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Abstract

This study addresses the issue of black-grass, a
herbicide-resistant weed that threatens wheat yields
in Western Europe, through the use of high- reso-
lution Unmanned Aerial Vehicles (UAVs) and syn-
thetic data augmentation in precision agriculture.
We mitigate challenges such as the need for large
labeled datasets and environmental variability by
employing synthetic data augmentations in training
a Mask R-CNN model. Using a minimal dataset
of 43 black-grass and 12 wheat field images, we
achieved a 37% increase in Area Under the Curve
(AUC) over the non-augmented baseline, with scal-
ing as the most effective augmentation. The best
model attained a recall of 53% at a precision of 64%,
offering a promising approach for future precision
agriculture applications.

1 Introduction

The agricultural industry globally grapples with vari-
ous invasive weeds, of which black-grass (Alopecurus
myosuroides) has emerged as the most problematic
in Western Europe [1]. This weed’s herbicide resis-
tance and aggressive growth patterns significantly
impact wheat yield, particularly when densities sur-
pass 10 plants per m2 [2].

To tackle this issue, precision agriculture, empow-
ered by technologies such as Unmanned Aerial Vehi-
cles (UAVs), offers promising avenues for enhancing
agricultural productivity [3]. UAVs endowed with
high-resolution imaging, provide rapid and efficient
surveying of large crop fields [4].

However, integrating UAVs for weed detection is
not without challenges. The demands for labeled
data when training computer vision models and the
problem of domain shift, owing to varying environ-
mental and crop conditions, are substantial road-
blocks [5]. In this context, synthetic data offers a
compelling solution. It not only alleviates the need
for manual data labeling but also addresses data
variability issues [6]. Furthermore, targeted syn-
thetic data augmentation can significantly improve
model generalization across datasets [6].
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This study investigates the impact of synthetic
data augmentations on deep-learning models tailored
for black-grass detection in wheat fields. We focus
on identifying which augmentation combinations are
most effective and how they can reduce training
time. This knowledge is crucial for quickly adapting
models to the variable conditions often observed
across different fields.

1.1 Related works

The area of weed detection in agricultural fields
using Unmanned Aerial Vehicles (UAV) and ma-
chine learning has been an active research field, with
various methodologies being proposed. A popular
approach is using Convolutional Neural Networks
(CNNs) as primary tools for detection and classifica-
tion, such as in the study by Valente et al. [7] where
AlexNet was used for detecting weed in grassland.

Deep learning models have been broadly applied,
with Bah et al. [4] proposing a deep learning ap-
proach with unsupervised data labeling for weed
detection, achieving performance comparable to su-
pervised learning methods. Similarly, Etienne et al.
[8] utilized a YOLOv3 network for detecting weeds
in soybean and corn fields, while Wang et al. [9]
presented a TIA-YOLOv5 network, both achieving
high precision rates.

Another deep learning model that has been used
is the Mask R-CNN. Milioto et al. [10] applied it
for real-time weed detection in sugar beet fields.
Similarly, Valicharla et al. [11] used a pre-trained
Mask R-CNN with ResNet-50 FPN for invasive weed
detection.
However, more approaches have been proposed

where multiple techniques have been combined into a
final model. The work by Mu et al. [12] incorporated
a feature pyramid network (FPN) algorithm into
a Faster R-CNN network for enhanced recognition
accuracy. A combination of Houghlines and Random
Forest also proved to be effective, as evidenced by
Gao et al. [13]. El-kenawy et al. [14] proposed a
voting classifier with base models consisting of neural
networks, support vector machines, and K-nearest
neighbors.

The topic of synthetic training data has also been
explored, with Hu et al. [15] showing that semi-
supervised learning boosted weed detection when
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Figure 1. The UAV collecting data in a wheat field
at the height h, velocity v and with a camera angle, Φ,
perpendicular to the ground.

combined with synthetic data. Xie et al. [16] used a
skeleton annotation approach for foreground uncer-
tainty in labeling, along with synthetic data. This
is closely related to Sapkota et al. [17], who used
synthetic images, generated using GANs and data
augmentations, to improve weed detection.

Notably, several works have focused on black-grass
detection in particular, an area of interest in our
work. Su et al. [18] have experimented with mul-
tispectral imaging for black grass detection, and
Lambert et al. [19] employed semantic segmentation
in wheat fields. The investigation of synthetic im-
ages, data augmentations, and Mask R-CNN in these
works forms a pertinent context for our research.

2 Method

In this section, we describe our approach for weed
detection and identification using synthetic data
and deep learning. We cover the data collection,
preprocessing, data augmentation, deep learning
model, evaluation metrics, and experimental setup.

2.1 Data Collection

Data were acquired using a UAV fitted with a high-
definition RGB camera, flying over farmland in
southern Sweden. Additional video was captured
in non-infested fields to collect background data for
synthetic data generation, see section 2.2.

The UAV operated at altitudes between [0.5-1.5]
m above ground, at speeds between [0.3-1.0] m/s,
minimizing motion blur, Fig 1. To optimize object
coverage, the camera was aligned at the nadir point
and rotated 90◦ relative to the flight direction. This
optimized the 16:9 aspect ratio camera’s field of
view, enabling prolonged object retention within the
frame.
Video data were captured at 60 frames per sec-

ond (FPS) with a 2.7k resolution, maximizing de-

tail for effective weed identification. Alongside the
UAV footage, high-resolution stationary photos of
black-grass were taken using cell phones, broadening
the range of black-grass appearances in our dataset.
These photos, together with the video frames, under-
went pixel-level extraction of black-grass instances,
forming a comprehensive foreground dataset.

The test data was collected from the same field
on a single day, maintaining consistent conditions,
while parts of this field were also used for gathering
background and foreground data for synthetic data
creation. This approach mirrors potential real-world
applications of our method, ensuring relevance and
applicability.

2.2 Synthetic Data Generation and
Augmentations

For synthetic data generation, we select a random
background image Ibgj from the set B, and a random
subset Ffg from the set F of all foreground images.

Scaling: I
{s}
fgi

= S(Ifgi , 1 + s), s ∼ U(−0.25, 0.25)

Rotation: I
{r}
fgi

= R(Ifgi , θ), θ ∼ U(−180, 180)

Mirroring: I
{m}
fgi

= M(Ifgi ,m), m ∼ Bern(0.5)

Brightness: I
{b}
fgi

= B(Ifgi , ϕ), ϕ ∼ U(0.8, 1.2).

By implementing selected augmentations on the
foreground and then overlaying it onto the back-
ground, a new synthetic image paired with ground
truth is generated. Corresponding masks are syn-
thesized based on the foreground’s locations within
this composite image, see Figure 2.

We introduce S{∗} to represent the power set of
all combinations of the four transformations. This
yields

∑4
k=0

(
4
k

)
= 16 distinct subsets. Each subset,

such as S{s,r} ⊂ S{∗}, indicates a specific combi-
nation of augmentations, in this case, scaling (s)
and rotation (r). By iterating over all subsets of
S{∗}, we generate multiple synthetic datasets, each
reflecting a distinct set of augmentations. Specif-
ically, from an initial set of 43 foreground images
featuring black-grass and 12 background images of
wheat fields without black-grass occurrences, we pro-
duced a total of 1000 synthetic training examples
for each augmentation set S{∗}.

2.3 Model Selection

The Mask R-CNN architecture equipped with
a ResNet-50 FPN pre-trained on the MSCOCO
dataset was chosen for our experiments [20]. This
decision is grounded in a broad scholarly consensus,
highlighting Mask R-CNN’s effectiveness in a variety
of object detection tasks [10, 11, 15, 16, 20].
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(a) Synthetic image

(b) Ground truth mask

Figure 2. Example of synthetic data used in training.
(a) shows the synthetic image, and (b) the corresponding
generated ground truth masks.

A study by Valicharla et al. [11] particularly em-
phasized the suitability of ResNet-50 for weed species
detection. While larger backbones like ResNet-101
have been reported to yield marginal performance
gains [20], we favored ResNet-50 for its balance be-
tween performance, computational efficiency, and
model complexity. Resource constraints and the vol-
ume of training were pivotal factors in this choice.

2.4 Model Training

Each dataset in S{∗} was used to train an indepen-
dent Mask R-CNN model with a ResNet-50 FPN
backbone, which had been pre-trained on MSCOCO.
Our training protocol is designed in a two-phased
manner to evaluate the synthetic data augmenta-
tions’ effectiveness.

In the first phase, we train the head of the Mask R-
CNN for four epochs with the Adam optimizer. For
the second phase, we fine-tune the entire network for
another four epochs, but at a learning rate of one-
tenth of that used in the initial phase. We decrease
the learning rate to mitigate catastrophic learning.

This eight-epoch training scheme was deliberately
chosen, aligning with the practical requirements of
rapid adaptability to fluctuating field conditions. By
doing so, we achieve a compromise between compre-
hensive training and real-world applicability, making
the method apt for immediate field deployments.

2.5 Model Evaluation

We employed various metrics to assess model efficacy
in detecting Black Grass. The primary metric was
Intersection over Union (IoU):

IoU =
|AP ∩BGT |
|AP ∪BGT |

Here, AP and BGT denote predicted and ground
truth regions. Additional metrics included precision
(P ), recall (R), and the f1-score:

f1 =
2 · P ·R
P +R

Lastly, the Area Under the Curve (AUC) of the
Precision-Recall curve served as a holistic metric,
summarizing the trade-off between P and R at vari-
ous threshold levels.

2.6 Test Data

To evaluate model performance, we sourced test
data from a drone video surveying a field infected
with Black Grass. Frames were selectively captured
from the video, and each was manually annotated
to mark instances of Black Grass, serving as the
ground truth for model evaluation.

Annotations relied solely on visual cues within the
frames, excluding any contextual or supplementary
information from the data collection phase. This
limitation in the annotation process necessitated a
refined evaluation strategy.

To address this, we designed a grading system
that encompasses varying levels of difficulty in vi-
sually identifying Black Grass instances. Bounding
boxes were scored on a 0-4 scale (Easiest, Easy,
Medium, Hard, Hardest), gauging the complexity of
visual detection. The graded dataset consist of 653
instances distributed as 102 Easiest, 120 as Easy,
165 as Medium, 132 as Hard, and 134 as Hardest.

Grades were determined using traits such as weed
size, effective resolution influenced by factors like mo-
tion blur and lighting, separation from other plants,
turf density indicating tangled complexity, and oc-
clusion by other structures. Grading decisions were
made based on the first category where all criteria
were met, as detailed in Table 1. Examples of graded
plants can be found in Fig 3.
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Figure 3. Instances of Black Grass plants in the graded test dataset. Each column corresponds to examples of
grades Easiest to Hardest (grades 0 through 4). Adhering to the grading procedure described in Table 1.

Table 1. Grades for each black grass instance in the test
set are determined by the first category, in descending
difficulty, where all criteria are met.

Grades
Trait Easiest Easy Medium Hard Hardest

Weed
Size

Large
Large-
Medium

Medium-
Small

Medium-
Small

Small

Resolu-
tion

Excellent Good
Good-
Low

Low Low

Separa-
tion

Yes Yes No No No

Structure Dense Dense Moderate Sparse
Very
sparse

Occlusion No No No Yes Yes

3 Results

This section evaluates the performance of Mask R-
CNN models, each trained on a distinct synthetic
dataset with a ResNet-50 FPN backbone pretrained
on MSCOCO, for parameter consistency.

3.1 Combined grades

We assessed the impact of augmentations on model
performance through various metrics. The Precision-
Recall-curve without grading considerations reveals
that the Scale model excelled, achieving the high-
est AUC (0.52) and maintaining high precision at a
recall beyond 0.37 (Figure 4). Among others, Bright-
ness Rotate ranked second in AUC (0.46), while No
Augmentation occupied a mid-range AUC (0.39).

Table 2. Metrics for all models on the test dataset,
ignoring black grass difficulty grades. The control model,
S{∅}, had no augmentations. Sorted by F1-score, predic-
tions are accepted at a prediction score above 0.4 and
count as positive identification at an IoU of 0.25.

Augmentations Recall Precision f1

S{s} 0.53 0.64 0.58
S{b,r} 0.47 0.63 0.54
S{s,r} 0.45 0.63 0.52
S{s,b,m} 0.40 0.68 0.50
S{m} 0.40 0.69 0.50
S{s,b} 0.38 0.72 0.50
S{∅} 0.46 0.54 0.50
S{s,m} 0.39 0.67 0.50
S{b,r,m} 0.39 0.62 0.48
S{s,b,r,m} 0.38 0.61 0.47

S{r} 0.37 0.63 0.47
S{s,b,r} 0.34 0.71 0.46
S{s,r,m} 0.33 0.77 0.46
S{b} 0.33 0.73 0.46
S{r,m} 0.27 0.79 0.41
S{b,m} 0.25 0.89 0.40

The AUC metric fails to fully capture models
excelling in precision but lacking in recall. For in-
stance, No Augmentation showed weak precision
across recall ranges despite its decent AUC.

In Table 2, we note a pattern consistent with Fig-
ure 4. The Scale model led in f1-score, followed by
Brightness Rotate, with No Augmentation holding a
middle rank.
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Figure 4. Precision-Recall curve for all models trained
on the different augmentation combinations. These are
the combined results when not accounting for the grades
in the test set. The legend is ordered from highest AUC
to lowest.

3.2 Graded test data

We gauged model performance on graded test data,
focusing on both easier (grades 0, 1) and harder
instances (grades 3, 4) using f1-score. Counterintu-
itively, high-performing models on difficult instances
did not always excel on easier ones, as Table 3 in-
dicates. The Scale model, for instance, was adept
at identifying harder examples but suffered lower
precision on easier ones.

On comparing Scale, Brightness Rotate, and
No Augmentation, the former two closely matched
for grades 0 and 1. However, Scale outperformed
in grades 2-4, while the control lagged behind (Fig-
ure 5).

4 Discussion

Detecting invasive species like black-grass presents a
challenge due to the limited availability of real-world
data. In this study, we mitigated this issue by uti-
lizing synthetic data augmented with various trans-
formations. Our analysis illuminates the impact of
these augmentations and explores the constraining
role of limited training time on model performance.

Among the augmentations applied, scaling was
particularly impactful. It yielded the best results
in terms of recall, f1-score, and AUC on the PR-
curve, as evidenced by Table 2 and Figure 4. On the
non-graded dataset it had an 37% increase in AUC
over the baseline model. Since results were achieved
with a small dataset and only using synthetic data

Figure 5. Precision-Recall curve of the models trained
with the augmentations: Scale, Brightness and Rotation,
and No Augmentations. The different colors indicate the
grade and the line style the model. Grades are coloured
according to: 0-Blue, 1-Green, 2-Red, 3-Teal, 4-Purple.

it could be applied in fine-tuning the model to the
specific field condition.

Data augmentations are known to improve model
generalization [4, 9, 15]. However, our limited train-
ing time of 8 epochs necessitates caution in selecting
augmentations, as more complex methods could im-
pede effective learning.

A comparison of our best models with a non-
augmented baseline, Figure 5, shows significant gains
in AUC and average f1-score, particularly for the
Scale model in complex black-grass instances. Scal-
ing encompasses a wide range of sizes, from small
and occluded to larger instances, providing a more
realistic training environment. This diversity is cru-
cial for accurately detecting our test sets’ typically

Figure 6. Predictions from the Scale model with var-
ied color gradings to represent difficulty. The model
successfully identified all black grass labeled as easiest,
easy, and medium but failed to detect one hard and two
hardest instances.
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Table 3. Heat map table of f1-scores for all models on the graded test dataset. The table is sorted based on
performance on grade 4, the hardest dataset. The models had a threshold of 0.4 in prediction score to accept
proposed objects and an IoU of 0.25.

small and low-resolution hard samples. It introduces
a balanced variety of instance sizes, facilitating more
efficient model fine-tuning without adding excessive
complexity to the data, thereby improving detection
in real-world scenarios.

Future work could explore the interplay between
augmentation complexity, training duration, and
performance. Extended training or employing ad-
vanced training methods could further optimize the
models for real-world application.

5 Conclusion

This study highlights the efficacy of data augmenta-
tion in black-grass detection using limited resources.
With high- resolution UAV data, the ’Scale’ model
achieved a 37% increase in performance on the
AUC metric compared to the non-augmented base-
line. Employing a Mask R-CNN with a pre-trained
ResNet-50 FPN, we attained 53% recall at 64% pre-
cision using only 43 black-grass and 12 wheat field
images.
The results demonstrate the power of data aug-

mentation for quick, resource-efficient adaptation to
new detection challenges, critical for timely weed
management in diverse fields.
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