
SafetyCage:
A misclassification detector for feed-forward neural networks

P̊al Vegard Johnsen∗1 and Filippo Remonato1

1Sintef Digital
pal.johnsen@sintef.no, filippo.remonato@sintef.no

Abstract

Deep learning classifiers have reached state-of-the-
art performance in many fields, particularly so image
classification. Wrong class assignment by the classi-
fiers can often be inconsequential when distinguish-
ing pictures of cats and dogs, but in more critical
operations like autonomous driving vehicles or pro-
cess control in industry, wrong classifications can
lead to disastrous events. While reducing the error
rate of the classifier is of primary importance, it is
impossible to completely remove it. Having a system
that is able to flag wrong or suspicious classifications
is therefore a necessary component for safety and
robustness in operations. In this work, we present
a general statistical inference framework for detec-
tion of misclassifications. We test our approach on
two well-known benchmark datasets: MNIST and
CIFAR-10. We show that, given the underlying
classifier is well trained, SafetyCage is effective at
flagging wrong classifications. We also include a
detailed discussion of the drawbacks, and what can
be done to improve the approach.

1 Introduction

Image classification with deep learning (DL) classi-
fiers has in recent years seen extensive use. While
convolutional Neural Networks (CNN) are widely
used for this purpose on a variety of situations [1–4],
deep learning models exclusively based on multilayer
perceptrons have recently shown equal success [5,
6]. While these approaches showcase great results,
it is impossible to create a perfect system: Some
wrong classifications are bound to happen. While
this oftentimes does not pose a problem, wrong
results from the classifier can lead to serious conse-
quences in difficult or safety-critical operations, e.g.
autonomous driving vehicles. Work has been put
into establishing frameworks to increase the robust-
ness of classification models, especially so for out-
of-distribution (OOD) detection [7, 8]. A common
approach in OOD detection consists in constructing
a second DL-based model that acts as a supervisor

∗Corresponding Author.
This work has been supported by the NFR project 304843 -
EXAIGON

for the classifier. In this direction Henriksson et.al.
[9] propose a structured way to assess the perfor-
mance of the supervisor for OOD detection in DL
classifiers. Bayesian neural networks, which would
be an obvious choice for basing wrong classification
detection on uncertainty estimation, have instead
been shown to be unsuitable [10].
In our setting, instead, we are interested in in

distribution detection of wrong classification. That
is, while OOD detection concerns input samples for
which the classifier has not been trained, e.g. a clas-
sifier trained on cats and dogs receiving an eagle as
input, we are interested in detecting samples that do
belong to the same family as the training samples
(cats and dogs) but are misclassified, possibly due to
unknown, unexpected, or rare properties that posi-
tion them close to the boundary of the distribution.
Some work has been done also in this direction, but
mostly by simply evaluating the network’s subjec-
tive “uncertainty” by thresholding the value of a
softmax function at the output layer [11].
We take a route not based on additional DL su-

pervisors or limited to the last layer, by treating the
neurons’ activation values in a neural network as
realisation of a multivariate distribution. Based on
this we infer whether the classification is likely to
be correct. In simpler terms, for a given predicted
class, we want to describe the subset of all samples
that the model correctly classifies. We posit that,
for well-performing models, wrongly classified sam-
ples will tend to appear away from the centres of
the distribution of correctly classified samples. Our
method is simple to implement, readily applicable to
all layers of a feed-forward neural network—and not
just the final one—and grounded in well-established
statistical theory. Since the method must be applica-
ble to already trained classifiers without demanding
retraining or other modifications to the architecture,
we trained a simple neural network to classify im-
ages, and froze it after training was concluded. We
would like to stress this part: Our method does
not take any advantage of the specific architecture
or training procedure of the underlying classifier.
The only requirement is the possibility to access the
network’s internal activation values during forward
passes. As such, minute details on how the classifier
was built and trained are irrelevant to the scope of
this work; still, for the sake of reproducibility, the

Proceedings of the 5th Northern Lights Deep Learning Conference (NLDL), PMLR 233, 2024.
LM 2024 P̊al Vegard Johnsen & Filippo Remonato. This is an open access article distributed under the terms and conditions of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/


main information on the architecture of the classi-
fier is given in the Results section. Everything is
built on top of the classifier, making sure to never
exploit model-specific information such as particular
neuron connections or other structural elements. In
this view our method acts as a cage around a clas-
sifier, capturing and flagging wrong classifications,
hence the name SafetyCage, and is applicable to any
existing feed-forward network.

2 Multivariate SafetyCage

Let us set the notation for the rest of the paper: Con-
sider an input sample x ∈ Rp with y its true class
(label) and ŷ the predicted class by the classifier, in
our case a simple MLP with L layers. Each layer l
is composed by Nl neurons, which during a forward
pass activate with an activation value an = g(zn),
where g is the activation function and zn is the pre-
activation value for a given neuron n. We denote
with Ω the set of all input samples to the classifier,
and with Ωy ⊆ Ω the subset of correctly classified
samples with true class y, i.e. Ωy = {x ∈ Ω | ŷ = y}.
Then, our method of uncertainty estimation under
classification is based on using the training set Ω(tr)

of the classifier to construct the probability distribu-
tion of the pre-activation values z(tr) corresponding
to Ωy for each class y. In other words, for each
class y we construct the distributions of z from the
samples in Ω

(tr)
y : P (z | x∈Ω

(tr)
y ). The process of

constructing and storing these distributions is what
we call training for the SafetyCage. Then, given
a test sample x∗ not seen during the SafetyCage’s
training, its predicted class ŷ∗, and its correspond-
ing pre-activation values z∗ from the full network,
we infer whether z∗ originated from the probability
distribution corresponding to Ω

(tr)
ŷ∗ by means of a

hypothesis test:

H0 : Z
∗ ∼ P (z | Ωŷ∗)

against (1)

H1 : Z
∗ ̸∼ P (z | Ωŷ∗).

Note that in (1) we dropped the superscript (tr) to
lighten the notation. We now make a few remarks:
Remark 1: The reason we prefer to use the pre-

activation values is twofold: First, we want the Safe-
tyCage to operate regardless of how the classifier was
trained. For models with ReLu, activation values
often present large inflations at 0, which make two-
sided p-value computations prolematic; ReLu deletes
information that could have been useful, which is
instead preserved in the pre-activations. Second,
we observed that pre-activation values appear more
normally distributed than the actual activations, see
Figure 1.

Remark 2: While we train the SafetyCage on the
correctly classified samples in the train set of the

Figure 1. Observed probability distribution of ReLu-
activation values (top) and pre-activation values (bot-
tom) for two particular nodes in the penultimate (last
hidden) layer of a trained MLP model used in this paper.

classifier, we could use also (or exclusively) the ones
from the test set. Indeed, the only strict requirement
is that the SafetyCage is trained on correctly classi-
fied samples. The reason to use the test set would
be avoiding the overfitting the model did on the
train data, leading to exaggerated confidence, and
the influence of borderline wrong classifcation that
would pollute the distributions in the SafetyCage.
Note that, since SafetyCage and the classifier model
absolve to two completely different tasks, there is no
information leak in using the classifier’s test set for
training SafetyCage. Due to both time and space
constraints, we will include this investigation in an-
other work.

Remark 3: For a given predicted class, we test
membership against not membership. This might
become problematic when several classes are present,
as the space of “not membership” becomes large.
In those cases, it might be beneficial to set up the
hypothesis test between another class and the pre-
dicted class, for each other class. Then, one can
accept the predicted class when all tests are failed,
or reject the predicted class if at least one test ac-
cepts the null hypothesis for membership in one of
the other classes. For the same reasons as Remark
2, we will include this investigation in another work.

Remark 4: One can similarly employ the observed
probability distribution of wrongly predicted sam-
ples for each class, and infer whether the sample to
be tested is likely to belong to the distribution of
correctly or wrongly predicted samples for the corre-
sponding predicted class via a likelihood ratio test.
This approach can be relevant with less-performing
classifier models, in which the distribution of cor-

2



rectly and wrongly predicted samples overlap.

2.1 Mahalanobis distance

Our multivariate approach to detecting wrong clas-
sifications is based on the Mahalanobis distance,
inspired by the OOD-detection approach explained
in [8]. With motivation from Figure 1, assume
the pre-activation random vector Z of size q has
a multivariate Gaussian distribution, Z ∼ Nq(µ,Σ),
with mean µ and covariance matrix Σ. Then it
can be shown [12] that the Mahalanobis distance
U = (Z − µ)TΣ−1(Z − µ) has a Chi-squared distri-
bution with q degrees of freedom, U ∼ χ2

q.

Given a sample x to be tested, one can then cal-
culate the appropriate p-value as p = 1 − Fχ2

q
(u),

with Fχ2
q
being the cumulative of the Chi-squared

and u the realisation of the Mahalanobis distance
for the pre-activation values z of x.

The above holds when µ and Σ are known. If they
are unknown one needs to estimate them, usually
with the sample mean µ̄ and the unbiased sample
covariance Σ̄u. In those cases, the corresponding
distribution of Ū will still converge asymptotically
to a χ2

q as the amounts of samples in the estimators
n −→ ∞ thanks to the continuous mapping theorem
[13], but it may be inaccurate if Ωy is small for a
particular class y, e.g. in cases with unbalanced
classes.

The assumption regarding the Gaussianity of pre-
activation values is strong. Nonetheless, when the
pre-activation random vector exhibits a multivariate
probability distribution closely approximating that
of a Gaussian, the utilization of the Mahalanobis
distance remains a justifiable choice.

In this context, one can argue that an alternative
way to infer the null hypothesis would be computing
the p-value of the empirical cumulative distribution
function (ECDF) of the Mahalanobis distance. Note
that this puts no assumptions on the underlying
probability distribution of the pre-activation values.
Denoting F̂ the corresponding ECDF, the p-value
is then computed as 1− F̂ (u).

Separation between layers

In a neural network the input x goes through several
transformations equal to the number of hidden layers
plus one. It can therefore be natural to separate the
pre-activation values Z per layer Z = [Z1, ..., Zh, Zo],
with h the total number of hidden layers and Zo de-
noting the output layer. One can then also separate
the null hypothesis given in (1) in the same way, thus
obtaining one p-value for each layer, which can later
be combined into one single p-value for the whole
sample. There are several p-value combination tests,
among them Fisher’s combination test [14], as well
as the more recent Cauchy combination test [15].

It may therefore be beneficial to only regard a
subset of all layers when choosing which p-values
to combine for the final decision. In this work we
investigate the concatenation of all layers (giving
one p-value directly), separation between all layers
(giving h+ 1 p-values, then combined to one), only
including the hidden layers (giving h p-values, then
combined to one), and only including the penulti-
mate layer (giving one p-value).

3 Results

We tested our approach on two famous benchmark
datasets: MNIST [16] and CIFAR-10 [17]. In each
case, the underlying classifier is a feed-forward, fully-
connected neural network composed of two hidden
layers with 256 and 128 neurons, respectively, and
one output layer with 10 neurons. The hidden lay-
ers have ReLu activation functions, while the out-
put layer has sigmoid activation. The network was
trained with the standard Adam optimizer. Af-
ter the classifier was trained, the SafetyCage has
been trained as described in Section 2, and tested on
10000 unseen samples not used for training. We eval-
uate the SafetyCage with the performance metrics
precision (P), recall (R), specificity (Spe), negative
predictive value (NPV), and the Matthews corre-
lation coefficient (MCC), which we regard as the
main performance metric due to its summarising
properties with respect to the other metrics [18].

3.1 Results on a good classifier

We first applied the SafetyCage on the MNIST
dataset. On this dataset, the underlying classifier
does a good job at distinguishing different hand-
written digits with an accuracy of 0.98. See also
Figure 2 where we show scikit-learn’s t-SNE [19, 20]
decomposition of the pre-activation values in the
penultimate layer of the network for the digits 1 and
8. There we see how the classes are well separated,
and also how wrong classifications have a tendency
to appear closer to the edge of the feature space,
which makes sense when the classifier is well trained.
Those are the points we are interested in detecting
with the SafetyCage.

Table 1 presents the performance metrics for the
SafetyCage applied to the MNIST dataset where
p-value rejections, and consequent flags as wrong
classifications, were performed at a significance level
of α = 0.05. The column M indicates on what basis
the p-values are computed: Either via the empirical
cumulative distribution function (ECDF), or via the
χ2-asymptotic under the assumption of Gaussianity.
The column L indicates to which layer the Safe-
tyCage was applied: ‘p’ for only penultimate layer,
‘h’ for all hidden layers, or ‘a’ or all layers (hidden
and output). In the cases where multiple layers have

3



Figure 2. A t-SNE visualisation of the feature space
of the penultimate layer of the MLP network for the
digits 1 and 8 in the MNIST dataset and whether the
classifier assigned the correct or incorrect label. The
classes are clearly separated. Wrong classifications tend
to appear near the border of the feature space of the
correct classifications.

been considered (L=a or h), p-values coming from
each layer have been combined using the Fisher or
Cauchy combination test, as indicated in the col-
umn CT in the table. We tested all combinations of
L and p-value aggregation procedures for both ap-
proaches, ECDF and χ2-asymptotic. Additionally,
we varied the significance level α to maximise the
MCC. Results for the optimal α are presented in
Table 2, with the corresponding confusion matrix
shown in Figure 3.

M L CT P R Spe NPV MCC

ECDF p - 0.19 0.57 0.95 0.99 0.31

ECDF h Cau. 0.17 0.57 0.94 0.99 0.29

ECDF a Cau. 0.13 0.71 0.91 0.99 0.28

ECDF a Fis. 0.11 0.83 0.87 1.00 0.27

ECDF h Fis. 0.13 0.69 0.91 0.99 0.27

ECDF c - 0.14 0.44 0.95 0.99 0.22

χ2 p - 0.073 0.91 0.77 1.00 0.22

χ2 a Fis. 0.062 0.93 0.72 1.00 0.20

χ2 a Cau. 0.062 0.90 0.73 1.00 0.19

χ2 h Cau. 0.06 0.90 0.72 1.00 0.19

χ2 h Fis. 0.06 0.90 0.72 1.00 0.19

χ2 c - 0.06 0.81 0.76 0.99 0.18

Table 1. The evaluation of the SafetyCage when applied
on the MNIST data, for different combinations, ordered
with respect to MCC when α = 0.05.

As we can see from the tables, the SafetyCage
has high recall but very low precision. On the one
side, precision is not the most informative metric in
this case, as it does not take into account the true
negatives, that is, the samples that are correctly
classified and correctly accepted by the SafetyCage.

M L CT Best α P R Spe NPV MCC
χ2 p - 2.32e-11 0.18 0.60 0.95 0.99 0.31

ECDF p - 5.01e-2 0.19 0.58 0.95 0.99 0.31

ECDF a Fis. 1.36e-2 0.15 0.73 0.92 0.99 0.31

ECDF a Cau. 2.62e-2 0.17 0.63 0.94 0.99 0.30

ECDF h Cau. 5.45e-2 0.17 0.61 0.94 0.99 0.30

ECDF h Fis. 2.69e-2 0.17 0.60 0.94 0.99 0.29

χ2 a Fis. 4.05e-14 0.14 0.68 0.91 0.99 0.28

χ2 a Cau. 2.65e-12 0.13 0.71 0.90 0.99 0.28

χ2 h Cau. 3.41e-9 0.11 0.75 0.88 0.99 0.26

χ2 h Fis. 3.23e-8 0.10 0.80 0.86 1.00 0.25

ECDF c - 4.50e-2 0.15 0.44 0.95 0.99 0.24

χ2 c - 3.17e-9 0.11 0.62 0.90 0.99 0.23

Table 2. The evaluation of the SafetyCage when applied
on the MNIST data, ordered with respect to the MCC,
with the α that maximizes MCC for each combination.

Figure 3. Confusion matrix for the first line in Table 2
with significance level α = 2.32 · 10−11.

In critical operations having a high recall is more
important than high precision, which is the scenario
the SafetyCage is built to tackle. On the other side,
even though it is less important, precision cannot
be completely neglected, especially if the method
needs to be used by real human operators, since
too many false alarms would induce little trust. In
order to tackle this, we adjusted the significance
level α to maximise the MCC scores, rebalancing
precision and recall. By looking at the confusion
matrix for the configuration with the highest MCC,
shown in Figure 3, we can see how of the total 196
examples wrongly classified by the neural network
model, 117 (60%) have been correctly detected and
flagged by the SafetyCage. At the same time, the
SafetyCage wrongly flagged 526 examples that were
indeed correctly classified. While this is the source
of the poor precision score, it represents only 5.4 %
of the total negative samples.

We show in Figure 4 a histogram of the Maha-
lanobis distance calculated from the penultimate

4



Figure 4. The Mahalanobis distance from the penulti-
mate layer of the model for the digit 1 in MNIST. Also
included is the estimated χ2 distribution of the Maha-
lanobis distance for the correct predictions of the digit
in the training data.

layer of the classifier. We see how the distance is
much larger for wrongly classified samples, which
confirms our idea of using it as a metric to evaluate
the samples. At the same time, we see that the
distribution of the Mahalanobis distance is far from
converging to a χ2. This might indicate that the
pre-activation values are not (sufficiently) normally
distributed.

3.2 Results on a poor classifier

We additionally trained a model on a more diffi-
cult dataset, the CIFAR-10. When constructing
the model for MNIST, we tuned the architecture
and training to obtain a reasonably decent (but
not perfect) classifier. This has not been done for
CIFAR-10, where the exact same architecture and
training procedure as for MNIST has been used.
This resulted in an accuracy of 0.49. The purpose
was to test the SafetyCage on a poor underlying
classifier.

Figure 5 shows a visualisation of the first two
components in the t-SNE decomposition of the pre-
activation values in the penultimate layer of the
network for the CIFAR-10 classes ”automobile” and
”ship”. In opposition to the MNIST case, we clearly
see the poor performance of the classifier: The two
classes are not separated, and the wrongly classified
samples are no longer appearing close to the edge,
but are completely overlapping the distribution of
the correctly classified ones.

Poor performace of the classifier clearly impacts
also the SafetyCage. In Figure 6 we see how the
empirical distribution of the Mahalanobis distance
is very far from the assumed χ2 distribution. As a
result, the SafetyCage performance is comparable
to random guessing on this example.

Figure 5. A t-SNE visualisation of the feature space
of the penultimate layer of the network for the classes
“automobile” and “ship” in the CIFAR-10 dataset and
whether the classifier assigned the correct or incorrect
label. The distributions of the classes and assigned labels
are overlapping.

Figure 6. The Mahalanobis distance from the penul-
timate layer of the model for the “automobile” class in
CIFAR-10. Also included the estimated χ2-distribution
of the Mahalanobis distance for the correct predictions
in the training data.

4 Discussion and conclusions

We have seen that for a well-performing neural net-
work model, the multivariate SafetyCage introduced
in this paper performs well at distinguishing cor-
rectly and wrongly classified samples, detecting and
flagging 60% of the wrong classifications against
a drawback of 5.4% unnecessary flags. This gives
acceptably large recall, specificity, and negative pre-
dictive value, but low precision. We argue that this
can be due to two reasons: The distribution of the
pre-activation values being too far from a Normal
distribution, leading to the Mahalanobis distance be-
ing an inappropriate measure in our setting, or that
the distributions of correctly and wrongly predicted
samples of the same class are overlapping.

The second case is particularly evident when the
model is less-performing such as for the example on
the CIFAR-10 data set, where the distribution of

5



correctly and wrongly classified samples overlap, see
Figure 6.
From our results, see Table 1 and Table 2, the

two approaches, using the χ2-asymptotics or the
ECDF, yield comparable results, with the ECDF
having perhaps a marginal advantage. The small
difference between those two approaches might indi-
cate that the Mahalanobis distance does not capture
the statistical distance between the distributions of
correctly and incorrectly classified samples.

Possible steps for improving the SafetyCage could
be: Reformulating the hypothesis test to test the pre-
dicted label against every other class, or construct it
as a likelihood-ratio test comparing the probability
distributions of both correctly and wrongly predicted
samples. We expect that this could strengthen the
test, leading to fewer false positives. Using a differ-
ent distance measure than the Mahalanobis distance
could also improve performance, particularly when
the distribution of the (pre)-activation values is far
from Gaussian; see also comment above regarding
the χ2 vs ECDF approach. We also note in passing
that one could additionally use the F-beta score,
in the cases where it can be interesting to weigh
between Type I and Type II errors.
The procedure introduced in this paper can be

successfully used in an online learning fashion [21]
for two reasons: Firstly, the significance level α that
maximises the performance, with respect to some
measure, can be learnt based on new incoming data.
Secondly, new incoming data can be used to re-fit the
parameters of the parametric distributions assumed
in the layers of the neural network, in this case µ
and Σ in the Multivariate Gaussian distribution.
However, doing this in practice would require new
incoming data to be manually labeled, which may be
expensive. A cheaper alternative would be to hand-
pick particular samples of interest to be labeled.
This can be chosen based on the p-values returned
from the SafetyCage.
Even though the SafetyCage has been presented

on a simple MLP neural network, there is in principle
nothing stopping it from being generalized to any
feed-forward layers, such as convolutional or pooling,
or more complex architectures sporting e.g. skip
connections.

Lastly, a radically different approach would be to
develop a univariate SafetyCage, that is, treating
the (pre-)activations of the neurons as coming from
univariate random variables. Our initial work in
this direction is interesting, and we plan to publish
it separately, with a comparison to the multivariate
SafetyCage that has here been presented in detail.

References

[1] D. Marmanis, M. Datcu, T. Esch, and U. Stilla.
“Deep Learning Earth Observation Classifica-

tion Using ImageNet Pretrained Networks”.
In: IEEE Geoscience and Remote Sensing Let-
ters 13.1 (2016), pp. 105–109. doi: 10.1109/
LGRS.2015.2499239.

[2] D. Duarte, F. Nex, N. Kerle, and G. Vosselman.
“Multi-Resolution Feature Fusion for Image
Classification of Building Damages with Con-
volutional Neural Networks”. In: Remote Sens-
ing 10.10 (2018). doi: 10.3390/rs10101636.

[3] D. Griffiths and J. Boehm. “Rapid Object De-
tection Systems, Utilising Deep Learning and
Unmanned Aerial Systems (UAS) for Civil En-
gineering Applications”. In: The International
Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences XLII-2
(2018), pp. 391–398. doi: 10.5194/isprs-
archives-XLII-2-391-2018.

[4] J. J. Bird, D. R. Faria, L. J. Manso, P. P. S.
Ayrosa, and A. Ekárt. “A study on CNN im-
age classification of EEG signals represented
in 2D and 3D”. In: Journal of Neural En-
gineering 18.2 (2021). doi: 10.1088/1741-
2552/abda0c.

[5] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov,
L. Beyer, X. Zhai, T. Unterthiner, J. Yung,
A. Steiner, D. Keysers, J. Uszkoreit, M. Lu-
cic, and A. Dosovitskiy. “MLP-Mixer: An
all-MLP Architecture for Vision”. In: (2021).
arXiv:2105.01601. arXiv: 2105.01601.

[6] C. A. Barajas, J. C. Polf, and M. K. Gob-
bert. “Deep residual fully connected neural net-
work classification of Compton camera based
prompt gamma imaging for proton radiother-
apy”. In: Frontiers in Physics 11 (2023). doi:
10.3389/fphy.2023.903929.

[7] T. DeVries and G. W. Taylor. Learning
Confidence for Out-of-Distribution Detection
in Neural Networks. arXiv:1802.04865. 2018.
arXiv: 1802.04865.

[8] K. Lee, K. Lee, H. Lee, and J. Shin. “A
Simple Unified Framework for Detecting Out-
of-Distribution Samples and Adversarial At-
tacks”. In: Proceedings of the 32nd Interna-
tional Conference on Neural Information Pro-
cessing Systems. arXiv.1807.03888. Curran As-
sociates Inc., 2018, pp. 7167–7177.

[9] J. Henriksson, C. Berger, M. Borg, L. Torn-
berg, C. Englund, S. R. Sathyamoorthy, and
S. Ursing. “Towards Structured Evaluation of
Deep Neural Network Supervisors”. In: (2019).
arXiv:1903.01263. arXiv: 1903.01263.

[10] F. D’Angelo and C. Henning. “On out-of-
distribution detection with Bayesian neu-
ral networks”. In: (2022). arXiv:2110.06020.
arXiv: 2110.06020.

6

https://doi.org/10.1109/LGRS.2015.2499239
https://doi.org/10.1109/LGRS.2015.2499239
https://doi.org/10.3390/rs10101636
https://doi.org/10.5194/isprs-archives-XLII-2-391-2018
https://doi.org/10.5194/isprs-archives-XLII-2-391-2018
https://doi.org/10.1088/1741-2552/abda0c
https://doi.org/10.1088/1741-2552/abda0c
https://arxiv.org/abs/2105.01601
https://doi.org/10.3389/fphy.2023.903929
https://arxiv.org/abs/1802.04865
https://arxiv.org/abs/1903.01263
https://arxiv.org/abs/2110.06020


[11] D. Hendrycks and K. Gimpel. “A Base-
line for Detecting Misclassified and Out-of-
Distribution Examples in Neural Networks”.
In: (2016). arXiv:1610.02136. arXiv: 1610 .

02136.

[12] W. K. Härdle and L. Simar. “Theory of the
Multinormal”. In: Applied Multivariate Sta-
tistical Analysis. Ed. by W. K. Härdle and
L. Simar. Berlin, Heidelberg: Springer, 2015,
p. 184. doi: 10.1007/978-3-662-45171-7_5.

[13] H. B. Mann and A. Wald. “On Stochas-
tic Limit and Order Relationships”. In:
The Annals of Mathematical Statistics 14.3
(1943), pp. 217–226. doi: 10 . 1214 / aoms /

1177731415.

[14] R. A. Fisher. Statistical Methods for Research
Workers. Springer Series in Statistics. New
York, NY: Springer, 1992, pp. 66–70. doi: 10.
1007/978-1-4612-4380-9_6.

[15] Y. Liu and J. Xie. “Cauchy combination test:
a powerful test with analytic p-value calcula-
tion under arbitrary dependency structures”.
In: Journal of the American Statistical As-
sociation 115.529 (2020), pp. 393–402. doi:
10.1080/01621459.2018.1554485.

[16] Y. LeCun and C. Cortes. “MNIST handwrit-
ten digit database”. In: (2010). url: http:
//yann.lecun.com/exdb/mnist/.

[17] A. Krizhevsky. “Learning Multiple Layers of
Features from Tiny Images”. In: (2009). url:
https : / / www . cs . toronto . edu / ~kriz /

learning-features-2009-TR.pdf.

[18] D. Chicco and G. Jurman. “The advantages
of the Matthews correlation coefficient (MCC)
over F1 score and accuracy in binary classifi-
cation evaluation”. In: BMC Genomics 21.1
(Jan. 2020), p. 6. doi: 10.1186/s12864-019-
6413-7.

[19] L. van der Maaten and G. Hinton. “Visual-
izing Data using t-SNE”. In: Journal of Ma-
chine Learning Research 9.86 (2008), pp. 2579–
2605. url: http://jmlr.org/papers/v9/
vandermaaten08a.html.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. “Scikit-
learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011),
pp. 2825–2830. doi: 10.3390/info11040193.

[21] S. C. H. Hoi, D. Sahoo, J. Lu, and P. Zhao.
“Online learning: A comprehensive survey”. In:
Neurocomputing 459 (2021), pp. 249–289. doi:
10.1016/j.neucom.2021.04.112.

7

https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1610.02136
https://doi.org/10.1007/978-3-662-45171-7_5
https://doi.org/10.1214/aoms/1177731415
https://doi.org/10.1214/aoms/1177731415
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1080/01621459.2018.1554485
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.3390/info11040193
https://doi.org/10.1016/j.neucom.2021.04.112

	Introduction
	Multivariate SafetyCage
	Mahalanobis distance

	Results
	Results on a good classifier
	Results on a poor classifier

	Discussion and conclusions

