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Abstract

Neural ordinary differential equations (NODEs) have
emerged as a powerful approach for modelling com-
plex dynamic systems using continuous-time trans-
formations. Although NODEs offer superior mod-
elling capabilities, little research has been conducted
on understanding the factors that contribute to their
predictions on image datasets. In this paper, we
propose the leveraging of SHapley Additive exPla-
nations (SHAP), which is an influential explainable
artificial intelligence method, to gain insights into
the NODEs prediction process. We enable the inter-
pretable analysis of important pixels that contribute
to the prediction decisions of NODEs by adapting
SHAP to the continuous-time nature thereof. Ex-
periments on synthetic datasets demonstrate the
efficacy of our proposed approach in revealing the
dynamics and important features that drive NODEs
predictions. Our empirical findings provide insights
into how NODEs determine important features and
the distributions of the Shapley values of each class.
The proposed integration of SHAP with NODEs
contributes to the broader goal of enhancing trans-
parency and trustworthiness in the application of
continuous-time models to complex real-world sys-
tems.

1 Introduction

Neural ordinary differential equations (NODEs) [1],
which have been proposed as a variant of ResNet
and RNNs, have infinite hidden layers and a con-
tinuous transition from input to output. Although
NODEs have mainly been used for modelling time-
series data, they have also been applied to image
data. They have exhibited competitive performance
with equivalent neural networks despite using fewer
parameters.
However, NODEs still require a large number of

parameters, which leads to opaque predictions. This
limits the trustworthiness of the predictions made
by NODEs and hinders their practical adoption.
The lack of interpretability of advanced machine

learning models is not a new problem. Gradient-
boosted decision trees and neural networks also face
interpretability issues.
We propose the use of Shapley values to explain

the relevance of the input features to NODEs.

Our contributions are as follows:

1. We propose the use of SHapley Additive ex-
Planations (SHAP) values to understand how
NODEs make predictions.

2. We perform multiple experiments on a publicly
available image dataset to verify our proposal.

2 Related Work

The importance of explainable artificial intelligence
(XAI) [2] has been researched extensively in recent
years.

Although no studies have been conducted to ex-
plain the interpretability of NODEs, several authors
have used XAI methods to understand the pre-
dictions of NODEs. Laurie and Lu [3] combined
NODEs and XGBoost for dynamic tumor modelling
and used SHAP values to explain the inferences of
their model.

Jha et al. [4] used SHAP and other XAI methods
to highlight and mitigate the problems in NSDEs
using their proposed neural stochastic differential
equation (NSDE) architecture.

The authors who proposed NSDEs used model in-
terpretability methods in addition to improvements
to NODEs, such as SHAP values, to compare the
robustness of their proposal and that of NODEs.
However, they did not use SHAP values to explore
the interpretability of the NODEs itself.

Jha et al. [5] used XAI to evaluate the robustness
of NODEs and treated the robustness of attributions
as a qualitative metric for the target. However, they
did not analyze the higher-order moments of SHAP
values.

3 Methodology

Our goal was to understand the importance of fea-
tures selected by NODEs for prediction and to verify
the correlation between the important features iden-
tified by SHAP and decisions made by NODEs. We
considered several mainstream XAI methods that
are used to explain deep neural network models,
including Grad-CAM [6], LIME [7], and SHAP [8].
We decided to use SHAP, specifically Deep SHAP
[8], for two main reasons. First, SHAP provides
delicacy in explaining important features in both
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the selected classes and other classes in the classifi-
cation task, which is the main focus of our research.
Second, it is an equitable metric for data evaluation
[9]. The SHAP values correspond to the importance
of each pixel in the final model prediction. A bet-
ter understanding of how the model determines the
correct class can be achieved by identifying the re-
gions that correspond to the most positive SHAP
values (and, therefore, predictions). As the purpose
was to enhance the understanding of the NODEs
model, we employed SHAP with DeepLIFT [10] to
strengthen the ability to explain the NODEs pre-
dictions in terms of the accuracy, missingness, and
consistency [8].

SHAP was proposed by Lundberg and Lee [8] and
is an XAI method that is derived from Shapley val-
ues, a game theory concept. Shapley values are used
to assign credit to each participant in a cooperative
game. In the context of machine learning, each fea-
ture is a participant and the goal of the ”cooperative
game” is to generate a prediction for each instance.
As such, Shapley values can be used as a type of
feature attribution XAI. The Shapley value for each
feature at each data point is the expected value of
the increase in the predicted value from a model
that is trained with the feature compared to that
when the model is trained without the feature. If N
features exist in a dataset, 2N different models will
be trained. However, this is not feasible with hun-
dreds of features. SHAP values are a modification of
Shapley values that use sampling and integration for
the feasible computation of approximates. SHAP
values maintain the desirable properties of local ac-
curacy, missingness, and consistency, whereas other
additive feature attribution-based methods violate
at least one of these properties.

DeepSHAP, the main XAI method we employed
in this study, is a unified version of SHAP and
DeepLIFT [8]. DeepLIFT is an additive feature
attribution method that uses backpropagation to
determine the effect of an input by comparing the
change to its reference value selected by the user
[10, 11]. DeepLIFT applies the linear composition
rule using the gradient and, thus, can linearize non-
linear components in a neural network [8]. Therefore,
DeepSHAP can handle both non-linear components
and dependent features. DeepSHAP can provide
better accuracy in interpretability for neural net-
work models such as NODEs by cooperating with
DeepLIFT and SHAP.

We further investigated the distribution of the
SHAP values using the mean and variance of the
Shapley values of the potential classes. Given k
possible classes, with each image Ii represented by
a 3D array of height hi, width wi, and 3 colour
channels, NODEs will consider the Shapley value
of Ii to be predicted as jth, (j = 1, 2, ..., k) to be
pij , which means a size of hi × wi × 3: pij =

[
p
(j)
abc

]
a=1,...,hi,b=1,...,wi,c=0,1,2

. For potential pij , the

Shapley values have the same shape as image Ii,
which means a size of hi × wi × 3.
The mean of the Shapley value if image Ii belongs
to class jth is defined as follows:

mij =

∑hi

a=1

∑wi

b=1

∑2
c=0 p

(j)
abc

3hiwi

The variance of the Shapley value if image Ii belongs
to class jth is defined as follows:

V ar(pabc) = Ea,b

[(
p
(j)
abc

)2]− (
Ea,b

[
p
(j)
abc

])2

,

where Ea,b[·] denotes the average w.r.t. a and b and
V ar(X) is the variance of vector X.

4 Experiments

4.1 Experimental setup

Overview. We conducted three experiments to
ascertain the performance of NODEs. We aimed
to demonstrate (1) the interpretability of SHAP of
NODEs predictions, (2) the speed performance of
DeepExplainer and GradientExplainer, and (3) the
prediction difference between NODEs and its prede-
cessor ResNet.
Dataset. The CIFAR-10 dataset [12] was used for
training, validating, and diagnosing NODEs perfor-
mance using the SHAP technique in all experiments.
The training and test/validation datasets contained
50,000 and 10,000 images, respectively. The data
loader removed 128 test images from the training
set and 1000 images from the test set for evaluation
in each iteration.
Model architecture and training. The NODEs
architecture was that proposed in the original pa-
per of Chen [1]. We trained both the NODEs and
ResNet models once, and then employed the model
state dict for all experiments. Convolution was used
as the downsampling method, and an adjoint solver
was employed as the ODE solver. The NODEs
model was trained for 10 epochs, with 128 batches
per epoch and 0.01 learning rate, which maintained
an accuracy of 0.78 in the validation set. Such
configuration was determined based on trial-and-
error to select the setting that can compromise both
learning speed and accuracy. Similarly, ResNet was
trained to maintain an accuracy of 0.80. The model
state and implementation will be made available on
GitHub.
Explainer. DeepExplainer is the representative
explainer for SHAP owing to its explainability in
deep learning models. An explainer was constructed
on the training dataset, including correct and in-
correct predictions from the neural network models.
Following calculations from the 1000-image dataset,
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which differed from the training dataset, the SHAP
values were separated into two groups: correct and
incorrect predictions.

4.2 Explaining Local Performance of
NODEs with DeepExplainer

A DeepExplainer (DeepLift combined with the Shap-
ley value) was created using the trained NODEs and
a dataset. We constructed a SHAP explainer for
10 classes with 10 images each. The detailed vi-
sualization of the images is similar to that of the
example in Figure 1. We randomly selected 10 cor-
rectly predicted images and 10 incorrectly predicted
images per class in each iteration and considered
their SHAP values. Thus, for each type of predic-
tion (correct or incorrect), we obtained an array of
32 × 32 × 3 × 10 × 10 dimensions. Subsequently,
we calculated the mean of the SHAP values for the
selected prediction per image. Hence, for each class,
we obtained 2 mean SHAP values: those for the
correct and incorrect predictions. By iterating the
process, we obtained a 2× 10 array of average mean
SHAP values (Table 1). We performed a one-sided
paired t-test with dof=9 and found that the differ-
ence between the mean of the SHAP values of the
correct and incorrect predictions was statistically
significant (p = 0.01). In the heatmap of the mean
SHAP values (Figure 1), the diagonal cells (selected
class) are highlighted, which means that they had
higher values than other cells in the same row. This
indicates an intuitive analogy to the NODEs predic-
tion decision, which tends to select the class with
the highest mean SHAP value as the best prediction.

Correct Incorrect Difference

0.007 -0.002 0.008
0.006 0.002 0.005
0.007 0.009 -0.003
0.015 0.017 -0.002
0.013 0.003 0.011
0.017 0.016 0.002
0.028 0.019 0.008
0.039 0.007 0.032
0.016 0.003 0.012
0.021 0.004 0.018

Table 1. Difference between mean SHAP values of cor-
rect and incorrect predictions, which empirically demon-
strates that the mean SHAP value of the correctly pre-
dicted class is larger than the mean SHAP value of the
incorrectly predicted class.

4.3 Comparison of NODEs Explain-
ability of DeepExplainer and Gra-
dientExplainer

Similarly to DeepExplainer, an explainer of type Gra-
dientExplainer is created on the same train dataset
and the same test dataset. Then, we obtained the
run time comparison (Table 2) and mean SHAP
values between correct and incorrect predictions of
GradientExplainer (Figure 3).

Task Deep Gradient
Explainer Explainer

Generating 178 ms 140 ms
explainer
SHAP values 1m51s 1m31s
calculation (correct)
SHAP values 1m43s 1m27s
calculation (incorrect)

Table 2. Runtime comparison between DeepExplainer
and GradientExplainer. GradientExplainer was approxi-
mately 20 s faster in the SHAP values calculation.

4.4 Performance of NODEs and
ResNet

We created two explainers for NODEs and ResNet
using the same DeepExplainer and dataset. The
mean SHAP values of ResNet are depicted in Figure
4, and a comparison between the variance of the
SHAP values of NODEs and ResNet is shown in
Figure 5.

5 Discussion

The experimental results of the NODEs prediction
with DeepExplainer distinguish between the NODEs
decision and mean SHAP values. The diagonal in
the heatmap of 1 shows the mean SHAP values of
the correct predictions. The cells on the diagonal
are highlighted, which indicates that the correctly
predicted classes had higher mean SHAP values than
the others. The experiment comparing GradientEx-
plainer and DeepExplainer clarifies the performance-
time tradeoff. Although GradientExplainer is faster
than DeepExplainer, the correlation between the
NODEs decision and mean SHAP values computed
by GradientExplainer is less clear than that com-
puted by DeepExplainer.

6 Conclusion

We have explored the understanding of NODEs pre-
diction decisions using SHAP. We aimed to demon-
strate the intricate relationship between the mean
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(a) SHAP values of 10 images on 10 classes (b) Heatmap of mean SHAP values

Figure 1. SHAP values of 10 images in 10 classes. Each row represents how NODEs recognize the feature of
each image that correlates to each of the 10 classes. Positive SHAP values are denoted as red in the sub-images,
indicating the features that are shared by the current image and other images in that class.

(a) Correct predictions’ mean plot (b) Incorrect predictions’ mean plot

Figure 2. Comparison of mean of SHAP values for correct and incorrect predictions.Among the mean SHAP
values in 10 classes of an image, all the images that gets correct prediction (a) illustrate a better correlation
between mean SHAP values and the fact that one class is chosen

SHAP values and prediction decisions within the
context of NODEs experimentally.

The core findings of our study reveal a significant
pattern: the mean SHAP value of the correctly
predicted class consistently surpasses that of the
incorrectly predicted class. This empirical evidence
underscores the power of SHAP values in explaining
the decision-making process of NODEs by providing
insights into the internal dynamics of the model that
contribute to correct and incorrect predictions.

Our results demonstrate a correlation between the
mean SHAP values and prediction decisions, which
suggests that SHAP values can serve as a viable
indicator of the prediction tendencies of NODEs.

The results also offer insight into the choice be-
tween DeepExplainer and GradientExplainer. The
DeepExplainer method is better at drawing corre-
lations between the mean SHAP values and predic-
tion decisions. In contrast, GradientExplainer offers
the advantage of runtime efficiency, which indicates
a trade-off between the methodological depth and
computation time.

Furthermore, we found a similarity between the

correlation of the mean SHAP values and decision
outcomes for NODEs and ResNet, thereby suggest-
ing the validity of the NODEs decision. The differ-
ence in the variance between ResNet and NODEs
also indicates the possibility of researching the ro-
bustness of the features of ResNet and NODEs.
In conclusion, this study presents empirical evidence
of the link between the mean SHAP values and
prediction decisions in NODEs, and highlights the
efficacy of SHAP as a tool for deciphering the model
behavior. Our results demonstrate the potential for
both interpretability and performance optimization
in NODEs. We encountered drawbacks in runtime
during the research, and hence, we would like to
provide NODEs pretrained models on the CIFAR-10
dataset alongside its implementation to support the
reproduction of this work.
On top of the benefit of increased transparency and
accountability of NODEs, the insights learned in this
study can be used to improve the performance of
NODEs on image-processing tasks. The formulation
of mean SHAP values being employed in this paper
suggests that not only pixels with high SHAP values
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Figure 3. Mean SHAP values of correct and incorrect predictions generated by GradientExplainer. Gradient-
Explainer had approximate correlations between the prediction correctness and mean SHAP values, with lower
confidence, compared to those generated by DeepExplainer.

Figure 4. Mean of SHAP values of correct and incorrect predictions for ResNet. The graph indicates that, similar
to the case of NODEs, the ResNet classification decision was correlated with the mean of the SHAP values, and
the mean of the SHAP values of the correct predictions was higher than that of the incorrect predictions.

(a) NODEs Variance SHAP value of predicted class (b) ResNet Variance SHAP value of predicted class

Figure 5. Comparison of variance of SHAP values between NODEs and ResNet. The variance of ResNet was
higher than that of NODEs, indicating stronger fluctuation in the SHAP values within the features in an image.

but also all pixels will be taken into consideration.
For example, the correspondence between the mean
of the SHAP values and that of the prediction can be
used to improve NODEs performance by cropping

misguiding borders off of images, similar to other
work [13].
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