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Abstract

In this work, we address the problem of assessing
and constructing feedback for early-stage writing
automatically using machine learning. Early-stage
writing is typically vastly different from conventional
writing due to phonetic spelling and lack of proper
grammar, punctuation, spacing etc. Consequently,
early-stage writing is highly non-trivial to analyze
using common linguistic metrics. We propose to use
sequence-to-sequence models for translating early-
stage writing by students into conventional writing,
which allows the translated text to be analyzed using
linguistic metrics. Furthermore, we propose a novel
robust likelihood to mitigate the effect of label noise
in the dataset. We investigate the proposed methods
using a set of numerical experiments and demon-
strate that the conventional text can be predicted
with high accuracy.

1 Introduction

Learning to write is extremely important for both
educational and communication purposes. Specific
and frequent formative feedback can improve learn-
ing, but it is a time-consuming process, especially in
a class-room setting [1]. In this work, we study the
problem of using machine learning to assist elemen-
tary school teachers in assessing and constructing
formative feedback for early-stage writing.

Children’s early writing can be studied and quan-
tified in several ways ranging from simple count
statistics to more sophisticated linguistic metrics
and such metrics can be tracked over time to as-
sess and facilitate learning [2]. However, emergent
writing is often characterized by phonetic spelling
as well as lack of proper grammar, spacing, and
punctuation etc. [3], which makes automatic and
quantitative analysis highly non-trivial.

To address this problem, we propose to use neu-
ral machine translation models to ”translate” the
early-writing of a student to the equivalent ”conven-
tional” writing. This makes it possible to compare
and quantify the difference between student texts
and the corresponding conventional texts and to
evaluate the texts using linguistic metrics of interest.
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More specifically, we model the writing produced by
students as noisy observations of the corresponding
conventional writing and thus aim to denoise the
student texts using sequence-to-sequence models.

Due to the current success of Transformer-based
models in many natural language processing (NLP)
applications [4], we employ the so-called BART ar-
chitecture, which is a Transformer-based denoising
autoencoder for sequence-to-sequence problems [5].
BART is pre-trained to reconstruct corrupted doc-
uments and is therefore a natural choice for our
application since our objective of denoising student
texts is well-aligned with BART’s pre-training task.
For a review on other recent sequence-to-sequence
methods for neural machine translation, see e.g.
Stahlberg [6] or Tan et al. [7].

Machine learning has previously been used for
automated essay scoring (AES) [8], but AES gen-
erally focuses on automated grading rather than
automated feedback and often targets more senior
student populations than those considered in our
work [9]. For recent systematic reviews on AES, we
refer to Ramesh and Sanampudi [9] and Klebanov
and Madnani [10].

We train and evaluate the model on a dataset
collected using a digital learning platform1. The
dataset consists of N = 36, 610 pieces of early
writing produced by students and the correspond-
ing conventional texts produced by teachers after
interacting with the students, i.e. the dataset is
D = {(xn, yn)}Nn=1, where xn and yn are the nth
student and teacher text, respectively. Examples of
students texts and their corresponding conventional
writing are given in Table 1.

The dataset contains a significant amount of noise
caused by students or teachers using the learning
platform in unintended ways. In approximately 25%
of the data, there is no relationship between the
texts in the pair (xn, yn). For example, a student
wrote ’norah loves peas!’ while the corresponding
teacher text is ’Elephants are big.’ We refer to this
type of noise as ”label noise” and say that yn is a
noisy label for xn if the two texts are unrelated. To
combat the label noise, we propose a novel robust
likelihood for sequence-to-sequence modelling.

To evaluate the proposed methods, we investigate
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Table 1. Examples of student texts and the corresponding conventional texts.

Student text Conventional text

We lern ubut eath in sins. We learn about Earth in Science.
thedinousouisrune The dinosaur runs.
ledkos boo fune thengs Leprechauns do funny things.

and report how accurately a teacher text y∗ can be
predicted from the student text x∗ given a training
set D. We also consider the task of estimating
two readability metrics (Flesch–Kincaid [11] and
LIX [12]) from the student texts.

The main contributions of this paper are 1) to
demonstrate that the student texts can be denoised
with high accuracy, 2) to demonstrate that trans-
lation of the student texts to conventional writing
significantly improves the accuracy of the estimated
linguistic metrics, 3) introduction and evaluation
of a novel likelihood for sequence-to-sequence data
with noisy lables, and 4) investigation of whether
the quality of a translation can be assessed through
its average likelihood.

2 Methods

2.1 Sequence-to-sequence modelling

We frame the problem as a sequence-to-sequence
problem where the goal is to estimate the teacher
text yn given a student text xn. In other words,
given a training set D = {(xn, yn)}Nn=1, our goal
is to estimate the distribution p(y∗|x∗,D) for some
new student text x∗. Formally, each sequence xn =
(xn,1, xn,2, . . . , xn,Nx

) consists of an ordered list of
tokens from a fixed vocabulary A, i.e. xn,i ∈ A,
where Nxn

denotes the length of xn. We use K
to denote the size of the vocabulary, i.e. K = |A|.
Furthermore, we use the notation xn,1:j to denote
the first j tokens of xn, i.e. the subsequence xn,1:j =
(xn,1, xn,2, . . . , xn,j). We use the same notation for
yn. Finally, we sometimes omit the data index n
and simply write yi for the ith token in y and y1:j
for the first j tokens in y.

Model archictecture We use the BART
sequence-to-sequence architecture [5] to model
p(yn|xn). BART uses an encoder-decoder architec-
ture with a bidirectional Transformer model [13]
as the encoder and an autoregressive Transformer
model [14] as the decoder yielding the following
likelihood for the nth observation

p(yn|xn) =

Ny∏
i=1

p(yn,i|xn, yn,1:i−1). (1)

After training the model, we can predict y using
greedy search as follows

ŷn,i = arg max
k

p(yn,i = k|xn, ŷn,1:i−1), (2)

where ŷn,i denotes the prediction for the ith token
in the nth example.

Loss function and label smoothing Due to the
autoregressive nature of the model, predicting each
toking in yn is a multi-class classification problem,
and hence, the cross-entropy loss function is a natu-
ral choice

`(x, y) = −
Ny∑
i=1

K∑
k=1

q(yi = k) log p(yi = k|x, y1:i−1),

where q(yi = k) = δk,yi is a Kroncker’s delta func-
tion such that δk,yi = 1 if yi = k and 0 otherwise.

We employ label smoothing for regularization like
Lewis et al. [5]. That is, q(yi) is replaced with a
mixture between q(yi) and a uniform distribution
over the vocabulary [15]

q′(yi = k) = (1− ε)δk,yi + ε
1

K
, (3)

where K is the size of the vocabulary and ε ∈ [0, 1]
is the smoothing parameter.

2.2 Robust likelihood for noisy data

As mentioned in the introduction, a significant pro-
portion of the observations in the dataset have noisy
labels, i.e. their target sequence yn is unrelated to
their input sequence xn. It has been shown that
noise in training datasets can dramatically decrease
prediction performance [16]. Hernández-Lobato et
al. [17] proposed a likelihood for multi-class clas-
sification that accounts for labelling errors in the
dataset. Inspired by this work, we propose a novel
likelihood for robust sequence-to-sequence modelling
to mitigate the effect of the noise in the data.

We construct the likelihood using the following
generative process. For each example, we intro-
duce a latent binary variable, θn ∈ {0, 1}, indicating
whether the corresponding target sequence yn is a
noisy label (θn = 1) or not (θn = 0). If yn is noise-
free, i.e. θn = 0, then we model yn conditionally as
p(yn|xn, θn = 0) = pBART(yn|xn) from eq. (1). On
the other hand, if yn is a noisy label (i.e. θn = 1),
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then we assume p(yn|xn, θn = 1) = pLM(yn), where
pLM(yn) is a language model independent of xn.
Thus, the robust likelihood for the nth example is

p(yn|xn, θn) = pBART(yn|xn)1−θnpLM(yn)θn . (4)

Imposing i.i.d. Bernoulli distributions on the la-
tent indicator variables, i.e. θn ∼ Ber(α), and
marginalizing yields the following robust likelihood

p(yn|xn) =
∑

i∈{0,1}

p(yn, θn = i|xn)

=
∑

i∈{0,1}

p(yn|xn, θn = i)p(θn = i) (5)

= (1− α)pBART(yn|xn) + αpLM(yn),

where α ∈ [0, 1] controls the rate of noisy examples.
Eq. (5) implements the assumption that the dataset
contains α · 100% noisy labels, i.e. pairs (xn, yn)
where yn is unrelated to xn, but we do not know
for which n. In the special case, where α → 0,
we recover the classic likelihood from eq. (1). On
the other hand, when α→ 1 the model becomes a
language model independent of xn. The language
model can range from a simple uniform distribution
to an n-gram model to a complex neural language
model.

For a pair (xn, yn) with no relationship between
xn and yn, we expect that pLM (yn) > pBART(yn|xn)
on average and therefore a lesser contribution to the
loss. We confirmed this behavior empirically.

2.3 Calibration and decision-making

Reconstruction of the teacher text yn from xn can
be an ill-posed problem in the sense that yn is not
always uniquely determined from xn. For example,
if students are really early in their writing develop-
ment or not focused on the writing task, then xn
may contain very little information about what the
student intended to write and in these cases, it is not
possible to predict yn from xn alone. For example,
the conventional writing of the student text ’de bea
r pae’ is ’These bears are playing.’, which is not
obvious. However, using eq. (2) always leads to a
prediction.

To be able to reject predictions for such exam-
ples, we investigate to what degree the average log-
likelihood, i.e.

C(ŷ|x) =
1

Nŷ

Nŷ∑
i=1

log p(ŷi|x, ŷ1:i−1) (6)

of the translation ŷ of x reflects the quality of the
predicted text ŷ. Intuitively, a translation ŷ with a
low likelihood should be a poor translation of the
student text, and therefore, unsuitable to use as a
basis for evaluating downstream linguistic metrics.

Model calibration It is well-known that cal-
ibrated uncertainties are required for optimal
decision-making [18] and the argument above does
indeed assume that the models are calibrated [19].
However, neural networks can be overconfident in
their predictions [19–21]. Therefore, we consider
two methods for improving model calibration: re-
calibration via temperature scaling [20] and Deep
Ensembles (DE) [22] and investigate whether they
improve the calibration of the model, and subse-
quently, lead to better decision-making.

Temperature scaling In general, the probabili-
ties p(yi = k|x, y1:i−1) are computed by feeding the
network outputs, zi,k, through the softmax function,
i.e.

p(yi = k|x, y1:i−1) =
exp zi,k∑K
k=1 exp zi,k

. (7)

In temperature scaling, the logits zi,k are simply
scaled by 1

T where T > 0 is the temperature [20].
This has the effect that the network becomes less
confident for T > 1 and more confident for T <
1. The temperature T is selected to maximize the
log-likelihood of the validation data. In our setup,
temperature scaling only affects the likelihood p(ŷ|x)
of a translation ŷ but not the translation itself as
we use the greedy search strategy in eq. (2).

Deep Ensembles DEs [22] have been shown to
not only provide well-calibrated probabilities, but
also to provide superior predictive performance in
many settings [23]. DEs are typically implemented
by keeping the model architecture and training pa-
rameters fixed and simply changing the initializa-
tion of the network before training. After fitting
the model using S different initializations, we can
make predictions by averaging the individual models’
probabilities

pDE(yi = k|x, y1:i−1) =
1

S

S∑
s=1

ps(yi = k|x, y1:i−1),

where pDE(yi = k|x, y1:i−1) denotes the predictive
distribution for the DE and ps denote the sth model
in the ensemble.

3 Experiments

To investigate the proposed methods, we designed
and conducted a number of numerical experiments.

3.1 Data

The dataset has been collected from a digital learn-
ing platform2 and consists of N = 36, 610 pairs of
student and teacher texts, where the teacher text
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for a given student text is the conventional writing
of the student text, i.e. the student text modified
to have proper spelling, grammar etc. The collected
data was filtered to remove sensitive information.
We use 80% of the data for training, 10% for valida-
tion, and 10% for testing.

The data contains a substantial amount of label
noise due to unintended use of the learning platform.
For example, a student may have written text both
in the designated student text field but also in the
text field designated for the teacher. Based on a
sample of 1,000 pairs, we estimate the percentage
of faulty pairs to be around 25%. To ensure reli-
able performance estimates, the validation and test
dataset have been manually filtered by a teacher to
remove faulty pairs. The resulting validation set and
test sets contained Nval = 2, 586 and Ntest = 2, 767
observations, respectively.

Data augmentation We synthetically increase
the amount of data by simulating student texts and
use this synthetic data in an extra fine-tuning step.
We augment conventional children’s books provided
by Danish publishers with several operations to emu-
late student text, including word and letter deletions,
shortening of words to their initial letter, cutting
of word endings, and introduction of common mis-
spellings of letters and bigrams based on the real
training data. All operations are applied randomly
with heuristically chosen frequencies. This resulted
in 279,553 simulated pairs of student and teacher
texts. The synthetic data is only used for training,
i.e. no synthetic data is included in the real-world
test set used for evaluating the models.

3.2 Hyperparameters

In all experiments, we use the ”base” version of
BART, which has 6 layers in both the encoder and
decoder and a total of 140 million parameters. We
use the pre-trained BART model from FAIRSEQ,
which has been trained to denoise corrupted text in
English [5, 24]. We fix the label smoothing parame-
ter to ε = 0.1. We further regularize the model with
dropout [25] and weight decay [26]. The dropout
rate and the amount of weight decay are selected
using a grid-search on the validation data, where the
median normalized edit distance (see Section 3.3) is
used as the selection criterion. Similarly, we train
the model until it has converged in terms of the
validation median normalized edit distance using
the AdamW [26] optimizer with a learning rate of
3e−5. The text data is encoded with the GPT-2
byte pair encoding [27], which has a vocabulary size
of K = 50, 260.

3.3 Reconstructing the teacher texts

The purpose of this experiment is to quantify how
accurate the teacher texts can be reconstructed from
the student texts. We assess the quality of a recon-
structed text ŷ for x by its character-level edit dis-
tance (the Levenshtein-distance) to the true teacher
text y, i.e. ED(y, ŷ), that counts the number of dele-
tions, insertions, and substitutions needed to trans-
form ŷ into y [28]. Since the ED depends on the
length of the inputs, we also consider a normalized
ED, which is in the interval [0, 1]:

NED(y, ŷ) =
ED(y, ŷ)

max(|y|, |ŷ|)
, (8)

where |y| and |ŷ| denote the length of the sequences.

We compare the fine-tuned models to three dif-
ferent baseline models. The simplest baseline is the
Identity model that simply provides the input text
x as the reconstruction ŷ, i.e. ŷ = x. We also com-
pare against the pre-trained BART model without
any fine-tuning, and with reconstructions provided
by ChatGPT. A description of how ChatGPT was
used to produce denoised student texts is given in
Appendix A.

In the first section of Table 2, we report both
mean and median EDs for the test set. It is seen
that both the Identity model and the pre-trained
BART without fine-tuning achieve a mean NED of
0.16, whereas ChatGPT improves the NED to 0.11.
Fine-tuning of the BART model with the training
dataset further reduces the mean NED to 0.09. The
best mean NED of 0.08 and median NED of 0.01
was achieved by first fine-tuning with the synthetic
student texts and subsequently fine-tuning with the
real training data.

3.4 Robust likelihood

The next experiment is designed to investigate the
benefit of the novel robust likelihood proposed in
eq. (5). This likelihood requires the use of an ex-
ternal language model. We employed simple n-
gram models with n = 2, 4, 6 on the token level,
which were estimated using the training data via
the KenLM toolkit [29]. We set α = 0.25 in the
Bernoulli distribution and also regularize the model
with dropout and weight decay as with the label
smoothed cross-entropy loss.

In the middle section of Table 2, we again re-
port mean and median EDs. We observe that the
proposed robust likelihood with a 2-gram language
model reduces the mean ED to 3.20 and the use of
a more complex language model (6-gram) further re-
duces the mean ED to 3.11 and the median ED and
NED to 0. We do, however, observe that the stan-
dard errors of the mean ED and NED for the robust
likelihood models overlap with the standard errors
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Table 2. The baselines and the results of fine-tuning the BART model with the methods described in Section 2
and the data and metrics described in Section 3. ± indicates the standard error of the mean. (synth., synthetic;
temp., temperature; ED, edit distance; NED, normalized ED; MAE, mean absolute error; FK, Flesch-Kincaid;
ECE, expected calibration error; MCE, maximum calibration error).

MEAN MEDIAN MAE
ED NED ED NED FK LIX ECE MCE

Identity 5.40±0.12 0.16±0.00 4.00 0.12 1.36±0.06 5.66±0.26
ChatGPT 5.19±0.22 0.11±0.00 2.00 0.05 0.78±0.05 3.36±0.20
BART (no fine-tuning) 5.67±0.14 0.16±0.00 4.00 0.12 1.39±0.06 5.77±0.26 0.19 0.29
BART (fine-tuning) 3.65±0.14 0.09±0.00 1.00 0.02 0.58±0.03 2.88±0.14 0.04 0.65
BART (synth. data, fine-tuning) 3.23±0.14 0.08±0.00 1.00 0.01 0.57±0.03 2.65±0.14 0.04 0.07

BART (synth. data, fine-tuning, robust 2-gram) 3.20±0.13 0.08±0.00 1.00 0.01 0.57±0.03 2.65±0.14 0.03 0.14
BART (synth. data, fine-tuning, robust 4-gram) 3.11±0.14 0.08±0.00 1.00 0.01 0.55±0.03 2.61±0.14 0.04 0.23
BART (synth. data, fine-tuning, robust 6-gram) 3.11±0.14 0.08±0.00 0.00 0.00 0.56±0.03 2.60±0.13 0.04 0.14

BART (synth. data, fine-tuning, temp. scaling) 3.23±0.14 0.08±0.00 1.00 0.01 0.57±0.03 2.66±0.14 0.02 0.11
BART (synth. data, fine-tuning, deep ensemble) 3.16±0.14 0.08±0.00 1.00 0.01 0.56±0.03 2.68±0.14 0.04 0.12

for the best model fine-tuned with the smoothed
cross-entropy loss.

3.5 Predicting the linguistic metrics

In the third experiment, we investigate how accu-
rately we can estimate the linguistic metrics. We
compute the linguistic metrics on the teacher texts
yn and consider those the ground truth. We then
evaluate the same metrics using the reconstructed
texts ŷn and compare these to the ground truth.

In this work, we focus on two simple metrics for
text complexity and readability, namely the Flesch-
Kincaid grade level formula (FK) [11] and the read-
ability index LIX [12], which are given by

FK = 0.39
No. words

No. sentences
+ 11.8

No. syllables

No. words
− 15.59

LIX =
No. words

No. sentences
+ 100

No. long words

No. words
,

where long words are defined as words with more
than 6 characters. We clip the FK and LIX predic-
tions to the interval [a, 2b], where a is the theoret-
ical lower limit of the metric and b is the thresh-
old value for very complex texts. We have that
(a, b) = (−3.4, 18) and (a, b) = (1, 55) for FK and
LIX, respectively.

Table 2 summarizes the results. We observe that
all fine-tuned models achieve comparable perfor-
mance for LIX, but substantially lower MAEs com-
pared to the baseline models. We also observe the
same pattern for the FK metric.

In Appendix B, we provide the mean and median
LIX and FK computed on the student texts, the
predicted conventional texts, and the ground truths
and see that the predicted texts are more similar
to the ground truths than the student texts, as
expected.

3.6 Calibration and decision-making

The purpose of the last experiment is to evaluate
and compare the models in terms of calibration and
to investigate whether the average log likelihood of
the predicted sequences can be used to identify poor
predictions. The miscalibration of a model is the
difference between the models’ confidence and the
probability of the model being correct, where the
confidence of the model is the probability of the
predicted token. We quantify the calibration error
using both the expected calibration error (ECE)
and the maximum calibration error (MCE) [20]. We
compute the calibration metrics over all tokens in
the test set.

For this experiment, we further compare against
a temperature scaled model and a DE constructed
using three fine-tuned BART models from random
initializations of the model parameters. The last
two columns in Table 2 summarizes the results. It
can be observed that all models (except the BART
model with pre-training only) perform similar in
terms of ECE. Nonetheless, the temperature scaled
model is best calibrated, as expected.

In terms of MCE, the temperature scaled model is,
however, not the best calibrated model. The BART
model fine-tuned only on the real training data shows
the largest MCE, but interestingly, the fine-tuning
with synthetic student data greatly reduces the MCE.
We also note that the DE method does not lead to
improved calibration compared to the single model.
However, it does slighly improve the reconstructions
w.r.t. the mean ED.

Figure 1 shows accuracy-rejection curves [30] for
the mean NED, FK MAE, and the LIX MAE for a
selection of models from Table 2. The data points in
the plots are obtained by varying the log-likelihood
threshold for accepting and rejecting predictions.
Figure 1 reveals that the average log-likelihood
C(ŷ|x) is indeed a viable feature for implementing
a reject option as all three metrics improves as we
reject more translations ŷ. For example, the mean
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Figure 1. (a) Accuracy-rejection curve for the mean NED and a selection of models from Table 2. (b)-(c) Same
curves as in (a) but for the FK MAE and LIX MAE, respectively. The data points in all figures are obtained by
varying the rejection threshold for the average log-likelihood C(ŷ|x) of a translation ŷ. ”Lower” curves are better.

NED can be reduced from approx. 0.08 to 0.04 if
one is willing to reject 25% of the test observations.

Finally, we see that the rejection curves for all
models are quite similar. This suggests that the
model calibration does not influence the decision-
making abilities of the models, although this result
could also be due to the relatively small calibration
and performance differences between the models.

4 Conclusion

In this work, we have framed the automated feedback
on children’s early-stage writing as a machine trans-
lation problem, where we translate students’ early
writing into conventional writing. We demonstrated
that the conventional writing can be predicted with
high accuracy by fine-tuning a pre-trained BART
architecture. We also showed that the readability
metrics, Flesch-Kincaid and LIX, can be estimated
with significantly higher accuracy using the transla-
tions compared to the student texts directly. Fur-
thermore, as an alternative to the label-smoothed
cross-entropy loss function, we proposed a novel ro-
bust likelihood to mitigate the effects of label noise
in the observed data. Our experiments indicated a
slightly improved predictive accuracy. Finally, we
have shown that the log-likelihood can be used as
a criterion for identifying poor translations by the
sequence-to-sequence models, inducing a trade-off
between accuracy and rejected predictions.
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A Denosing student texts
with ChatGPT

To obtain denoised early-stage writing with Chat-
GPT, we used OpenAI’s chat completion API. The
context given to ChatGPT consisted of a description
of the task, ChatGPT’s role in this task, examples of
inputs and desired outputs, and finally the student
text that should be denoised. This query was then
repeated for each student text to obtain their de-
noised versions. The GPT model used was GPT-3.5
Turbo.

B Overall readability and text
complexity

In Table B.1, we provide the mean and median FK
and LIX computed on the raw student texts x, the
conventional texts predicted by the models, and the
ground truth conventional texts y provided by teach-
ers. Table B.1 shows that there is indeed a difference

between the readability and text complexity of the
student texts and the teacher texts. Furthermore,
Table B.1 reveals that the predicted texts are quali-
tatively more similar to the ground truths than the
student texts, and that the models trained with the
robust likelihood generally produce the texts that
are the most similar to the ground truths in terms
of readability and text complexity.
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Table B.1. Text complexity and readability scores computed on the student texts x, the predicted conventional
texts, and the teacher texts (ground truths) y. ± indicates the standard error of the mean. (synth., synthetic;
temp., temperature; FK, Flesch-Kincaid).

MEAN MEDIAN
FK LIX FK LIX

x 1.76±0.08 17.50±0.34 0.80 10.00

ChatGPT 1.83±0.07 17.77±0.30 1.31 14.57
BART (no fine-tuning) 1.79±0.08 17.59±0.34 0.80 10.00
BART (fine-tuning) 1.79±0.06 17.35±0.27 1.31 14.52
BART (synth. data, fine-tuning) 1.78±0.06 17.24±0.27 1.31 14.33

BART (synth. data, fine-tuning, robust 2-gram) 1.85±0.06 17.51±0.27 1.31 14.59
BART (synth. data, fine-tuning, robust 4-gram) 1.89±0.06 17.74±0.28 1.31 15.00
BART (synth. data, fine-tuning, robust 6-gram) 1.90±0.06 17.77±0.27 1.31 15.61

BART (synth. data, fine-tuning, temp. scaling) 1.78±0.06 17.24±0.27 1.31 14.25
BART (synth. data, fine-tuning, deep ensemble) 1.78±0.06 17.18±0.27 1.31 14.19

y 1.91±0.06 17.82±0.27 1.31 16.50
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