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Abstract

Counterfactual explanations, and their associated al-
gorithmic recourse, are typically leveraged to under-
stand and explain predictions of individual instances
coming from a black-box classifier. In this paper, we
propose to extend the use of counterfactuals to eval-
uate progress in sequential decision making tasks.
To this end, we introduce a model-agnostic modular
framework, TraCE (Trajectory Counterfactual Ex-
planation) scores, to distill and condense progress
in highly complex scenarios into a single value. We
demonstrate TraCE’s utility by showcasing its main
properties in two case studies spanning healthcare
and climate change.

1 Introduction

Counterfactual explanations can aid interpretation
of predictions and address a lack of model trans-
parency [1]. For example, counterfactuals have been
applied to the prediction of patient survival within
an intensive care unit [2]. For an unwell patient pre-
dicted not to survive, a counterfactual and algorith-
mic recourse may demonstrate the feature changes
necessary to result in positive survival classification.
In this way counterfactuals aid users in understand-
ing the model and may provide actionable input to
support decisions.

Many counterfactual explainers have been devel-
oped and most commonly they are applied to single-
step decision making processes involving one data
point per individual [3]. Relatively limited research
has been conducted into more complex counterfac-
tual techniques and applications for sequential and
time series applications. Such research has mostly
focused on counterfactuals in the context of multi-
variate time series explainability [4, 5], recourse as
a sequence of actions [6], and suggested alterations
to particular regions of an individual time series [7].

We hypothesise that counterfactual explanations
could provide insights beyond their current role in
the development of explainable systems by utilis-
ing them as benchmarks to evaluate trajectories
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or sequences of decisions. To this end, we intro-
duce TraCE (Trajectory Counterfactual Explana-
tion) scores, which consider the sequence of steps
in a task and compare each step to counterfactual
examples, including both desirable and undesirable
targets. In the example of the intensive care unit
patient, at each point in the patient’s stay, TraCE’s
objective is to evaluate the true trajectory against a
potential path towards survival (desirable counter-
factual), and mortality (undesirable counterfactual).
TraCE scores aim to provide an easily understand-
able sequential assessment of trajectory, enabling
progress tracking in a specified task for laypeople
and domain experts alike.

2 Preliminaries

Counterfactual explanations are often used to assess
what actions are required to push a query point (the
factual) over the decision boundary of a model in
order to produce a different outcome (the counter-
factual) [1]. Adversarial examples stand in stark
contrast to counterfactual explanations, as they ex-
plicitly seek to misclassify the factual by deceitfully
perturbing its features [8].
In essence, counterfactual explanations encapsu-

late the thought experiment:

Y was my outcome, but if I had done Z
then Y ′ would have occurred instead.

Therefore, given a decision maker f , a set of possible
outcomes {y, y′} and a query point x, a counterfac-
tual looks like:

f(x) = y, f(x+ z) = y′

where z is the change on x in order to achieve y′.
In the hospital example, where x is the patient, y is
their predicted outcome (for example mortality), y′
is the counterfactual representing an alternative out-
come (for example successful discharge), and z is the
set of feature changes required to lead to this alter-
native outcome. We can constrain z to fulfill certain
criteria, such as minimising complexity (sparse z)
or length (small ∥z∥) [9], maximising feasibility (fol-
low probability distributions) [10] or agency (follow
multiple possibilities) [11].
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Figure 1. TraCE for 2-D toy data set classification with three classes: light orange (current class), blue (desired
class), and red (undesired class). The factual, x, moves over the sequence, as do the respective target counterfactual
points (stars). Between segments of the true trajectory (e.g. x1, x2) TraCE measures alignment in angle, R1, and
the “best move” given the angle, R2, with respect to counterfactual target points (stars in the left panel). In this
example the TraCE score for moving from x0 to x1 is negative (-0.1855) because it aligns more with the negative
counterfactual (red class), whereas the trajectory from x1 to x2 is away from the negative counterfactual and
towards the positive counterfactual (blue class) hence the positive score (0.4056).

Notation We define scalar values as Greek let-
ters e.g., α, and an input space X without loss of
generality. That is to say, X can take the form of
a set of one-dimensional features (vector), image
space, a compressed/latent space, etc. We require
that X is a real vector space with a well-defined
inner product ⟨· , ·⟩ : X ×X 7→ R which follows the
usual properties. The inner-product induced norm
is defined as ∥v∥ =

√
⟨v , v⟩. We could also use a

sensible distance function d : X × X 7→ R+ which
must follow the usual axioms of a distance function.

We take xt ∈ X as a singular instance taken at
time t from the input space, with x′

t to be the target
point associated with xt. x

′ can be defined using any
arbitrary process, e.g. a counterfactual generated
with a model or a goal set by a domain expert. We
then define the true change, vt, and the desired
change, v′t:

vt = xt+1 − xt, v′t = x′
t − xt (1)

Theorem 1. Given a, b, c ∈ Rn, the closest point d
to a in the vector direction c− b is:

d = b+
h

∥h∥
· ∥g∥ · θ (2)

where h = c− b, g = a− b and θ = ⟨h , g⟩
∥h∥∥g∥ .

Proof in Appendix A.1.

3 TraCE

Trajectory Counterfactual Explanation (TraCE)
scores S : X × X 7→ [−1, 1] condense the complex
task of tracking progress towards successive coun-
terfactual targets through time into a single number
between −1 and 1. This single number requires no
expertise or domain knowledge to interpret. Simply
put:

• S < 0 implies that xt+1 is further from x′
t than

xt, with S → −1 =⇒ ∥x′
t−xt+1∥ ≫ ∥x′

t−xt∥.
For the hospital patient example, when applied
to a desirable counterfactual, S < 0 implies that
the patient is moving further from the desired
region (discharge) and is deteriorating;

• S > 0 implies that xt+1 is closer to x′
t than

xt, with S → 1 =⇒ ∥x′
t − xt+1∥ ≪ ∥x′

t − xt∥,
suggesting that the patient is improving and
getting closer to successful discharge; and

• S = 0 implies no movement towards or away
from a target, so ∥x′

t − xt+1∥ = ∥x′
t − xt∥, sug-

gesting that the patient is neither getting better
or worse relative to the counterfactual target(s).

In order to do this, we track two metrics: (1)
the angle between the real change and the desired
change R1(xt, x

′
t); and (2) the distance travelled

relative to the angle R2(xt, x
′
t).

The angle between the true trajectory and de-
sired trajectory can simply be measured using the
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normalised dot product:

R1(xt, x
′
t) =

⟨vt , v′t⟩
∥vt∥∥v′t∥

(3)

From Theorem 1, given the angle score R1(xt, x
′
t) =

θt, if θt > 0 then the closest point x̂t to x′
t is:

x̂t = xt +
vt
∥vt∥

∥v′t∥θt

whereas if θt ≤ 0 the distance from x′
t is increasing,

and so x̂t = xt. Thus:

R2(xt, x
′
t) =

∣∣∣ ⟨v̂t , v∗t ⟩∥v̂t∥∥v∗t ∥

∣∣∣ (4)

where:

v̂t = x′
t − x̂t, v∗t = x′

t − xt+1

Thus R2 = 1 when xt+1 = x̂t. We then combine
Equations 3 and 4 into a single score:

S(xt, x
′
t) = λR1(xt, x

′
t) + (1− λ)R2(xt, x

′
t) (5)

where λ ∈ [0, 1] is a weight which can be either a
scalar value or a function.

TraCE can consider progress towards a single class
(as presented in Section 4.2), or multiple classes en-
compassing both desirable and undesirable counter-
factuals (Section 4.1). Figure 1 encapsulates the
latter scenario, where we assess progress towards
two classes, one desirable and one undesirable, via
an average between measured progress towards each
outcome as the factual changes. Here we can see that
if the distance between sequential factual instances
is small, and/or if two counterfactual points from
different classes are in close proximity (relative to
their distance from the factual), it can be difficult to
assess how any change to the factual may contribute
to the final outcome. TraCE addresses this. λ > 1

2
implies we care more about the trajectory angle than
the distance travelled. When λ ̸= 1, S = 1 implies
xt+1 = x′

t, and so the goal has been achieved. Code
is available to implement TraCE 1.

4 Case Studies

Here we demonstrate the use of TraCE scores in two
real-world case studies.

4.1 Intensive care unit outcomes

Clinical care involves a huge number of dynamic
variables which must be considered when making
decisions. Clinical scores, such as APACHE and
NEWS, are widely used to provide a snapshot of a
patient’s current status relative to established bench-
marks [12]. However, these scores fail to capture

1https://github.com/jeffnclark/TraCE

dynamics and lack personalization to a patient’s sce-
nario. TraCE is able to overcome these shortcomings
in existing clinical scores by better capturing the
dynamic progress of an individual patient. Here we
demonstrate the application of TraCE to intensive
care unit (ICU) patients, relative to counterfactuals
for successful discharge and in-hospital mortality.

4.1.1 Methods

Time series intensive care unit data were extracted
from the MIMIC IV 2.0 data set [13]. Seventeen
features, including vital signs such as heart rate and
respiratory rate, were identified for TraCE, following
existing research [14]. Outcome labels were gener-
ated using known outcomes, for discharge to home
or mortality. Patients discharged to locations other
than home were removed, leaving a total of 327270
time points across 30860 hospital stays (26089 pa-
tients) for analysis. All time points prior to the
final time point were labelled as not ready for dis-
charge. Missing proceeding data in the time series
were completed using forward fill and, for missing ini-
tial values, backward fill. Numerical features empty
across each patient’s whole stay were filled with
the class average, while absent categorical features
were filled with the class mode. All features were
normalised.
Using scikit-learn, a multi-layer perceptron clas-

sifier, with two hidden layers of 10 neurons each,
was trained for a maximum of 10 epochs on indi-
vidual patient time steps to predict three classes:
not ready for discharge, ready for discharge, mor-
tality. All other hyperparameters were as default.
Classes were balanced by undersampling and an
80:20 train:test split was utilised.

TraCE analysis was carried out as follows for 1000
hospital stays in the test set, 500 known to be suc-
cessfully discharged to home, 500 unsuccessfully dis-
charged patients (in-hospital mortality). KDTrees
for each outcome class were generated from the cor-
pus of known outcomes within the training set. For
each time step in a patient’s hospital stay, counter-
factuals (n = 3) were sampled from each KDTree,
resulting in ready for discharge (desired) counterfac-
tuals and in-hospital mortality (undesired) counter-
factuals. TraCE was implemented (λ = 0.9) against
each of these counterfactuals and compared with
class probabilities calculated by the classifier. Static
features which did not differ between the factual and
counterfactual were omitted from TraCE analysis, as
were time steps where no features changed. Welch’s
t-test was performed to test if average TraCE scores
differed between the two outcome groups.

4.1.2 Results and Discussion

The multilayer perceptron classifier achieved test
set accuracy of 0.95. The average TraCE score for

3
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(a) Successfully discharged patient trajectory
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(b) In-hospital mortality patient trajectory

Figure 2. Contrasting example patient journeys. For each, top: instantaneous TraCE scores, higher indicates
more alignment with the specified counterfactuals. ‘Desirable’ refers to alignment with successful discharge
counterfactuals, ‘Undesirable’ refers to mortality counterfactuals. TraCE is computed on the current and preceding
time point, hence time point 0 is not presented. Bottom: Classifier probabilities via the prediction model. Values
in the legends are averages across the whole trajectory. NRFD = Not ready for discharge, RFD = ready for
discharge (desirable outcome), mortality (undesirable outcome).

500 patients known to be successfully discharged
to home was 0.0821 (SD 0.1373). For 500 unsuc-
cessfully discharged patients (in-hospital mortality),
their average TraCE score was -0.0302 (SD 0.0675).
The difference in average TraCE score was statis-
tically significant (p < .00001). Since a patient is
typically not ready for discharge (NRFD) for most
of the stay, an average near 0 is expected. More
intelligent weighting of variables, coupled with ex-
pertise provided by clinicians, is likely to further
increase the TraCE score gap between patients with
positive and negative outcomes.

Instantaneous TraCE score values between succes-
sive time points are expected to be more useful at
potential deployment than average scores, and plots
for which are shown in Figure 2 for two patients
with different outcomes.

TraCE scores plotted for a patient successfully
discharged to home show signs of positive progress
towards discharge early in the stay, as indicated by
the high alignment with desirable counterfactuals
(Figure 2(a), top). The MLP classifier does not
capture this progress, with stable probabilities for
all three classes until the final timepoint (patient
discharge), and in fact higher likelihood of mortality
than readiness for discharge for the majority of the
ICU stay (Figure 2(a), bottom). An additional
example trajectory of successful discharge can be
found in Appendix A.2(a). For cases such as these,
real-time observation of TraCE scores could provide
early insights into patient improvement.

We also present a negative outcome ICU stay
which resulted in in-hospital mortality (Figure 2(b)).
For the first half of the stay the classifier most likely
predicts not ready for discharge (NRFD) closely fol-
lowed by mortality. The high mortality probability

is reflected in the instantaneous TraCE score which
aligns more with the undesirable (mortality) coun-
terfactual than the desirable (ready for discharge),
and negative trend in total TraCE score. Patient de-
terioration is indicated by the TraCE scores at time-
point 2 (increasing undesirable TraCE component)
whereas the classifier does not increase the risk of
mortality until timepoint 3. Plots for an additional
negative outcome patient trajectory is presented in
Appendix A.2(b). In instances of patient decline,
early intervention is critical and TraCE may provide
additional insights to compliment existing tools.

TraCE enables determination of the optimal vec-
tor for any single time point which would maximise
the TraCE score by considering not just positive
alignment with the desired outcome but also neg-
ative alignment with the undesired outcome. In a
clinical setting, this insight could be applied prospec-
tively, by suggesting optimal actions for a current
patient in ICU. Likewise, clinicians are able to spec-
ify desirable and undesirable counterfactual targets
which could be personalised for a given patient. For
example, if it may not be reasonably expected that a
patient will make a full recovery, the desirable coun-
terfactual could be adjusted to match expectations
such as discharge to a nursing facility.

With refinement, the presentation of TraCE scores
in a clinical dashboard could provide clinicians with
a digestible real-time summary of patient progress.
Future work in developing TraCE for this applica-
tion, such as weighting TraCE to certain events,
analysing the gradient and stability of TraCE scores
during the ICU stay and considering counterfactual
path feasibility, may yield an improved understand-
ing of a patient’s health trajectory to inform and
improve quality of care.
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4.2 Monitoring sustainable global de-
velopment

To address the ongoing climate emergency, it is crit-
ical to reconcile global socioeconomic development
with environmental sustainability. However, it is
difficult to holistically evaluate a region’s overall
development trajectory, due to multifaceted social,
economic, and environmental considerations. In
2017, five development narratives were published in
the form of Shared Socioeconomic Pathways (SSPs):
(1) Sustainability, (2) Middle of the Road, (3) Re-
gional Rivalry, (4) Inequality, (5) Fossil-fueled De-
velopment [15, 16]. These characterise changing
socioeconomic factors for the next century, and the
associated changes in emissions of greenhouse gases
and air pollutants. In this application, TraCE quan-
tifies the overall development sustainability of differ-
ent countries, relative to each of these established
SSP scenarios, with a view to monitoring alignment
with the development trajectories to date.

4.2.1 Methods

Global time series data for socioeconomic and en-
vironmental features was extracted for the years
2015-2022. For the environmental features (surface
temperature, precipitation, methane concentration),
ERA5 reanalysis data [17] and satellite data [18]
were used to represent the factual historical features,
and counterfactuals were represented by CMIP6 pro-
jections for the baseline scenario of each SSP [19–
24]. Factual and counterfactual representations for
the socioeconomic features (population, GDP) were
similarly obtained from OECD historical datasets
[25, 26] and SSP projections [16, 27, 28] respectively.
To address differences in spatiotemporal resolutions,
spatial coverage, and missing data points in the
datasets, the chosen feature data was aggregated to
monthly mean values and normalised at the coun-
try level, resulting in features for 34 countries. For
each SSP, TraCE scores were calculated (λ = 0.9)
between the actual feature data and the matching
monthly SSP projection data as the target point.
No undesirable counterfactual point was assigned.
TraCE scores for each SSP were then compared, to
quantify the alignment of a given country’s develop-
ment trajectory with the different SSPs.

4.2.2 Results and Discussion

Analysis of the average TraCE scores for 15 different
countries found that most countries in the study
fit a common pattern. An overview of the coun-
tries’ alignments with SSP projections is shown in
the heatmap (Figure 3) for the study period 2015-
2022. Comparisons can be made between SSPs for
a single country, and across different countries. A
common pattern emerges across most countries, with
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Figure 3. Average TraCE scores for each SSP for 15
countries, across the period 2015-2022. Higher TraCE
scores indicate closer alignment with a Shared Socioeco-
nomic Pathway (SSP).

SSP5 (Fossil-fueled Development) ranking highest,
followed by SSP1 (Sustainability), closely tracked
by SSP4 (Inequality), and finally, SSP2 (Middle
of the Road) and SSP3 (Regional Rivalry). Some
notable results stand out: several countries, includ-
ing Germany, Greece, Italy, Mexico, and Portugal,
exhibit lower TraCE scores across all SSPs. This
indicates that their observed data features are less
similar to their corresponding SSP projections, when
compared to most other countries in the study. Ad-
ditionally, some countries deviate from the majority
SSP ranking pattern. For example, Greece aligns
most closely with SSP4, followed by SSP2 and SSP3,
with SSP1 and SSP5 ranking the lowest. Italy aligns
most with SSP3, showing strong divergence from the
remaining SSPs, which have similar TraCE scores.
Poland closely aligns with SSP4, followed by SSP3,
with TraCE scores diverging significantly from the
other SSPs.

Importantly, this work does not provide evidence
for attributing specific actions or responsibility to
particular countries. This is because the observed
data features for a given country can be influenced by
the actions of other countries. Instead, TraCE scores
can serve as a monitoring metric, or an output metric
in simulation experiments, because they quantify
the alignment of observed data features with SSP
projections.

Figure 4 shows the cumulative TraCE score time
series (2015-2022) for Norway, which was identified
as a representative country. The TraCE score tra-
jectories are consistently positive across all SSPs,
in agreement with the expectation that they were
developed as realistic scenarios in alignment with
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Figure 4. Cumulative monthly SSP TraCE scores for
Norway, 2015-2022.

the factual historical data. Of note is the visible flat-
tening around the year 2020, which coincides with
the onset of the COVID-19 pandemic. This flatten-
ing likely occurs because the SSP projections did
not anticipate the pandemic, so the observed data
features deviate from these trajectories, resulting in
low or negative instantaneous TraCE scores. Over-
all, Figure 4 indicates that SSP5 consistently ranks
the highest from 2016 onwards, while other SSPs
score more closely together. However, starting in
mid-2021, the SSP4 and SSP1 TraCE scores begin to
diverge above those of SSP2 and SSP3. With refine-
ment, future work could correlate temporal TraCE
scores with societal events and political decisions,
such as legislation. Additional plots presenting the
findings for Poland, as a contrasting example, are
available in Appendix A.3, including a heatmap of
feature importance to provide preliminary explain-
ability of TraCE.

It must be emphasised that this study serves as
a proof of concept, and requires input from experts
across multiple domains to ensure safe and trustwor-
thy implementation. This includes the selection of
data features for monitoring, and their weighting,
which has been equally distributed in this demonstra-
tion. Different weighting schemes will yield distinct
results and should be developed in accordance with
the priorities and specific questions of the user. Ad-
ditionally, the data used and results obtained are
contingent on the model source for SSP projections.

The utility of TraCE scores in this application
lies in the capability to reconcile complex and oc-
casionally conflicting variables into a single value.
This allows experts and non-experts to quickly as-
sess alignment with the established SSP scenarios,
via an explainable method based on direction and
distance in the data feature space. Visually assess-
ing such alignment from the raw data itself can be
challenging, particularly as the number of included
features increases. The TraCE method is there-
fore useful for communication and understanding
between stakeholder groups, and with refinement
could aid monitoring of region sustainability against
established development pathways.

5 Conclusion

TraCE provides a model-agnostic modular frame-
work from which to assess progress over time towards
an assigned goal. As demonstrated, the modularity
of TraCE enables application-specific adaptation.
Counterfactual target points can be defined as most
appropriate, such as: model-generated counterfactu-
als, corpus of examples, expert-selected landmarks,
or industry benchmarks.

The presented case studies involve at most 17 fea-
tures. TraCE’s utility is expected to become even
more evident with higher complexity scenarios which
likely involve larger neural networks. In this paper
we present TraCE scores in several forms: instanta-
neous (ICU study, Section 4.1); average and cumu-
lative (SSP study, Section 4.2). More sophisticated
methods to harness the temporal dimension could
be considered after calculating TraCE scores such as
quantifying instability, gradients through successive
time steps, or time-dependent score weighting. The
implementation of TraCE for the presented applica-
tions are for illustrative purposes, deployment and
interpretation of TraCE should be guided by domain
experts. Further work is required for robust imple-
mentation, including feature selection and tuning of
λ.
By distilling high dimensional dynamic sequen-

tial tasks into a single value, TraCE scores enable
experts and laypeople alike to quantify and better
understand progress in sequential tasks.
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A Appendix

A.1 Proof of Theorem 1

Claim Given a, b, c ∈ Rn, the closest point d to a
in the vector direction c− b is:

d = b+
h

∥h∥
· ∥g∥ · θ

where h = c− b, g = a− b and θ = ⟨h , g⟩
∥h∥∥g∥ .

Figure A.1. Geometric image of the proof for Theorem
1.

Proof. In n-dimensional space, the points a, b, c ∈
R

n create a triangle. Define α = ∥g∥ = ∥a− b∥ and
β = ∥h∥ = ∥c − b∥. Since the closest point along
a line to another point must form a perpendicular
vector, for d to be the closest point along the vector
direction c− b, a, b, d must form a right angled trian-
gle, shown in Figure A.1. Thus, define ϵ = ∥d− c∥,
κ = ∥a− d∥, from Pythagoras Theorem:

(β + ϵ)2 + κ2 = α2

=⇒ (β + ϵ) =
√
α2 − κ2

From trigonometric identities, κ = α sin(ϕ) and

ϕ = arccos

(
⟨h , g⟩
∥h∥∥g∥

)
thus:

κ = α

√
1− ⟨h , g⟩

∥h∥∥g∥

2

giving:

(β + ϵ) =

√√√√
α2 −

(
α

√
1− ⟨h , g⟩

∥h∥∥g∥

2)2

Since the normalised dot product is strictly [−1, 1]:

0 ≤

√
1− ⟨h , g⟩

∥h∥∥g∥

2

≤ 1

therefore:

α ≥ α

√
1− ⟨h , g⟩

∥h∥∥g∥

2

and so β + ϵ ∈ R+, giving:

(b+ ϵ) =

√√√√
α2 −

(
α

√
1− ⟨h , g⟩

∥h∥∥g∥

2)2

=

√
α2 − α2

(
1− ⟨h , g⟩

∥h∥∥g∥

2)

=

√
α2

(
⟨h , g⟩
∥h∥∥g∥

)2

= α
⟨h , g⟩
∥h∥∥g∥

β+ϵ describes the distance we must travel along the
vector direction c− b to get from b to d. Therefore:

d = b+
h

∥h∥
(β + ϵ) (6)

which gives Equation 2 when substitution is com-
plete.

A.2 Intensive care unit outcomes

Figure A.2(a) shows TraCE applied to another ICU
patient who was successfully discharged to home.
For the first two-thirds of the stay, the patient’s
predicted probability of mortality was higher than
for successful discharge (RFD), which is reflected by
the stronger alignment with the undesirable coun-
terfactuals (mortality) in this portion of the stay.
However, the patient does recover and goes on to
be successfully discharged. The TraCE score be-
gins to increase (timepoint 7) prior to the patient’s
improved health being reflected in the classifier prob-
abilities (timepoint 8).

An unsuccessfully discharged ICU patient is shown
in Figure A.2(b). In this case from the TraCE score
it is evident throughout the stay that the patient
is deteriorating, given the consistently higher align-
ment with the undesirable (mortality) counterfactu-
als than the desirable (discharged to home) counter-
factuals. This demonstrated the patient’s increasing
proximity to the undesirable outcome, mortality.
The increasing risk of mortality is not reflected by
the classifier (Figure A.2(b), bottom), which is not
apparent until the patient’s final timepoint. Until
this point the probability plot appeared very similar
to the previously described patient (Figure A.2(a)).
This suggests that with refinement TraCE could
provide utility, as part of a clinician’s toolkit, to
support decisions and ultimately improve patient
care.

A.3 Monitoring sustainable global de-
velopment

SSP TraCE scores for Poland TraCE score
analysis of the 34 countries in the global study found
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(a) Successfully discharged patient trajectory
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(b) In-hospital mortality patient trajectory

Figure A.2. Contrasting example patient journeys. For each, top: Instantaneous TraCE scores, higher indicates
more alignment with a counterfactual. ‘Desirable’ refers to alignment with successful discharge counterfactuals,
‘Undesirable’ refers to mortality counterfactuals. TraCE is computed on the current and preceding time point,
hence time point 0 is not presented. Bottom: Classifier probabilities via prediction model. Values in the legends
are averages across the whole trajectory. NRFD = Not ready for discharge, RFD = ready for discharge (desirable
outcome), mortality (undesirable outcome).

a common pattern across most countries, with SSP5
(Fossil-fueled Development) alignment ranking high-
est (Figure 3). Several countries deviated from this
pattern, such as Poland, for which the TraCE score
time series is shown in Figure A.3. The TraCE score
for SSP4 (Inequality) is consistently high throughout
the time series, with SSP3 (Regional Rivalry) closely
tracking, and overtaking in some instances. SSP4
then begins to diverge, leading as the highest ranked
SSP from 2019 onwards. Unlike other countries in
the study, SSP5 (Fossil-fueled Development) and
SSP1 (Sustainability) are consistently ranked lowest
throughout the time series. Interpretation of these
results can be informed by Figure A.4, which shows
the feature-level heatmap of average SSP TraCE
scores over the study period (2015-2022). These
scores have been determined by applying the TraCE
method to each feature individually, to indicate their
sole alignment with the corresponding SSP projec-
tions for that feature. Note that due to the way
in which TraCE is formulated, these scores are not
linearly disaggregated from the overall TraCE score
for the country. In Figure A.4, the high TraCE score
for SSP4 is dominated by the GDP feature, with
other features also scoring highly for this SSP. SSP3
is dominated by the GDP and temperature features.
The heatmap also shows that the features are most
closely aligned with their SSP projections for GDP,
temperature, and precipitation, with poor alignment
for methane (CH4) projections across all SSPs.
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Figure A.3. Cumulative monthly TraCE scores for
Poland, 2015-2022. Higher TraCE score indicates closer
SSP alignment.
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Figure A.4. Feature heatmap of average TraCE scores
for each SSP, in Poland, for the period 2015-2022.
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