
Heterogeneous Learning for Brain Lesion Segmentation, Detec-
tion, and Classification

Sebastian Nørgaard Llambias∗, Mads Nielsen, and Mostafa Mehdipour Ghazi

Pioneer Centre for Artificial Intelligence, Department of Computer Science, University of Copenhagen

Abstract

Brain lesions detected in magnetic resonance images
often vary in type and rarity across different cohorts,
posing a challenge for deep learning techniques that
are typically specialized in recognizing single lesion
types from homogenous data. This limitation re-
stricts their practicality in diverse clinical settings.
In this study, we explore different deep-learning ap-
proaches to develop robust models handling both
subject and imaging variability, while recognizing
multiple lesion types. Our research focuses on seg-
mentation and detection tasks across four distinct
datasets, encompassing six cohorts of subjects with
white matter hyperintensities, multiple sclerosis le-
sions, or stroke abnormalities. Our findings reveal
that a cascade approach, comprising a fully convolu-
tional network and a fully connected classifier, offers
optimal accuracy for robust multiclass lesion segmen-
tation and detection. Notably, our proposed model
remains competitive with models trained solely on
one dataset and applied to the same dataset while
showing robustness against domain shifts. Addi-
tionally, in related tasks, our model consistently
produces results comparable with the state-of-the-
art methods. This study contributes to advancing
clinically applicable deep learning techniques for
brain lesion recognition, offering a promising solu-
tion for handling lesion diversity in uncontrolled
clinical environments.

1 Introduction

Brain image analysis utilizing deep learning is cur-
rently revolutionizing the way we assess data from
neurological disorders [1]. This technology assumes
a pivotal role in performing three fundamental tasks:
segmentation, detection, and classification, with the
overarching objective of precisely delineating diverse
brain structures and lesions, identifying abnormali-
ties, and helping with diagnoses based on the found
characteristics and segmented regions [2]. Never-
theless, this domain confronts several formidable
challenges, encompassing the necessity for large an-
notated data, model interpretability, and general-
ization to diverse populations [3]. Addressing these
challenges is crucial to harness the full potential of
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deep learning in brain image analysis, ultimately
improving patient outcomes.

One significant challenge in this domain pertains
to the imperative of training deep learning models
on multiple heterogeneous datasets. For instance,
magnetic resonance imaging (MRI) data exhibits
substantial variations in acquisition protocols, image
quality, and demographic attributes. Consequently,
the development of robust models capable of learning
from diverse sources, while maintaining consistently
high accuracy, becomes an urgent need [4]. More-
over, achieving model generalization to rare diseases
or labels, as well as the detection of uncommon brain
lesions, poses another obstacle [5]. Data acquisition
with high variability for training and validation pur-
poses from neurological conditions, many of which
are rare, is problematic.
The segmentation of brain lesions encompassing

a variety of abnormalities such as stroke, white mat-
ter (WM), and multiple sclerosis (MS), stands as
a pivotal application of deep learning within brain
imaging. White matter hyperintensities, often asso-
ciated with neurodegenerative diseases, have seen
remarkable progress with convolutional neural net-
works, which can achieve a Dice similarity coefficient
(DSC) of up to 0.8, underscoring the potential of
deep learning for brain lesion recognition [6]. MS
lesions present a challenge in terms of accurate seg-
mentation due to their considerable variability. For
instance, deep networks applied to MS lesion segmen-
tation have demonstrated DSC values surpassing 0.6
[7]. Furthermore, stroke lesion segmentation is a
particularly challenging task, because of significant
variability in lesion size, shape, and intensity. The
current state-of-the-art methods utilizing 3D U-Net
models [8, 9] achieve DSCs exceeding 0.3 when ap-
plied to the segmentation of ischemic lesions based
on multimodal MRIs [10, 11]. These outcomes illus-
trate the intricacies of detecting brain lesions due
to their diversity, small size, and class imbalance.

In the context of medical image segmentation, the
reported DSC values for brain lesion segmentation
fall within the range often characterized as poor for
the stroke lesion type with a DSC less than 0.5, mod-
erate for the MS lesion type with a DSC between 0.5
and 0.7, and good for WMH type with a DSC from
0.7 to 0.9 in the literature. However, it is important
to note that the tasks contain a highly heteroge-
neous set of lesions, including irregularly shaped

Proceedings of the 5th Northern Lights Deep Learning Conference (NLDL), PMLR 233, 2024.
LM 2024 Sebastian Nørgaard Llambias, Mads Nielsen, & Mostafa Mehdipour Ghazi. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/


and overlapping lesions, which pose significant seg-
mentation challenges. Hence, the categorization of
Dice scores should depend on the specific applica-
tion and the clinical goals, where a DSC below 0.5
may reflect the complexity of the data/task and the
potential clinical utility of the segmentation method
in challenging clinical scenarios.
Despite notable achievements of deep learning

models in medical imaging, attaining high-level ac-
curacy remains a challenge in the context of small or
subtle lesion segmentation. To this end, the primary
objectives of this article are to develop and evaluate
robust deep learning models for brain lesion segmen-
tation and characterization, with a specific emphasis
on addressing the challenges posed by imbalanced
datasets, data variability in subjects and images, and
the recognition of multiple lesion types. Our study
makes four key contributions: 1. We develop and
train a set of robust deep-learning models to address
the challenges associated with brain lesion segmenta-
tion, including issues related to dataset imbalances,
data variability, and the recognition of diverse lesion
types. 2. We explore constructive strategies, such
as MRI-specific data augmentation and balanced
dataset training, to enhance the model’s ability to
generalize across different datasets, thus improving
its robustness. 3. We examine multiclass and cas-
cade model training to effectively segment and detect
brain lesions across four heterogeneous datasets and
tasks, spanning six cohorts of subjects with WM
lesions, MS lesions, or stroke abnormalities. 4. We
demonstrate the advantages of our proposed cascade
approach, which combines a fully convolutional net-
work with a fully connected classifier, in achieving
robust multiple lesion recognition. These approaches
enhance the model’s performance and its potential
for clinical applications.

2 Study data

The study utilizes fluid-attenuated inversion recov-
ery (FLAIR) images from 4 resources spanning 3
lesion types and 6 cohorts. These images were sup-
ported by manual segmentations provided by expert
annotators. The first two datasets are small and
contain MS lesions. These datasets are obtained
from the MICCAI 2016 MS Lesion Segmentation
Challenge (MSSEG-1) [12] and the 2008 MICCAI
MS Lesion Segmentation Challenge (MS08) [13].
The third dataset is obtained from the MICCAI
2022 Ischemic Stroke Lesion Segmentation Chal-
lenge (ISLES22) [14] and contains brain infarcts
in acute and sub-acute stroke. The last dataset
includes the multi-vendor and multi-site MICCAI
2017 WMH Segmentation Challenge [15], which in-
troduces white matter hyperintensities (WMH) in
three distinct cohorts from Amsterdam, Singapore,
and Utrecht. A summary of the utilized datasets is

Table 1. Overview of the datasets used in this study.
Country codes are ISO Alpha-2 and vendor abbreviations
refer to GE (G), Philips (P), and Siemens (S).

Dataset Task Train/Test Site Strength Vendor

MSSEG-1 [12] MS Lesion 15/38 FR 1.5-3T G, P, S

MS08 [13] MS Lesion 14/5 US 3T S

ISLES22 [14] Stroke Lesion 187/63 CH, DE 1.5-3T P, S

WMH [15] WM Lesion 60/110 NL, SG 1.5-3T G, P, S

shown in Table 1. We use the original training/test
splits from MSSEG-1 and WMH datasets for model
training and inference while using 25% of the MS08
and ISLES22 training data for testing as the test
labels were not released.

The datasets include several scanner vendors, ac-
quisition parameters, and imbalanced cohorts, e.g.,
from 19 cases in MS08 to 250 cases in ISLES22.
This mimics the presence of rare neurological condi-
tions. Moreover, the imaging attributes are highly
varied in both intra- and inter-dataset with slice
thickness ranging from 0.5 mm to around 5.0 mm
and voxel dimensions ranging from 128×128×25 to
512×512×512. To highlight the differences between
the study tasks, Figure 1 (a) presents the overall
distribution of lesion intensities among all scans
and (b) exemplifies one scan from each lesion type
with high lesion loads, illustrating the heterogeneity
of the loads, intensities, locations, and densities of
different lesion types.
Finally, Table 2 presents statistics of the lesions

per scan across various datasets. The table high-
lights the substantial variability in both the number
of connected regions (lesion load) and the lesion
volumes observed in different scans. Besides, it
highlights distinctions within cohorts featuring the
same lesion type, as exemplified by the significant
variations in lesion loads and volumes observed in
MSSEG-1 and MS08. In summary, the domain shifts
discussed in the study span intra- and inter-dataset
variations in the cohort (anatomies and demograph-
ics), pathologies (lesion types, shapes, and loads),
and acquisition parameters (vendors, field strengths,
resolutions, and contrast).

3 Methods

Three main approaches are used to address the do-
main shift problem inherent in the utilized heteroge-
neous datasets and tasks: balanced dataset training,
MRI-specific data augmentation, and multiclass and
cascade model training. Balanced dataset training
is applied using a weighted sampler to draw scans
uniformly from each task to fine-tune the baseline
model in a balanced way. Without the weighted
sampler fine-tuned models showed a tendency to
learn to ignore the underrepresented lesions and
specialize on, e.g., WMH. The MRI augmentation
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(a) Distribution of the lesion intensities (b) Scans with high lesion loads

Figure 1. The probability density of the lesion intensities across all scans (a) and a multi-view visualization of
three different scans with high loads of various lesion types (b).

Table 2. Statistics of the lesions per scan across various datasets.

Dataset # Lesions (mean+SD) # Lesions (min/max) Volume in mm3 (mean+SD) Volume in mm3 (min/max) # Scans with no lesions

MSSEG-1 [12] 40± 29 7/111 848± 6090 1/105710 0

MS08 [13] 22± 20 5/90 1617± 4665 12/44846 0

ISLES22 [14] 9± 11 1/66 365± 2329 1/59658 2

WMH [15] 61± 32 16/152 98± 713 1/14396 0

technique applies a range of transformations on the
fly during training, including generic augmentations
such as 3D rotation, elastic deformation, and addi-
tive noise along with augmentations specific to and
commonly found in MRIs such as bias fields and
motion artifacts. The technique is used to obtain
scans with more realistic variations and has been
shown to train more robust deep learning models in
previous studies [6, 16–18].

Three models are developed, referred to as the
baseline, multiclass, and cascade models. We first
train the baseline model by learning from all four
datasets for binary lesion segmentation by combin-
ing the three foreground labels from the MS, Stroke,
and WMH tasks into one universal lesion label, disre-
garding the task and dataset size. Next, to train the
multiclass model, we fine-tune all layers of the base-
line model using the weighted sampler for multiclass
(Background, MS, Stroke, and WMH) segmentation
to classify the pixels at once. Afterwards, to create
the cascade model, we fine-tune all layers of the base-
line model using the weighted sampler for binary
segmentation. A fully connected network is then
trained on quantitative measures obtained from the
segmentations. The combination of the fine-tuned
binary model and the fully connected network is
referred to as the cascade model.

The quantitative measures are calculated based
on a set of properties for each connected component
in the 3D regions. To do this, we first identify
connected components in the foreground regions

using 6-voxel minimal connectivity, in which the
voxels would be part of the same object (lesion) if
their faces touch in one of the 6 directions: in, out,
left, right, up, and down. Next, we calculate the
volumes (number of the voxels) and surface area
(the distance around the boundary), as well as the
average centroids (center of mass), orientation (Euler
angles), and principal axis length (length of the
major axes of the ellipsoid) of the connected regions
and concatenate them as a feature vector. Finally,
we train a network using two fully connected layers
with 400 nodes and a Softmax layer in the output
to obtain the probability scores associated with the
lesion classes. The network is optimized using a
weighted cross-entropy loss and Adam optimizer for
100 epochs with a learning rate of 0.1.

In all experiments, we use a backbone deep learn-
ing architecture based on the U-Net [8, 9]. Models
are trained on a single A100 GPU for 1000 itera-
tions, with one iteration consisting of 250 batches
and a batch size of 64 slices. The initial learning
rate is set to 0.001, gradually decreasing by a cosine
annealing schedule. A combination of Dice loss and
cross-entropy loss is used for optimization with the
stochastic gradient descent algorithm. Initially, we
utilized 2D, 2.5D, and 3D networks, but the test
results revealed 2D models to achieve higher Dice
scores and be more robust. Hence, we selected 2D
networks for conducting the final experiments.

Models are evaluated in three tasks: lesion de-
tection, segmentation, and classification. Lesion
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Table 3. Scan classification, lesion detection, and segmentation performance (mean ± SD) of the cascade model
on different test sets.

Scan Classification Lesion Detection Segmentation

Dataset Precision Sensitivity F1 Precision Sensitivity F1 Dice VS

MS 0.875 0.833 0.854 0.590±0.33 0.474±0.26 0.496±0.25 0.499±0.26 0.671±0.32
Stroke 0.828 0.841 0.835 0.416±0.36 0.386±0.34 0.335±0.26 0.324±0.31 0.551±0.36
WMH 0.981 0.927 0.953 0.772±0.23 0.671±0.22 0.686±0.21 0.691±0.22 0.823±0.25

Table 4. Scan classification, lesion detection, and segmentation performance (mean ± SD) of the multiclass model
on different test sets.

Scan Classification Lesion Detection Segmentation

Dataset Precision Sensitivity F1 Precision Sensitivity F1 Dice VS

MS 0.827 1.000 0.905 0.690±0.29 0.421±0.20 0.459±0.16 0.451±0.19 0.620±0.23
Stroke 1.000 0.857 0.923 0.433±0.37 0.334±0.31 0.310±0.24 0.320±0.30 0.538±0.36
WMH 1.000 1.000 1.000 0.825±0.13 0.596±0.18 0.667±0.12 0.709±0.12 0.846±0.14

detection is the task of detecting individual lesions,
where each lesion is delimited and identified based
on connected components analysis of the segmented
areas. A lesion is considered as detected if there is
any overlap between the voxels of the ground-truth
lesion and any predicted lesion. Classification is the
task of classifying the primary pathology or major
lesion type in a given scan and is obtained from the
segmented areas based on the type of lesion with the
largest volume in each scan. Finally, segmentation
is the task of labeling each voxel of the scan.

In this study, we assess the accuracy of the models
based on predictions from full scans or 3D volumes,
where the 3D segmentations are obtained by con-
catenating the segmentation results from 2D mod-
els applied sequentially to each slice of the axial
plane of the MRI scan. Five metrics are used for a
thorough evaluation of the tasks: precision, sensitiv-
ity, F1 measure, Dice score, and volume similarity
(VS). While the Dice coefficient measures the spa-
tial similarities or overlaps between voxels of the
ground-truth labels (T ) and the predicted ones (Y )

using 2 |Y ∩T |
|Y |+|T | , VS calculates the absolute difference

between the volumes of the ground truth labels and

predicted ones using 1− ||Y |−|T ||
|Y |+|T | .

4 Results

The segmentation and detection results from the
cascade and multiclass models are shown in Table 3
and Table 4, respectively. We also predicted the
major pathology for a given scan and evaluated it
as the scan classification performance, where the
multiclass model performed almost perfectly. This
indicates the models have learned to distinguish
between the lesions. For multiple lesion detection
and segmentation tasks, the cascade model achieves
higher sensitivity and F1-score while the multiclass
model obtains a higher precision.

Table 5. Lesion segmentation performance (average
per scan) of different data-specific models on different
test sets vs. the fine-tuned binary model.

Data-specific models Binary model

Dataset Dice VS Dice VS

MSSEG-1 0.635±0.20 0.819±0.20 0.590±0.17 0.809±0.15
MS08 0.347±0.16 0.742±0.28 0.363±0.17 0.623±0.22
ISLES22 0.310±0.30 0.514±0.35 0.336±0.30 0.554±0.33
WMH 0.772±0.10 0.918±0.09 0.743±0.11 0.888±0.09

To better interpret the results, Figure 2 compares
the distributions of the Dice scores and detection
F1 scores obtained by the cascade and multiclass
models. It demonstrates the cascade model obtain-
ing higher scores for both metrics in all cases, but it
also depicts the difficulty of the stroke task. Besides,
Figure 3 showcases some samples from the test set
segmented by the cascade model against the ground
truths. These samples were selected from the sub-
jects with high and low lesion loads, representing
the variability of both scans and lesion types. These
results indicate the problem is diverse and challeng-
ing and the proposed model achieves a reasonable
segmentation accuracy (orange areas) with low false
positives (red areas).

To finalize our study, we additionally trained data-
specific models and applied them to different test
sets. A comparison between the results shown in
Table 5 for the fine-tuned binary model (cascade
model without the classifier head) and the data-
specific models trained to exclusively solve a specific
task, reveals the impact of heterogeneous learning
in difficult settings. In the MS08 data, the model
likely transfers knowledge from the related MSSEG-
1 data. The ISLES22 data is only loosely related
to the other datasets, where the model learns to
extrapolate from heterogeneous data.

The results presented in this study show that the
proposed models can obtain Dice scores compet-
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Figure 2. The violin plots for the lesion segmentation (left) and detection (right) accuracies for different test sets
using the cascade and multiclass models.
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Figure 3. Test samples with high/low lesion loads, seg-
mented by the cascade model against the ground truths.
The green area is the ground truth (non-overlapping),
the orange area is the overlapping segments between the
ground truths and predicted labels, and the red area
shows false positives.

itive with both the data-specific models and the
state-of-the-art, as presented in Section 1. While
remaining robust to large domain shifts, the binary
model achieves higher Dice scores in 2/4 datasets
and exceeds the state-of-the-art DSCs for the stroke
while being within 0.01-0.06 for MS and WMH.

5 Discussion

A plausible explanation for the data-specific models
surpassing the fine-tuned binary model in MSSEG-1
and WMH is that these datasets have higher quality
in larger quantities. With curated homogeneous
datasets, several variations found in the test set may
also be expressed in the training set, like the noise
introduced in the augmentation and heterogeneous
training, which could be detrimental.

While achieving competitive results, the data-
specific models are not a feasible alternative to the
cascade or multiclass approaches and largely fail to
generalize to other datasets, displaying average Dice
scores below 0.1, except for the model trained on
WMH that generalizes well to the MS task. The
remaining domain shifts incurring serious failures,
often seen when deep learning models are applied
to unknown domains, could be alleviated by the
ensemble of models. However, this will require in-

telligent selection strategies to choose the correct
segmentation on a case-by-case basis, where a model
may produce a good segmentation while the remain-
ing ones obtain bad segmentations when applied
to unseen data. These challenges severely hamper
the applicability of both data-specific models and
ensemble approaches.

6 Conclusion

In this work, we examined several deep learning-
based approaches for heterogeneous learning from
different brain MRI datasets for lesion segmenta-
tion and detection. Overall, the proposed cascade
model was found superior for detecting and classify-
ing diverse brain lesions from different cohorts. It
also proved to learn complex relations between le-
sions and provided strides toward high-level accuracy
in realistic settings. These provide evidence that
robust deep learning models, capable of handling
multiple heterogeneous datasets and lesion types,
can achieve results resembling the state-of-the-art
models trained exclusively to solve a single task.

The results from the dataset-specific models af-
firmed the need to bridge the gap between datasets
and to learn more from weakly related tasks, as was
the case in the WMH to MS lesion generalization.
In a comparison with the state-of-the-art results
and related work, the cascade model’s segmentation
accuracy was shown to be competitive, and in some
cases, even superior [19–21].

Finally, it is worth mentioning that although deep
learning models have shown remarkable promise in
improving the segmentation process in a fast and
accurate manner, it is imperative to address the
challenges related to robustness, generalization, and
the need for large and diverse datasets to harness
their full potential in clinical practice and reduce
failures that can have significant implications for
the study outcomes and downstream applications
such as clinical diagnosis and treatment. Besides, it
is essential to have rigorous validation and quality
control processes in place and to consider human
expert input when necessary to verify or correct
automated segmentations.
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