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Abstract

Typicality-based inference methods for OOD detec-
tion find a typical value (often the mean value) of
a model statistic from the training data and then
flag test points as anomalous if the model statistic
of the test data point deviates significantly from
the typical value. These methods are effective for
detecting a group of OOD data points when OOD
data points are labeled into groups, but ineffective
for the detection of individual OOD data points. In
this paper, we extend typicality-based inference to
be effective for point OOD detection by first utiliz-
ing latent features learned with contrastive learning
and then leveraging the nearest neighbors of a test
data point to provide additional context used for
point OOD detection. Additionally, we use a one-
dimensional variant of the Mahalanobis Distance as
our statistic which has not previously been used in
a typicality-based inference method. This typicality-
based inference approach is shown to improve point
OOD detection relative to several benchmarks.

1 Introduction

Neural networks have been shown to achieve high ac-
curacy on a variety of different tasks, however, they
are still prone to error when faced with data drawn
from a distribution different from that of the training
distribution [1]. This poses a considerable obstacle
to the real-world deployment of neural networks in
safety-critical applications where an incorrect pre-
diction can have extreme consequences [2]. Hence, it
is important to be able to distinguish in-distribution
(ID) data, from which the training data was drawn,
from out-of-distribution (OOD) data. OOD detec-
tion, outlier detection, or anomaly detection [2] can
be categorized into two types; the detection of indi-
vidual OOD data points (point OOD detection) and
a group of OOD data points (group OOD detection)
where all the data points in the group are considered
OOD.

A popular approach to point OOD detection is to
learn latent features of the data (usually by train-
ing a neural network model) and then use an OOD
inference method on the latent features of test data
points. Self-supervised contrastive learning is an ef-
fective way to learn the latent features of the data [3].
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Contrastive learning achieves this by training a fea-
ture extractor to discriminate between different indi-
vidual instances of data. Using a data augmentation
specific to the particular data modality, contrastive
learning involves initially creating two versions of
the same data instance, commonly referred to as
positives. A model trained with contrastive learning
is then optimized to move each instance closer to
its positive, and further away from other negative
instances of the data [4].

Related work Contrastive learning approaches
to OOD detection involve training a model with
a variant of contrastive learning such as the unsu-
pervised instance discrimination or the supervised
contrastive learning [4, 5]. After learning a latent
feature space, an inference approach is used to detect
OOD samples. This can involve traditional infer-
ence approaches such as the Mahalanobis Distance
(MD) method [6, 7], or custom approaches that are
specifically suited to the latent features learned from
contrastive learning. Examples of such approaches
include using the MD on several different augmented
versions of an image as well as using the cosine simi-
larity or Euclidean distance to the nearest neighbor
[8—10]. However, compared to these works, we aim
to detect OOD data points by using typicality-based
detection, an approach usually used in group OOD
detection and that has not previously been used
with contrastive learning.

Contributions In this paper, we propose a new
typicality-based inference method better suited to
the point OOD problem. This will exploit K-nearest
neighbors as a mechanism to automatically generate
a group of data points constituted of those closest to
a test point in the latent feature space. Appropriate
test statistics can then be evaluated for these neigh-
bors as a measure of typicality for the test point
under consideration. The key contributions of the
paper are therefore as follows:

e We propose a new typicality-based approach for
point OOD detection which is used in conjunc-
tion with contrastive learning. This method
brings the benefit of typicality-based OOD de-
tection to single OOD data point detection (Sec-
tion 3).

e We analyze the importance of learning latent

Proceedings of the 5th Northern Lights Deep Learning Conference (NLDL), PMLR 233, 2024.
@® 2024 Nawid Keshtmand, Raul Santos-Rodriguez, & Jonathan Lawry. This is an open access article distributed under the terms
and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/licenses/by/4.0/

features using contrastive learning for the over-
all performance of the approach (Section 5.2).

e Empirical evidence is presented to show that
the new typicality-based inference approach im-
proves point OOD detection compared to other
benchmark inference methods which are also
commonly used together with contrastive learn-
ing (Section 5.3).

2 Background

Throughout this paper, scalar mathematical quan-
tities will be represented in lowercase, and vectors
and matrices will be in bold. The term ‘class labels’
will refer to the labels for the different classes of
the ID dataset. The term ‘OOD labels’ will denote
whether the data point is ID or OOD.

2.1 Contrastive Learning

Contrastive learning involves assigning an anchor de-
noted x®™¢, as well as xP°® and ™9 which denotes
an anchor’s positive and negative samples respec-
tively. The goal of contrastive loss is to learn a
feature vector of @™, denoted z®™¢ = fo(x*"°),
similar to the feature vectors of zP°® denoted zP°® =
fo(xP°®), whilst also being dissimilar to z™¢9 de-
noted z™¢9 = fg(x™9). The most common form
of similarity measure between features z; and zj; is
given by the cosine similarity as given in Eqn. 1:
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The type of contrastive loss used in this work is
the Supervised Contrastive (SupCLR) loss [5]. In
this case, all the data points in the same class as
the anchor x®™¢ are treated as positive samples
xP°® whilst data points in a different class from
the anchor are treated as negative samples. The
SupCLR contrastive loss is then given by Eqn. 2:
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Here, P(z%™) is the set of indices of all positives
samples of z%™¢ which are present in the batch, and
|P(z%™€)| is its cardinality. A(z®™€) is the set of
all indices in the batch excluding z®™¢ itself, this
includes both zP°® and z;. Intuitively, the SupCLR
loss learns the features in common between different
instances of the same class whilst also being invariant
to data augmentation.

2.2 Typicality

For a group of test inputs of size K denoted X,
typicality-based methods generally involve exam-
ining whether X was sampled from the training
distribution p or a different distribution g. This is
done by using a statistic v and examining its K-
sample average deviation € from a typical value of
the statistic 4, as shown in Eqn. 3:
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where 7; denotes the statistic for the I** data point
in the group [11]. OOD detection using a typicality-
based approach is performed with the assumption
that é will be lower for ID data compared to OOD
data. This can be problematic in cases where the
variance of 7, is high for individual ID data points,
making it difficult to determine whether a large €
is due to the test data points being OOD or due to
the variance in 7; [12]. This is one of the reasons
why typicality-based strategies are generally most
effective in distinguishing between sets of OOD and
ID data points, since the variances of ; and € tend
to be lower when evaluated over larger sets of data
points.

3 Method

In this section, we introduce a typicality-based OOD
detection method that is effective for point OOD de-
tection. The method utilizes latent features learned
from contrastive learning in conjunction with the
nearest neighbors of a test data point to generate a
group of data points. We then calculate how typical
an individual data point is based on the calculation
of a statistic of interest using the individual data
point and its nearest neighbors. We argue that this
can be considered as a form of a point OOD detec-
tion approach where the nearest neighbors of the test
data point provide additional context for deciding
whether a single data point is ID or OOD. This dif-
fers from a traditional group OOD detection setting
in two main ways. First, in group OOD detection
the points in a group are usually given, whilst in
our case the group is determined from a single data
point by using K-nearest neighbors. Second, a data
point &1 can have another data point @ as one of
its neighbors (i.e. as part of its group) but there
is no requirement for xo to have x; as one of its
nearest neighbors. Our proposed approach consists
of the following steps:

1. Pass the given test data point x through a
neural network encoder f to obtain its latent
features, z = f(x).



2. Generate a group of data points for z by de-
termining its K-nearest neighbors in the latent
Space, Zneighbors-

3. Apply one-dimensional (1D) Typicality infer-
ence, which involves calculating a statistic for
each of the K data points and quantifying the
extent to which they deviate in aggregate from
a typical value 4, to obtain an OOD score,
DTypical~

A schematic for the OOD inference method re-
ferred to as ‘1D Typicality’ is shown in Fig. 1.

1D Typicality

R —
X Inference

Encoder f z > Drypical

Xneighbors —>  Encoder f

Zpeighbors

Figure 1. Schematic of the 1D Typicality approach.
x: test image. Tneighbors: K -nearest neighbors of the
test input (where distance is measured in latent space).
f: neural network encoder. z: latent features of the
test input. Zneighbors: latent feature of the K-nearest
neighbors of the test input. Drypicai: OOD score which
uses z and Zneighbours-

3.1 Statistic Selection - Average 1D
Mahalanobis Distance

Traditional typicality approaches look at how a sin-
gle aggregate statistic deviates from the typical value
of the statistic. However, a single statistic may be
insufficient to separate ID and OOD data. Here we
consider using several different statistics to examine
the extent to which each deviates from its typical
value. The typicality scores related to each statistic
are then aggregated to provide a single typicality
value for OOD detection. We chose to use a variant
of the MD as our statistic as it is a simple and estab-
lished post-processing method for detecting OOD
inputs in neural networks [13]. More specifically, we
calculate the one-dimensional Mahalanobis Distance
(1D MD) for each different dimension of a test data
point and compare it to a typical 1D MD value for
each dimension [14]. We calculate the typical values
from the training data, where we use the mean value
of the 1D MD for each different dimension as the typ-
ical values. As is generally the case when evaluating
MD, this involves modeling the latent features of the
training data using a multivariate Gaussian distri-
bution [13, 15]. After fitting a Gaussian distribution
to the data, the linearly independent eigenvectors v
of the covariance matrix ¥ can be found. We then
calculate the 1D MD for the d** dimension, M D gy,
as shown in Eqn. 4:

_ 4
=5,
where z is the latent representation of a data point,

p is the mean of the data in the latent space,
Mg is the d*" eigenvalue, Iy = vgT(z — p) is the
2

MDq)(z) (4)

projection of (z — ) to the d" eigenvector vgq. l)%d
is equivalent to the 1D MD from the projected
coordinate to the 1D Gaussian distribution N (0, Ag)
[14]. This formulation can be generalized to the
case where the data is also classified into different
classes, and where the class-specific values for the
it" class are given by MD44), H(i)s V(dyi)s Ad,i)
and l(g,4) for the 1D MD, mean, eigenvectors,
eigenvalues and projection vector respectively.

For our work, we use the multi-class formulation
where we have class-specific typical values. We use
the training data to calculate IMDg. 5 and OMDy.s»
the mean and standard deviation, respectively, of
the 1D MD values for the d** dimension and i class.
The steps used to compute HMD g4 and OMDg
are given in Algorithm. 1.

Algorithm 1 Calculating Typical values -
Computing the class-specific mean and standard
deviation of the 1D MD value for each dimension

for each class i € {1...] } do

Input: Training samples belonging to class i,
Lirain(i)

Calculate latent vectors Zz¢rain(i), Ztrain(i) =
[(@train(s))

Calculate Mean p(;y and Covariance matrix ;)
from z¢rain(s)-

Calculate D Eigenvectors v(q,;) and D Eigenval-
ues A(q,;) from the Covariance matrix ;)

for each dimension d € {1...D} do

Calculate 1D MD, M D 43y, M D 4,3)(2¢rain(s))

_ vty " (Zerain(i) —H@))
A
(d)

Calculate 1D MD mean pap,, and the 1D
MD standard deviation OMD.

end for

end for

3.2 Inference

To perform inference on the latent vector of a test
data point z, the K-nearest neighbors zneighbors of
z are found (where when K =1 Zpeighbors = {2})-
Here we calculate the neighbors based on the other
test data points as it removes the requirement of
retaining the training data after training the model
and calculating the typical values. Additionally, in



a real-world setting, there may not be access to
the training data. This is especially important in
domains where data privacy is important such as in
healthcare [16]. Having found the nearest neighbors,
the 1D MD for dimension d, class ¢, and member [ in
the group is calculated as denoted by M D4 )(21),
where z; corresponds to the latent features of the
It member in the group. Finally, an aggregate
typicality score Drypicq is determined by summing
the squares of the deviation of the individual 1D
scores from the typical value, pyp, ;) as shown in
Eqn. 5. The steps of the inference process are given
in Algorithm 2:

i Z MD4,)(z1) = by,

DTypical = mln
' IMD(a,i)

d=11=1

()

Algorithm 2 1D Typicality Inference

Input: Test sample x
Calculate latent features z,z = f(x)

Find nearest neighbours of 2, zZpeighbors, to make
a group with K members

for cach class i € {1 ... I} do
for each member [ in the group do

Calculate 1D Mahalanobis Distance, M D4 ;,
T
V@) (z1=p)

MD(d,i)(zl) = Na)
end for
Calculate typicality score for each class
2
D K | MDe,(z)—pmpy
DTypical,i = Zd:l Zl:l TMD(y 4 (@
end for

Calculate lowest class Typicality score, Drypicar =
miny DTypical,i

To define a data point as ID and OOD based
on the typicality score, we can assume that there
is a validation set that was held out from training.
A threshold « can be set as a value in which 95%
of samples in the validation set satisfy Drypicar <
a, where data points with a Drypicqa below o are
considered ID.

4 Experiments

Datasets We study OOD detection on the follow-
ing ID (D;;,) and OOD dataset (D) pairs. We use
CIFAR100 [17], Caltech256 [18], and TinylmageNet
[19] as our ID datasets while our OOD datasets
include the ID datasets as well as CIFAR10 [17],
SVHN [20] and MNIST [21]. The procedure involves
defining one of the ID datasets as D;, and defining
one of the OOD datasets as D ;.

Metric We measured the quality of OOD detec-
tion using an established metric for this task which
is the AUROC. The AUROC measures the Area
Under the Receiver Operating Characteristic curve.
The Receiver Operating Characteristic (ROC) curve
plots the relationship between true positive rate
(TPR) and false positive rate (FPR). The area under
the ROC curve can be interpreted as the probability
that a positive example will have a higher detection
score than a negative example. In this case, we
treat OOD examples as the positive class. Unless
otherwise stated, AUROC values reported in this
work are obtained over an average of 8 trials with
unique seeds. Additional metrics are also described
in Appendix A.1.

Implementation Details Experiments were con-
ducted using a Resnet-50 as the encoder f for all
the different models and use an output dimension-
ality of 128 with the outputs being s normalized
[22]. A Resnet-50 was chosen as the encoder as this
is a common architecture used in computer vision,
particularly for self-supervised learning. When com-
paring with other methods that also use contrastive
learning-based features, we used the same mod-
els trained for our approach and only changed the
method of inference. Therefore all the contrastive
learning-based feature approaches were trained in
the same way, only the inference approach differed.
This was done to enable a comparison of the effec-
tiveness of the inference approach without having
the model training as a confounding factor. For the
models trained with contrastive learning, we used
the supervised contrastive learning framework [5].
All models are trained for 300 epochs with a batch
size of 256, using the SGD optimizer with a learn-
ing rate of 3e~2, optimizer momentum of 0.9, and
weight decay of le™*. The number of neighbors K
was chosen to be 10 as explained in Section 5.1. The
data augmentations used are similar to those used
in [4] but with slightly different parameters due to
the different datasets used. See Appendix A.2 for
further details.

5 Results and Discussion

For the results shown in this section, the perfor-
mance of OOD detectors varies significantly on dif-
ferent ID-OOD dataset pairs with some AUROC
values being below 0.5 whilst others being above
0.9, depending on the difficulty of the task. Al-
though when the AUROC value is close 0.5, the
performance of the OOD detector is similar to that
of a random detector, comparisons remain valid if
they are statistically significant.



5.1 Number of Neighbors

To determine the number of neighbors to be used
in the algorithm, we compared the AUROC of 1D
Typicality for different values of K on the CIFAR100-
SVHN ID-OOD dataset pair. Fig 2 shows that per-

AUROC for different K values on the CIFAR100-SVHN pair
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Figure 2. AUROC values using the 1D Typicality
approach for different numbers of neighbors for the
CIFAR100-SVHN ID-OOD dataset pair.

formance improves as the number of neighbors K
increases, but that the rate of improvement in the
AUROC tends to decrease with K. This suggests
that relatively low K values can be used without
incurring a significant loss of performance and that
the 1D Typicality approach is not particularly sen-
sitive to the choice of K providing that it is not too
small. In the following, we will use a K value of 10
since this tends to achieve good performance whilst
also being more computationally efficient compared
to larger K values. Results for additional ID-OOD
dataset pairs can be seen in Appendix A.3.

5.2 Effect of Contrastive Learning

We investigate the effect of using latent features
learned from contrastive learning on the performance
of 1D Typicality inference. This was done by com-
paring 1D Typicality (1D T) with a variation of 1D
Typicality which does not use contrastive learning
and instead uses latent features learned using the
Cross-Entropy (CE) loss. We refer to this variation
as 1D Typicality CE (1D T CE). Table 1 shows
AUROC scores for different combinations of ID and
OOD data. The different rows of the table corre-
spond to different OOD datasets and the three dif-
ferent sections are for the three ID datasets used. As
shown in Table 1, when CIFAR100 and Caltech256
are used as the ID dataset, 1D Typicality can con-
sistently outperform 1D Typicality CE. In addition,
when TinyImageNet is used as the ID dataset, 1D
Typicality can achieve better performance on 3 out
of 5 of the ID-OOD dataset pairs. Additionally, for
most of the cases where the result of 1D Typicality
was better than 1D Typicality CE, the results are

shown to be statistically significant as determined
by the Wilcoxon signed ranked test where the results
below a p-value of 0.05 are significant [23]. This is
indicated by * in Table 1. However, it could be seen
that the when using CIFAR100 as the ID dataset
and TinyImageNet as the OOD dataset, the differ-
ence between 1D T CE and 1D T is much larger
than the opposite case when TinylmageNet is the
ID dataset and CIFAR100 is the OOD dataset. A
potential reason for this could be due to the number
of true classes in the ID dataset. Due to Tinylma-
geNet having more classes in the ID dataset, it may
be unlikely that all the neighbors of a particular
data point are in the same class (the purity of the
neighbors is less) and therefore the statistics of the
group may deviate more from the class-specific typ-
ical values of a particular class, which lowers the
performance of the approach.

Results which include additional metrics can be
seen in Appendix A.5. Overall, these results suggest
that using contrastive learning to learn features im-
proves performance compared to CE learned latent
features when applying 1D Typicality as the infer-
ence method. This is consistent with the findings
of [10] which suggest that contrastive learning is
beneficial for learning a compact latent space, which
aids in using nearest neighbors for OOD detection.

Dataset | AUROC
1IDTCE | 1D T
ID: CIFAR100
OOD: SVHN 0.473 0.898*
OOD: CIFARI10 0.460 0.755%*
OOD: TinyImageNet | 0.512 0.779*
OOD: Caltech256 0.482 0.765*
OOD: MNIST 0.422 0.770*
ID: Caltech256
OOD: SVHN 0.414 0.518*
OOD: CIFARI10 0.462 0.487*
OOD: CIFAR100 0.489 0.496*
OOD: TinyIlmageNet | 0.484 0.496*
OOD: MNIST 0.866 0.866
ID: TinyImageNet
OOD: SVHN 0.587* 0.451
OOD: CIFAR10 0.488 0.526*
OOD: CIFAR100 0.506 0.513*
OOD: Caltech256 0.576* 0.548
OOD: MNIST 0.964 0.989*

Table 1. AUROC for different ID-OOD dataset pairs
using 1D Typicality CE ablation as well as 1D Typicality.
Bold highlights the best-performing method and * in-
dicates that the best-performing method is statistically
significantly better than the other approaches.

5.3 Comparing 1D Typicality with
other Benchmarks using Con-
trastive Learning

In this section, we compare 1D Typicality inference
with other inference methods which all used latent
features trained via supervised contrastive loss [5].
All inference methods used the same network back-



bone architecture and latent dimensionality. More
specifically, the inference methods compared include
Self-Supervised Outlier Detection (SSD+) [7] and
Deep K-Nearest Neighbours (KNN+) [10], both
of which have achieved high OOD detection per-
formance compared to other contrastive and non-
contrastive baselines. SSD+ is an approach that
models the latent space as a multivariate Gaussian
distribution for each class, and uses the MD [13]
for OOD detection. KNN+ is a non-parametric ap-
proach that uses the distance in latent space between
a test datapoint and its K*" nearest neighbor in the
training set to determine if an input is OOD. To en-
able a direct comparison with our approach, we used
the same K value as 1D Typicality (K = 10) for the
number of neighbors used in KNN+. Results which
include additional metrics can be seen in Appendix
A.5. The results show that 1D Typicality outper-
forms SSD+ and KNN+ baselines in the majority
of the cases, where the results are also shown to be
statistically significant. These results suggest that
1D Typicality inference can outperform other infer-
ence methods which also use latent features trained
using the same contrastive learning framework.

Dataset | AUROC

KNN+ | SSD+ | 1D T
ID: CIFAR100
OOD: SVHN 0.828 0.818 0.898*
OOD: CIFAR10 0.739 0.747 0.755%*
OOD: TinylmageNet | 0.774 0.790* | 0.779
OOD: Caltech256 0.733 0.768 0.765
OOD: MNIST 0.583 0.625 0.770*
ID: Caltech256
OOD: SVHN 0.535%* 0.530 0.518
OOD: CIFAR10 0.479 0.483 0.487
OOD: CIFAR100 0.493 0.496 0.496
OOD: TinyImageNet | 0.492 0.495 0.496
OOD: MNIST 0.554 0.500 0.866*
ID: TinyImageNet
OOD: SVHN 0.360 0.288 0.451%*
OOD: CIFARI10 0.521 0.518 0.526
OOD: CIFAR100 0.515 0.503 0.513
OOD: Caltech256 0.512 0.538 0.548%*
OOD: MNIST 0.921 0.963 0.989*

Table 2. AUROC for different ID-OOD dataset pairs
using KNN+, SSD+ and 1D Typicality. Bold highlights
the best-performing method and * indicates that the
best-performing method is statistically significantly bet-
ter than the other approaches.

5.4 Comparing 1D Typicality with
Cross-Entropy Baselines

In this section, we compare 1D Typicality with other
methods which derive OOD scores from a model
trained with the CE loss, and which are commonly
used in the literature. This includes Maximum Soft-
max Probability (MSP) [24], ODIN [25] and the
MD method used by [13]. Table 3 shows that 1D
Typicality outperforms MSP [24], ODIN [25] and
the MD [13] baselines in the majority of the cases.

Furthermore, for the case where 1D Typicality does
not outperform all the baselines, the performance of
1D Typicality consistently achieves the second-best
results. Results including additional metrics can be
seen in Appendix A.5.

Dataset | AUROC

MSP | ODIN | MD 1D T
ID: CIFAR100
OOD: SVHN 0.846 | 0.874 0.859 0.898*
OOD: CIFAR10 0.720 | 0.697 0.731 0.755%*
OOD: TinyImageNet | 0.752 | 0.774 0.780 0.779
OOD: Caltech256 0.707 | 0.716 0.756 0.765%*
OOD: MNIST 0.533 | 0.567 0.651 0.770*
ID: Caltech256
OOD: SVHN 0.408 0.387 0.388 0.518*
OOD: CIFAR10 0.462 0.473 0.455 0.487*
OOD: CIFAR100 0.487 | 0.480 0.486 0.496*
OOD: TinyImageNet | 0.482 0.475 0.478 0.496*
OOD: MNIST 0.594 | 0.912* | 0.711 0.866
ID: TinyImageNet
OOD: SVHN 0.310 | 0.450 0.566* | 0.451
OOD: CIFAR10 0.499 0.485 0.487 0.526*
OOD: CIFAR100 0.476 0.493 0.502 0.513*
OOD: Caltech256 0.410 | 0.491 0.577* | 0.548
OOD: MNIST 0.289 | 0.554 0.968 0.989*

Table 3. AUROC for different ID-OOD dataset pairs
using baselines trained with the cross-entropy loss and
the 1D Typicality approach trained with contrastive
learning. Bold highlights the best-performing method
and * indicates that the best-performing method is sta-
tistically significantly better than the other approaches.

6 Conclusion

In this paper, we have proposed a new inference
approach that extends typicality-based OOD de-
tection to point OOD detection. We compared our
approach to several baselines, and our results showed
the following;:

e The performance of 1D Typicality is robust to
different values of K in K-nearest neighbors
providing K is not too low.

e Contrastive learning is crucial for achieving high
performance with 1D Typicality.

e By testing on various ID and OOD dataset
pairs, we have shown that the 1D Typicality
approach achieves better point OOD detection
performance than the baselines.
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A Appendix

A.1 Additional Metrics

In addition to the AUROC, we measured the quality
of OOD detection using other established metrics
for this task, which are the FPR at 95% TPR, and
the AUPR [24].

e FPR at 95% TPR: Measures the false pos-
itive rate (FPR) when the true positive rate
(TPR) is equal to 95%. Let TP, FP, TN,
and FN represent true positives, false posi-
tives, true negatives, and false negatives, re-
spectively. The false positive rate is calculated
as FPR=FP/(FP+TN), while the true positive
rate is calculated as TPR=TP/(TP+FN).

e AUPR Measures the Area Under the Precision
- recall (PR) curve. The PR curve is obtained
by plotting precision = TP/(TP + FP) versus
recall = TP/(TP + FN).

For these metrics, we treat OOD examples as the
positive class. These additional metrics are used
when showing the full results of the different experi-
ments conducted as part of the main paper.

A.2 Data augmentation

The data augmentations used are similar to those
used in [4] but with slightly different parameters due
to the different datasets used. We resize all data
points to a height and width of 32 and then utilize
random crop (with resize and random flip), random
color distortions, and random Gaussian blur as the
data augmentations. The details are as follows:

¢ Random Crop and Resize: We use ran-
dom cropping with a crop of random size
(uniform from 0.2 to 1.0 in the area) of the
original size followed by rescaling the crop
to the original size of the image. This has
been implemented in Pytorch using ‘torchvi-
sion.transforms.RandomResizedCrop’. Addi-
tionally, the random crop (with resize) is always
followed by a random horizontal flip with a 50
% probability.

e Color Distortion: Color distortion is com-
posed of color jittering and color dropping.
Color jittering was implemented in Pytorch
using ‘torchvision. transforms. ColorlJitter’
with brightness, contrast, saturation, and hue
values of 0.4, 0.4, 0.4, and 0.1 respectively.
Color jittering was followed by a color drop-
ping by converting the image to grayscale
with a 20 % probability. Color dropping
was implemented in Pytorch using ‘torchvi-
sion.transforms.RandomGrayscale’.

e Gaussian Blur: We blur the image 50 %
of the time using a Gaussian kernel which
was implemented in Pytorch using ‘torchvi-
sion.transforms.GaussianBlur’ with a o €

[0.1,2.0].

A.3 Choosing the Number of Neigh-
bors

In addition to Fig 2, we also compared the AU-
ROC of 1D Typicality for different values of K on
other ID-OOD dataset pairs where CIFAR100 is the
ID dataset and MNIST, FashionMNIST, KMNIST
OOD datasets. Figs A.1(a) - A.1(c) agreed with re-
sults shown in 2 as we can see that the performance
improved as the number of neighbors K increases,
but that the rate of improvement in the AUROC
tends to decrease with K, therefore showing that 1D
Typicality is not particularly sensitive to the choice
of K providing that it is not too small.

A.4 The OOD Label of Neighbors

A key assumption underpinning the 1D Typical-
ity method is that an ID data point will tend to
have ID neighbors whilst conversely an OOD data
point will tend to have OOD neighbors. To test
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Figure A.1. AUROC values using the 1D Typicality
approach for different numbers of neighbors on a variety
of OOD datasets when CIFAR100 is used as the ID
dataset.

this assumption we calculated the distance between
the latent vectors of all the test data points (ID
and OOD) and then evaluated the percentage of
the nearest 10 neighbors which were OOD for the
ID and OOD data points. For an ID data point,
we refer to the percentage of neighbors which were
OOD as ID-OOD. Similarly, for an OOD data point,
we refer to the percentage of neighbors which were
OOD as OOD-0O0D. The ID-OOD and OOD-OO0OD
for all the data points in the ID and OOD datasets
were then averaged resulting in average ID-OOD
and OOD-OOD as shown in Table A.1. Here we
use CIFAR100 as the ID dataset and MNIST, Fash-

OOD Dataset  ID-OOD (%) OOD-OO0D (%)

MNIST 2.13 99.24
FashionMNIST 6.10 89.91
KMNIST 2.82 98.33
SVHN 12.32 94.43

Table A.1. Average ID-OOD and OOD-OOD percent-
age values for different OOD datasets when CIFAR100
is used as the ID dataset.

ionMNIST, KMNIST and SVHN as OOD datasets.
For each ID-OOD dataset pair we used 10,000 ID
and OOD data points. Table A.1 shows that ID-
OOD was below 10% when MNIST, FashionMNIST
and KMNIST were used as OOD datasets. This
suggests that for the majority of the CIFAR100 ID
data points, 9 or 10 of their nearest neighbors were
also ID data. In the case where the OOD dataset
was SVHN, ID-OOD was 12.32%. This further sup-
ports the fact that a majority of the CIFAR100 data
points were also ID. Additionally, it can be seen that
for all 4 OOD datasets, the OOD-OOD is above 89%
indicating that most of the OOD data points have
mostly OOD neighbors. Overall, these results sup-
port the assumption that ID (OOD) data points will
tend to have mostly ID (OOD) neighbors at least
for the datasets considered.

A.5 Full Results



Dataset

AUROC

| AUPR | FPR

1D T CE/1D T

ID: CIFAR100

OOD: SVHN 0.473 / 0.898* | 0.698 / 0.941* | 0.874 / 0.311*
OOD: CIFAR10 0.460 / 0.755* | 0.458 / 0.711* | 0.918 / 0.710*
OOD: TinyImageNet  0.512 / 0.779* | 0.504 / 0.748* | 0.925 / 0.682*
OOD: Caltech256 0.482 / 0.765* | 0.479 / 0.748* | 0.923 / 0.787*
OOD: MNIST 0.422 / 0.770* | 0.442 / 0.753* | 0.857 / 0.561*
ID: Caltech256
OOD: SVHN 0.414 / 0.518* | 0.673 / 0.731* | 0.975 / 0.946*
OOD: CIFAR10 0.462 / 0.487* | 0.467 / 0.484* | 0.956 / 0.953
OOD: CIFAR100 0.489 / 0.496* | 0.499 / 0.498 0.956 / 0.951*
OOD: TinyIlmageNet  0.484 / 0.496* | 0.490 / 0.496 0.953 / 0.951
OOD: MNIST 0.866 / 0.866 0.830 / 0.852 0.486 / 0.450
ID: TinyImageNet
OOD: SVHN 0.587 / 0.451 0.765 / 0.685 0.900 / 0.953
OOD: CIFAR10 0.488 / 0.526* | 0.478 / 0.522* | 0.949 / 0.951
OOD: CIFAR100 0.506 / 0.513* | 0.504 / 0.516* | 0.950 / 0.951
OOD: Caltech256 0.576 / 0.548 0.563 / 0.534 0.920 / 0.938
OOD: MNIST 0.964 / 0.989* | 0.930 / 0.966* | 0.086 / 0.022*

Table A.2. AUROC, AUPR and FPR for different ID-OOD dataset pairs using 1D Typicality CE ablation as
well as 1D Typicality. Bold highlights the best-performing method and * indicates that best-performing method is

statistically significantly better than the other approaches.

Dataset AUROC | AUPR | FPR
KNN+/SSD+/1D T
ID: CIFAR100
OOD: SVHN 0.828 / 0.818 / 0.898* | 0.897 / 0.870 / 0.941* | 0.483 / 0.512 / 0.311*
OOD: CIFARI10 0.739 / 0.747 / 0.755* | 0.696 / 0.698 / 0.711* | 0.705 / 0.698 / 0.710
OOD: TinyImageNet 0.774 / 0.790 / 0.779 0.734 / 0.749 / 0.748 0.641 / 0.611 / 0.682
OOD: Caltech256 0.733 / 0.768 / 0.765 0.706 / 0.747 / 0.748* | 0.793 / 0.772 / 0.787
0OD: MNIST 0.583 / 0.625 / 0.770* | 0.558 / 0.601 / 0.753* | 0.803 / 0.810 / 0.561*
ID: Caltech256
OOD: SVHN 0.535 / 0.530 / 0.518 | 0.743 / 0.740 / 0.731 | 0.934 / 0.939 / 0.946
OOD: CIFARI10 0.479 / 0.483 / 0.487 0.480 / 0.484 / 0.484 | 0.952 / 0.954 / 0.953
OOD: CIFAR100 0.493 / 0.496 / 0.496 | 0.495 / 0.497 / 0.498 0.953 / 0.952 / 0.951
OOD: TinyImageNet  0.492 / 0.495 / 0.496 0.494 / 0.497 / 0.496 0.953 / 0.951 / 0.951
OOD: MNIST 0.554 / 0.500 / 0.866* | 0.549 / 0.501 / 0.852* | 0.887 / 0.935 / 0.450*
ID: TinyImageNet

OOD: SVHN 0.360 / 0.288 / 0.451* | 0.658 / 0.605 / 0.685* | 0.992 / 0.994 / 0.953*
OOD: CIFARI10 0.521 / 0.518 / 0.526 0.515 / 0.511 / 0.522* 0.939 / 0.948 / 0.951
OOD: CIFAR100 0.515 / 0.503 / 0.513 0.520 / 0.505 / 0.516 0.956 / 0.950 / 0.951
OOD: Caltech256 0.512 / 0.538 / 0.548* | 0.527 / 0.530 / 0.534 0.983 / 0.948 / 0.938*
OOD: MNIST 0.921 / 0.963 / 0.989* | 0.912 / 0.926 / 0.966 0.283 / 0.096 / 0.022*

Table A.3. AUROC, AUPR and FPR for different ID-OOD dataset pairs using KNN+, SSD+ and 1D Typicality.
Bold highlights the best-performing method and * indicates that best-performing method is statistically significantly
better than the other approaches.

Dataset AUROC | AUPR | FPR
MSP/ODIN/MD/1D T
ID: CIFAR100
OOD: SVHN 0.846 / 0.874 / 0.859 / 0.898* | 0.926 / 0.940 / 0.901 / 0.941 0.507 / 0.447 / 0.466 / 0.311*
OOD: CIFAR10 0.720 / 0.697 / 0.731 / 0.755* | 0.678 / 0.661 / 0.682 / 0.711* | 0.721 / 0.840 / 0.734 / 0.710
OOD: TinylmageNet  0.752 / 0.774 / 0.780 / 0.779 | 0.719 / 0.741 / 0.740 / 0.748* 0 686 / 0.661 / 0.657 / 0.682
OOD: Caltech256 0.707 / 0.716 / 0.756 / 0.765* | 0.681 / 0.693 / 0.735 / 0.748*% | 0.840 / 0.830 / 0.813 / 0.787*
OOD: MNIST 0.533 / 0.567 / 0.651 / 0.770* | 0.525 / 0.562 / 0.621 / 0.753* 0 821 / 0.800 / 0.766 / 0.561*
ID: Caltech256
OOD: SVHN 0.408 / 0.387 / 0.388 / 0.518* | 0.675 / 0.656 / 0.656 / 0.731* | 0.979 / 0.964 / 0.976 / 0.946*
OOD: CIFAR10 0.462 / 0.473 / 0.455 / 0.487* | 0.475 / 0.478 / 0.463 / 0.484 0.969 / 0.951 / 0.960 / 0.953
OOD: CIFAR100 0.487 / 0.480 / 0.486 / 0.496* | 0.495 / 0.489 / 0.497 / 0.498 0.969 / 0.954 / 0.957 / 0.951
OOD: TinyImageNet  0.482 / 0.475 / 0.478 / 0.496* | 0.492 / 0.486 / 0.487 / 0.496 0.969 / 0.954 / 0.957 / 0.951
OOD: MNIST 0.594 / 0.912'/ 0.711 / 0.866 | 0.561 / 0.868 / 0.694 / 0.852 | 0.895 / 0.258 / 0.769 / 0.450
ID: TinyImageNet

OOD: SVHN 0.310 / 0.450 / 0.566 / 0.451 0.611 / 0.679 / 0.750 / 0.685 0.978 / 0.937 / 0.911 / 0.953
OOD: CIFAR10 0.499 / 0.485 / 0.487 / 0.526* | 0.491 / 0.483 / 0.478 / 0.522* | 0.936 / 0.954 / 0.948 / 0.951
OOD: CIFAR100 0.476 / 0.493 / 0.502 / 0.513* | 0.484 / 0.494 / 0.501 / 0.516* | 0.962 / 0.953 / 0.951 / 0.951
OOD: Caltech256 0.410 / 0.491 / 0.577 / 0.548 0.452 / 0.502 / 0.563 / 0.534 0.983 / 0.957 / 0.920 / 0.938
OOD: MNIST 0.289 / 0.554 / 0.968 / 0.989* 0.424 / 0.579 / 0.941 / 0.966* | 0.968 / 0.945 / 0.090 / 0.022*

Table A.4. AUROC, AUPR and FPR for different ID-OOD dataset pairs using baselines trained with the cross-
entropy loss and the 1D Typicality approach trained with contrastive learning. Bold highlights the best-performing
method and * indicates that 1D Typicality is significantly better than all baselines.
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