchmarks discussed in more detail in 2.1
were employed, encompassing both analytical and
numerical methods. The risk parameters, which
include Merton’s risk aversion parameter, and the
variance budgeting approach, were selected based
on their performance on the train set, specifically
the period from 1871 to 1991. The parameters that
yielded the highest success rate in terms of achieving

Table 1. Comparison of results

Original With regimes

DG 46.9% 46.9%
VB 58.2% 76.5%
MC 65.2% 78.9%
DP 68.4% 79.3%

DRL 88.7%

goals across all training episodes were chosen and
used on the test set.
None of the benchmarks originally use regime

switches. However, for a more rigorous evaluation
of the DRL agent’s performance, the estimates of
the hidden state used in the model were also used to
calibrate the benchmarks. This was done through
the distribution parameters (µ,Σ), whose calcu-
lation is required for all benchmarks except the
deterministic glide path. More specifically, if the
more probable estimated hidden regime at time t
is 0, i.e. argmaxx P(Xt = x |Yt = (Bt, St)) = 0,
the parameters used for the benchmarks are set
to (µ0,Σ0) (outlined in 3.1), and vice versa when
argmaxx P(Xt = x |Yt = (Bt, St)) = 1.

5.2 Simulation results

Table 1 shows the percentage of episodes in which
the goal (of 165 with an initial investment of 100)
was achieved, comparing the benchmarks with DRL.
The abbreviations are used as follows: DG – Deter-
ministic glide path, MC – Merton’s constant, VB –
Variance budgeting, DP – Dynamic programming.
The performance of the benchmarks was assessed un-
der two scenarios: one with the inclusion of regime
information and one without, highlighting the effect
of regime detection on the overall results.
All of the benchmarks exhibit improved perfor-

mance when using the estimated regime. These
findings make it evident that regime detection plays
a pivotal role in investing. When comparing the
benchmark methods with the DRL agent, it is clear
that DRL achieves a much higher success rate. In
their totality, the findings underscore the signifi-
cance of accounting for uncertainties when dealing
with highly stochastic financial markets, which is
naturally provided within the DRL framework.
To explore the performance of the DRL agent in

more detail, we tested it on different levels of goal.
Fig. 2 shows the achievement of the agent along
with the benchmarks on multiple goal levels, pre-
suming that the initial investment equals 100. The
superior performance of the DRL agent compared
to benchmark methods is evident, regardless of the
target wealth.
Moreover, Fig. 3 presents a more in-depth anal-

ysis of the model’s performance, extending beyond
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Figure 2. Performance of the DRL agent and bench-
marks on the test set across various goal levels, assuming
an initial investment of 100.
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Figure 3. Performance of the DRL agent and bench-
marks on the test set across various proportions of the
primary goal.

the exclusive consideration of achieving the target
wealth. This is essential as the achievement metric
alone does not capture potential catastrophic fail-
ures when the goal is not met. With the primary
goal set to 165 and an initial investment of 100, the
figure illustrates the methods’ success in attaining
various proportions of the goal. For instance, when
trying to achieve a goal of 165, the DRL agent con-
sistently achieves a minimum of 70% of the target,
equivalent to 115.5 (165 · 70% = 115.5). This under-
scores that even when the primary goal is not met,
the DRL agent still comes close.

The seemingly subtle addition of using the hidden
state probability estimate results in a significant
performance increase. To investigate this effect in
greater detail, Fig. 4 is shown. It presents the de-
pendence of the policy learned by the DRL agent
on the regime probability estimate, i.e., the state
feature ĥt. If the agent is certain that the market
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Figure 4. Policy learned by the DRL agent. Each
subfigure shows the agent’s actions across the state space
assuming a fixed regime probability.

is in the first regime (P(X = 0) = 1), it behaves as
expected in GBI. At the beginning of the investment
period, it takes on less risk due to the large amount
of time left for accumulating the desired wealth. As
the target date approaches, the agent becomes more
inclined to accept more risk in order to reach the
goal. As indicated by the parameter values (µ0,Σ0),
the first regime corresponds to a setting featuring
one asset with high-reward and high-risk, and an-
other with low-reward low-risk characteristics. The
ensuing DRL policy therefore clearly follows a typ-
ical target-date investment paradigm of balancing
between these two components. As the probability
of being in the first state (P(X = 0)) decreases,
the boundary line between the risky and risk-free
allocation regions moves until fully disappearing
for P(X = 0) < 0.6. Within this range of val-
ues, the agent only benefits from investing in the
risk-free asset. This stems from the values of the
estimated parameters for the second regime (µ1,Σ1).
Given that one asset has a negative mean return,
the preferable action is to invest in the alternative
asset, irrespective of the goal proximity.
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6 Conclusion and Future Work

In this paper, we present a novel method for GBI un-
der regime-switching based on DRL which involves
enriching the state space with regime probability
estimates. The experimental results point to the
superiority of the method over several standard GBI
benchmarks. The proposed approach could be ex-
panded by exploring multiple regimes corresponding
to a variety of different market conditions. Similarly,
more regime-detecting models can be explored as
well. Furthermore, the state space can be enriched
with macroeconomic factors e.g. economic growth
and inflation. These variables might prove beneficial
by capturing even more of the market complexity.
Future work could also involve considering multi-
asset GBI frameworks, employing portfolios that are
highly diversified across multiple asset classes, all
with the aim of achieving both lower total risk and
a higher rate of attaining financial objectives.
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