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Abstract

Facial emotion recognition (FER) from images or
videos is an emerging subfield of emotion recogni-
tion that in recent years has achieved increased trac-
tion resulting in a wide range of models, datasets,
and applications. Benchmarking computer vision
methods often provide accuracy rates above 90% in
controlled settings. However, little focus has been
given to aspects of fairness, uncertainty, and scal-
ability within facial emotion recognition systems.
The increasing applicability of FER models within
assisted psychiatry and similar domains underlines
the importance of fair and computational resource
compliant decision-making. The primary objective
of this paper is to propose methods for assessment
of existing open source FER models to establish
a thorough understanding of their current fairness,
scalability, and robustness.

1 Introduction

Facial emotion recognition (FER) is the task of clas-
sifying the emotional state of an individual based
on the facial expressions of said individual. FER
models have gone from hand-crafted features to vari-
ous deep convolutional neural network architectures
which achieve state-of-the-art performance on bench-
mark datasets [1, 2]. Transfer learning is also widely
used with numerous applications of pre-trained mod-
els (e.g., GoogleNet [3], ResNet [4], etc.) trained
on large datasets such as VGGFace2 [5]. In lab
conditions, FER models generally provide high clas-
sification accuracies (above 90%), whereas accuracies
closer to 50% are observed for in-the-wild datasets
[2].
The transition from controlled to in-the-wild

datasets such as [6, 7] using images collected from
the internet has increased in popularity for training
of large neural network models [1, 8]. Challenges
and problems associated with occlusion have also
been addressed with occlusion frequently arising in
the setting of in-the-wild facial images [9].

FER has successfully been applied in AI assisted
psychiatry for diagnosing schizophrenia [10] and
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depression [11], or in automatic behavioral coding
to support research and quality assurance [12, 13].
Given the nature of the applications, it is vital to
prioritize fair decision-making in the development
phase of FER models to avoid any form of discrim-
inatory behavior. Considering the prevalence of
video-streams in many areas of applications, real-
time operation is a fundamental requirement [14],
while at the same time balancing the need for scala-
bility with fairness and robustness. However, these
aspects of facial emotion recognition are underrep-
resented in the literature.

A range of new databases focus on individuals of
diverse ethnic backgrounds [2, 15, 16]. Addition-
ally, other studies have concentrated on illumination
conditions [17], and different viewpoints [17, 18].
Recently, the use of generative adversarial networks
(GANs) have been proposed to address challenges
originating from the vast diversity in facial images
such as level of occlusion, differences in head-poses,
or light conditions by generating synthetic data re-
sembling the original images e.g. without glasses (in
the case of occlusion) or with a different head-pose
[19, 20].

To the best of our knowledge, only a few stud-
ies directly address issues of fairness in FER. One
such study [21], evaluates gender-related fairness
and its influence on facial expressions. They find
that the Inception FER model they trained with
gender balanced data is more fair, but also that
when training with male faces and testing on female
faces, results are more fair than when the training
bias is reversed. In another work, gender bias has
been analyzed using different deep learning architec-
tures for face emotion recognition on the SASE-FE
dataset [22]. The study finds similar results in terms
of worse performance when training on female faces,
and they find the largest concern to be classifica-
tion of surprise, where the models generally perform
worse on female faces. The authors encourage more
explorations of a large range of datasets. Wang et al.
[23] proposed an effective visual recognition bench-
mark for studying bias mitigation. A study by Xu
et al. [24] focuses on sensitive attributes of gender,
age and/or race. Here, three approaches, namely
a baseline, an attribute-aware, and a disentangled
approach have been performed with and without
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augmentation. Among these, it is found that the
disentangled approach is the most effective at reduc-
ing demographic bias tested on the RAF-DB and
CelebA-DB datasets.

By emphasizing the significance of further explo-
ration, our work aims to delve into the aspect of fair-
ness and the influence of scalability and uncertainty,
for pre-trained models. Stoychev and Gunes [25]
show that compression and quantization techniques
effectively reduce model size while maintaining high
overall accuracy in experimental results carried out
over selected datasets. To this end, we propose a
metric for assessing the balance between accuracy
and model size.

Based on recently published reviews of FER,
which give a comprehensive overview of the state of
the art models and existing benchmark datasets [2,
20, 26], we choose to focus on a range of models of
convolutional neural networks of different complexity
and datasets with exhaustive labelling (subpopula-
tions, head-pose, occlusion type, etc.) as well as
class imbalances within datasets.

The contributions of our study are the following:

Scalability: We propose a novel measure, perceived
effectiveness, for comparing the trade-off be-
tween the accuracy and the number of parame-
ters of a model. We assess the perceived effec-
tiveness of five FER models of different sizes.
In addition, we test the possibility for achieving
scalability through downsampling of the images.

Fairness: We assess the fairness of the model with
the highest perceived effectiveness with respect
to sex, age, and ethnicity.

Uncertainty: We propose an algorithm to add an
additional class for observations with less confi-
dence to make alternative decisions in cases of
uncertainty. We evaluate the change in perfor-
mance for our proposed algorithm.

2 Methods

2.1 FER models

We consider models of varying size, complexity, and
architecture, to compare simple models, approaches
designed to be operable on mobile devices, and more
complex models and explore the limits of what is
achievable in regards to performance. We chose
the following pre-trained FER models, all avail-
able in Python: HSE MobileNet (Mobile) [5], HSE
EfficientNet-B0 (B0) [5], HSE EfficientNet-B2

(B2) [5], EMO-AffectNetModel (EMO) [8], Paz

mini-Xception (mini-X) [27], Ad-Corre (Ad) [1],
and DeepFace (DF) [28]. We are interested in find-
ing a model small enough to run in real-time, while

still producing satisfactory results. The model com-
plexities in terms of parameters can be seen in Figure
1.

Figure 1. Model-size vs. Accuracy. Presented for
the five datasets and for the average across the five sets.

2.2 Fairness

To assess the FER models for fairness across gender,
age, and ethnicity, a suitable and simple method
is to ensure demographic parity i.e., fairness across
groups according to a specified statistic, often the
prediction accuracy. We use demographic parity as
we are aware of specific historical biases (gender, eth-
nicity) that may affect the model. To formalize this
condition: A binary classifier h is said to satisfy de-
mographic parity under a distribution over (X,A),
where X is a feature vector and A is a sensitive
feature, if the prediction h(X) is statistically inde-
pendent of the sensitive feature A [29]. This means
that the difference in predicting a positive outcome
should be zero (or as small as possible) across the
sensitive feature for the model to be considered fair.
We express this mathematically as:

E[h(X)|A = a] = E[h(X)], ∀a, (1)

where h expresses the prediction accuracy of a given
emotion. In practice, we compute this using the
Python library Fairlearn [29].

2.3 Scalability

We want FER models that scale computationally
and preferably run real-time, while still having sat-
isfactory performance. To assess this trade-off, we
propose a novel measure for comparing the accuracy
of neural networks with reference to the number
of parameters. We call this measure the perceived
efficiency (PE), and define it as:

PEγ = A− 2 · γ · P 3/4, γ ∈ (0, 1], (2)
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where A is the accuracy in percentage, P is the
number of parameters in millions, and γ is a regu-
larisation parameter where a value close to 1 puts
more emphasis on a small model, while a value close
to 0 puts more weight on the accuracy of the model.
For a fixed value of γ and a fixed accuracy, the per-
ceived efficiency satisfies PEγ → −∞ for P → ∞
and PEγ → A for P → 0. Hence, an optimal model
has a perceived efficiency of 100%. Figure 2 illus-
trates the perceived efficiency as a function of the
number of parameters for different values of γ.

Figure 2. Perceived Efficiency. The perceived effi-
ciency for a fixed accuracy of 100%, while varying the
number of parameters for different values of the regular-
isation parameter γ.

2.4 Uncertainty

All the considered models return a probability for
each expression class, which provides a natural mea-
sure of uncertainty of the predictions. We will ex-
ploit this information to create an additional class:
”uncertain”. When a prediction probability is lower
than a pre-specified threshold C, the observation is
considered uncertain. In practice, it is possible to
make alternative decisions for observations predicted
to the ”uncertain” class. The pseudocode of this
procedure is presented in Algorithm 1.

2.5 Data

An overview of the datasets used in this paper is
presented in Table 1. The datasets were chosen to
cover a wide variety of images and settings. For
reference, the FER2013 dataset only yields a human
accuracy of 68± 5% [32].

Algorithm 1 Uncertainty cut-off algorithm

0: Initialize threshold value, C
0: Create class ”uncertain”, u = {}
0: Number of samples, n
0: Classes, ci = {}
0: while n ̸= 0 do
0: n← n− 1
0: Compute class probabilities : pn ← f(xn)
0: Find class: i← argmaxi pi,n
0: if pi,n < C then
0: u← u ∪ {(pi,n, i, n)}
0: else
0: ci ← ci ∪ {(pi,n, i, n)}
0: end if
0: end while
0: Make predictions based on u and ci =0

3 Results

3.1 Baseline and Scalability

We evaluated the performance of the pre-trained
FER models on the five benchmark dataset, see
Table 2. The accuracies are based on all available
data, i.e. training and test sets were combined in
cases where data were pre-defined in several splits.
We also assessed the perceived efficiency (PE) of the
models and here HSE MobileNet was best.

The average drop in accuracy from the best model
(EMO-AffectNetModel) to HSE MobileNet is around
5% and it is the second best performing model in
terms of accuracy. Therefore, we propose the use
of HSE MobileNet and continue illustrating the as-
sessment of fairness and robustness with this model
only. Figure 1 illustrates the model-size vs. accuracy
for the five datasets. Here it is also clear how HSE
MobileNet outperforms the models of similar size,
while EfficientNet-B2 only yields a slight increase in
accuracy despite being almost double the size. Like-
wise, EMO-AffectNetModel performs better than
Ad-Corre, albeit being similar in size.

Another approach to obtain scalability is image
resizing. Table 3 summarizes accuracies from rescal-
ing the images between 16× 16 to 128× 128 pixels.
As expected, accuracy generally decreases as the im-
age size is decreased. However, the drop is minimal
until sizes of 48× 48 or 32× 32 pixels.

3.2 Fairness

We examined the fairness of HSE MobileNet across
the protected attributes sex, age, and ethnicity in
the RAF-DB dataset; see Figure 3.

HSE MobileNet is generally fair although with
smaller differences across the attributes. Of concern
is the emotion ”surprise”, where the model yields a
discrepancy for the ethnic subpopulations of asian
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Table 1. Datasets. Description of FER datasets used in this paper. P = Posed emotions (controlled
setting), I = In-the-wild, b = basic categorical emotion labels (happy, sad, angry, surprise, fear, disgust),
n = neutral emotion labels. The FACES dataset is missing the surprise emotion label.

Dataset Type #Subject #Samples Expr. Attributes Notes

CK+ [30] P 123 327 6 b + n Age: 18-50 Videos

RAF-DB [31] I ∼ 29672 29672 6 b + n
Age: 0-70

52% Females
(5% unsure)

Static

FER-2013 [32] P + I ∼ 35887 35887 6 b + n N/A Static

SFEW[33] I 95 700 6 b + n Age: 1-70 Static

FACES [34] P 171 2052 5 b + n

Young: 19-31
Middle-aged: 39-55

Older: 69-80
50% Females
Caucasian

Static

If there is no specification regarding ethnicity, then either no information has been provided or there are multiple
ethnicities.

Table 2. Pre-trained Models. Performance of pre-trained FER models using benchmark datasets.
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CK+ 80.53% 77.37% 84.30% 89.19% 55.25% 86.75% 51.78%
SFEW 43.95% 38.50% 39.56% 47.96% 29.27% 19.59% 30.79%
FACES 77.33% 76.17% 73.44% 82.78% 33.17% 64.98% 28.31%
RAF-DB 70.98% 68.37% 68.48% 69.57% 58.31% 63.51% 48.52%
FER2013 54.02% 50.16% 52.76% 58.20% 59.37% 43.39% 61.54%
Gen. Err. 65.36% 62.11% 63.71% 69.54% 47.07% 55.64% 44.19%
PE{γ=0.7} 61.78 57.95 57.24 54.08 46.96 40.23 42.22

vs. black/white. Fear and disgust also display some
differences across age and ethnicity.

3.3 Uncertainty

As expected, there is a positive linear trend between
the cut-off value and the accuracy of the emotion
predictions, see Figure 4. Employing a threshold ap-
proach yields a significant increase in accuracy, when
compared to the baseline. However, the proportion
of samples in the ”uncertain” class quickly tends
towards being the most dominating class, which for
many applications may be undesirable. It is often
more appropriate to implement a cut-off value of
40-60% to allow for an increase in performance while
controlling the proportion of samples in the ”uncer-
tain” class. We recommend fine-tuning the cut-off
value to achieve the desired level of accuracy to the
proportion of samples in the ”uncertain” class.

Figure 4. Proportion/Accuracy vs. Threshold.
The proportion of samples in the ”uncertain” class and
the accuracy vs. the threshold for HSE MobileNet.
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Table 3. Resolution. The accuracy of the datasets at different resolutions using HSE MobileNet. The column
[Acc.] refers to the baseline i.e. the accuracy at the original resolution. All resolutions are symmetric so, a
resolution of 16 implies 16 × 16 pixels and so forth. The resizing is done using bilinear interpolation with the
Python library OpenCV.

Dataset 16 32 48 64 88 128 Acc.
CK+ 38.94% 76.76% 80.53% 79.61% 79.92% 80.53% 80.53%
SFEW 24.81% 40.39% 43.95% 44.48% 44.86% 44.10% 43.95%
FACES 16.28% 41.61% 62.03% 72.47% 75.11% 75.86% 77.33%
RAF-DB 42.28% 62.22% 69.07% 70.13% 70.64% 70.88% 70.98%

Figure 3. Fairness. The demographic parity for different subpopulations of the RAF-DB dataset using HSE
MobileNet. Note that the last two age groups have been combined into a single group due to the last age group
containing very few samples, hence skewing the perception of the model’s fairness.

Figure 5 shows an example of predicted class prob-
abilities and illustrates how all predictions below a
cut-off value would determine the uncertainty class.

Figure 5. Distribution. Histogram of probabilities
for the FER2013 dataset using HSE MobileNet.
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4 Discussion

Our study is limited by existing limitations in the
available data sources, which we have based our
investigations on. In future work, addressing these
weaknesses are of importance to reach fair open
source FER models.

We have chosen demographic parity to measure
fairness, but other metrics like equalized odds or
equal opportunity exist, and are relevant. The met-
ric for measuring fairness should be chosen carefully
with the objective of the model in mind. As we are
examining open source models, which could poten-
tially be used for various purposes, all such metric
may be relevant. Therefore, we recommend future
studies examine different fairness metrics.

We acknowledge that our proposed perceived ef-
fectiveness measure restricts itself to looking at the
number of parameters in the models, which is a
simplified view. Considering computation time and
interpretability would also be relevant.

Future studies should, apart from the development
of unbiased data sets, also consider how we address
the biases in terms of model developments.

5 Conclusion

Complimentary to existing literature, we have as-
sessed the fairness for a case-specific pre-trained
model in relation to multiple benchmarks, where we
generally found no results of unfair behaviour except
for a few emotions, like ”surprise” for asian vs black
or white. We made a comprehensive investigation of
the scalability of pre-trained models and proposed a
measure for comparing neural networks while balanc-
ing between accuracy and scalability. We explored
the reliance on high-resolution images, discovering
that even images with a resolution as low as 32 to
48 pixels produced little to no reduction in the per-
formance. Finally, we demonstrated the importance
of considering prediction uncertainty and proposed
how to do this through a simple cut-off value on the
predicted class probabilities. For general-purpose
applications, we suggest adopting a cut-off value in
the vicinity of 50%.
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