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Abstract

Deidentification methods, which remove directly
identifying information, can be useful tools to miti-
gate the privacy risks associated with sharing health-
care data. However, benchmarks to evaluate deiden-
tification methods are themselves often derived from
real clinical data, making them sensitive themselves
and therefore harder to share and apply. Given the
rapid advances in generative language modelling, we
would like to leverage large language models to con-
struct freely available deidentification benchmarks,
and to assist in the deidentification process. We
apply the GPT-4 language model to, for the first
time, construct a synthetic and publicly available
dataset of synthetic Norwegian discharge summaries
with annotated identifying details, consisting of 1200
summaries averaging 100 words each. In our sample
of documents, we find that the generated annota-
tions highly agree with human annotations, with
an F1 score of 0.983. We then examine whether
large language models can be applied directly to
perform deidentification themselves, proposing meth-
ods where an instruction-tuned language model is
prompted to either annotate or redact identifying
details. Comparing the methods on our synthetic
dataset and the NorSynthClinical-PHI dataset, we
find that GPT-4 underperforms the baseline method
proposed by Br̊athen et al. [1], suggesting that
named entity recognition problems are still chal-
lenging for instruction-tuned language models.

1 Introduction

Unstructured free text makes up a large portion
of healthcare data. Many applications of Natural
Language Processing (NLP) methods in healthcare
involve extracting or condensing information from
this text, such as inferring procedure and diagnosis
codes, identifying adverse drug events, and detecting
postoperative complications.
Clinical notes have distinct differences in syntax

and vocabulary from the texts which make up most
NLP training and evaluation corpora: abbreviations,
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domain-specific terms and terse syntax are common
features of patient records [2]. Sharing data and
establishing benchmark datasets [3] are important
steps in ensuring NLP methods and models are
robust to these linguistic differences, but carry sig-
nificant privacy risks [4].

Deidentification methods attempt to mitigate
these risks by detecting personally identifying details,
so as to either remove them outright, tag them or
substitute them with realistic pseudonyms [5]. These
details are typically referred to as Protected Health
Information (PHI). Deidentification of clinical text
can then be treated as a Named Entity Recognition
(NER) problem, where the goal is to identify terms
which belong to a PHI category. The majority of
recent text deidentification methods [6] build on
supervised NER methods. The drawback of doing
this is that the definition of PHI must be explicitly
outlined and annotated for a training set, which the
method is trained on. If the user’s definition of PHI
deviates significantly from the model’s assumptions,
due to differences in regulation or project restric-
tions, new annotations must be collected and the
method must be retrained. However, zero- or few-
shot NER methods could potentially decouple this
bond, and allow the deidentification process to reuse
the underlying model.

Liu et al. [7] phrase the de-identification task as
a set of instructions for GPT-4, and report bet-
ter recall on the n2c2 2014 deidentification bench-
mark [8] than their fine-tuned model based on Clin-
icalBERT [9]. In this article, we test whether a
similar approach works for Norwegian clinical text,
where fewer annotated text resources are publicly
available.

2 Method

We compare two different ways of framing the NER
problem as a sequence-to-sequence modelling task
for a causal instruction-tuned [10] language model.
In the redaction setting, we prompt the model to
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substitute PHI terms with entity tags:

"She was over 90 years old."

↓
"She was over <Age> old."

In the second annotation setting, we prompt the
model to keep PHI terms, but add surrounding entity
markers:

"She was over 90 years old."

↓
"She was over <Age>90 years</Age> old."

We pick these settings mainly to follow the method
suggested by Liu et al. [7], but they have additional
advantages: they let the models discriminate be-
tween different uses of the same term, allow infer-
ence to be done in a single pass, and the syntax for
the correct solution is known ahead of time. We
hypothesize that redaction is an easier task, since
annotation requires the model to attend to the pre-
viously generated PHI markers in addition to the
original text. However, evaluating the results re-
quires aligning the annotated ground truth with the
response.

3 Dataset

3.1 Synthetic dataset

To establish a corpus for comparing and training
deidentification methods for Norwegian text, we use
GPT-4 to synthesize Norwegian clinical notes with
annotated surrogate PHI.
The first version of the dataset consists of 1200

synthetic summaries, divided into a training set with
1000 summaries, a validation set of 100 summaries
and a holdout test set of 100 summaries, where each
summary is 100 words on average. An example
summary is shown in Figure 3. To get a diverse
set of PHI in the documents, we do not prompt
the model to generate the notes from scratch, but
randomly sample surrogate PHI which is inserted
into prompt templates. These templates prompt the
language model to generate an admission note or a
discharge summary for the specified patient, where
the PHI should be annotated.

Following the format in [1], we prompt the model
to generate 8 categories of PHI, shown in Table 1.
We source lists of Norwegian names, towns, and
healthcare providers from SSB and Helsenorge re-
spectively, setting aside 20% of the entries in each
list for the synthetic test set. The main limitation
of this approach is that it relies on the model to
reproduce the language used in discharge summaries.
The instruction tuning process rewards longer and
clearer responses from the model [10], discouraging

Class Instances (orig.) Instances (final)
First Name 208 139
Last Name 123 55

Age 103 99
SSN 100 37

Location 100 64
Health Care Unit 121 109

Date 200 131
Phone Number 101 39

Total 1056 673

Table 1. PHI entities in our synthetic test set, before
and after removing trivial examples

Class Precision Recall F1
First Name 1.0 0.892 0.943
Last Name 1.0 0.926 0.962

Age 1.0 1.0 1.0
Date 1.0 0.975 0.987

Location 1.0 1.0 1.0
Phone Number 1.0 1.0 1.0

SSN 1.0 1.0 1.0
Health Care Unit 1.0 1.0 1.0

All 1.0 0.967 0.983

Table 2. Comparing GPT-4’s annotations on a sample
of 20 generated documents to the gold standard annota-
tions by the lead and second coauthor.

the abbreviations and terse syntax that we expect
in clinical notes.
The method also introduces a possible bias in

favor of GPT-4 in the deidentification experiment, as
the notes’ structure and content reflect its training
data. The GPT-4 performance on the synthetic
dataset should therefore be treated as a best case.
In the current implementation, the surrogate PHI is
also chosen independently with uniform probability
for each category, with no regard for a diagnosis’
likelihood or which patients a hospital ward sees.
This leads to less realistic notes, but should not be
a problem for evaluating deidentification, where it
is arguably an advantage if the method does not
”second-guess” notes describing rare situations.

To estimate the annotator reliability, a sample
of 20 summaries was generated, with 2122 words
and 210 PHI entities total. The sample was then
annotated by the first author and the first coauthor,
both machine learning researchers specializing in
healthcare applications. Converting the annotations
to per-word labels and comparing them, as in [1],
yielded a Cohen’s kappa of κ = 0.938, and an accu-
racy of a = 0.982 in predicting the other annotator’s
annotation. The annotators then unified the annota-
tions into a gold standard, and the model-generated
annotations were compared against this standard,
as seen in Table 2.

However, many of the PHI entities are placed on
separate lines with distinct formatting (e.g. "Phone
Number: 770 12345"). While many clinical notes
feature preset formatting and form fields [2], using
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n Cos. sim.

1 0.359
2 0.066
3 0.017
4 0.004
5 0.001

Mean 0.089

Table 3. The average cosine similarity between docu-
ment n-grams in our synthetic test set

Category Total

First Name 70
Last Name 49
Age 162
Health Care Unit 42
Phone Number 9
Social Security Number 5
Date Full 18
Date Part 45
Location 9

(All PHI) 409

Table 4. The PHI categories represented in the
NorSynthClinical-PHI [1] dataset.

these examples for training would reward methods
for recognizing these structures instead of recogniz-
ing term context. Therefore, we set up a heuristic
which removes lines with PHI entities if they feature
no other text than the title. This removes 380 of the
1056 examples in our synthetic test set, as shown in
Table 1.

To estimate the diversity of the final synthetic
dataset, we compute the average cosine similarity
between the n-gram representations of the docu-
ments, calculating it separately for n ∈ (1, 5) and
taking the mean similarity as an overall score, shown
in Table 3.

3.2 Validation

As our external validation, we use the
NorSynthClinical-PHI [1] dataset. The dataset
builds on the NorSynthClinical [11] corpus of
synthetic notes on patients’ family history with
cardiac disease, extending it with surrogate PHI.
The dataset consists of 486 sentences, with 409
entities belonging to 9 categories, as shown in Table
4. As in [1], when evaluating the methods we merge
the Date Part and Date Full classes, as well as
the Location and Health Care Unit classes.

4 Experiment

We now compare our deidentification method using
OpenAI’s GPT models to the method by Br̊athen

et al. [1]. They use Conditional Random Fields
(CRF) [12] trained on the NorNE [13] dataset to
detect names, locations and healthcare providers,
and regular expressions to detect dates and nu-
meric identifiers. Since their trained CRF model is
not available, we instead implement their method
with the pretrained nb core news lg NER model
by Honnibal et al. [14] in its place. We refer to
this implementation as the baseline, and also re-
port the results from [1] where appropriate. We
then prompt GPT-3 [15] (text-davinci-edit-001)
through OpenAI’s Edits interface, and prompt
GPT-3.5 (gpt-3.5-turbo-0613) and GPT-4 [16]
(gpt-4-0613) through their Chat Completion inter-
face. Since there is no obvious benefit to stochastic
sampling when using the models for deidentification,
we set the temperature parameter to 0, and only
sample the most probable answer from the models.

We test the models in three different settings:
multi-class annotation, single-class annotation and
redaction. In the first setting, we prompt the mod-
els to do NER and measure overall class precision
and recall. In the latter settings, we consider all
PHI part of one entity class, simplifying the prob-
lem to distinguishing PHI from non-PHI. We do
this by assigning all entities and predictions to one
class post-hoc, since prompting the models to assign
them to a single class directly leads to worse overall
precision and recall.

5 Evaluation

NER models are conventionally evaluated on overall
and per-entity precision and recall with the assump-
tion that the model assigns entity probabilities for
each token. In our setting, where we treat deidenti-
fication as a sequence-to-sequence task, we cannot
get these probabilities directly, since there isn’t a
one-to-one correspondence between the input and
output tokens.

In other works applying pretrained language mod-
els to NER tasks, this is solved by querying the
model for the entity types of individual words, as in
[17], or by generating an unordered list of entities
which is then parsed and related back to the original
input, as in [18].

While [7] report their results as overall accuracy,
the associated code only checks which proportion of
the PHI terms are left after deidentification, which
suggests that they are more likely measuring recall.

When comparing multi-class annotations, we re-
port per-entity accuracy with exact matches only,
as [1] do. However, we report per-token accuracy
when looking at single-class annotation and redac-
tion, since our redaction evaluation method counts
positives and negatives on the token level.
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Figure 1. Using Needleman-Wunsch alignment to map
the ground truth to the prediction

5.1 Estimating precision-recall in the
redaction setting

To estimate precision-recall when the model redacts
PHI, we propose using Needleman-Wunsch [19] align-
ment to align the ground truth with the redacted
text, as shown in Figure 1. Currently, we only con-
sider the single-class case, where we distinguish PHI
from non-PHI – we leave the extension to general
NER and pseudonymization for future work.

We use a basic scoring scheme where each match is
scored with value 1, and mismatches and gaps have a
penalty weight of -1. We consider any words replaced
with anything other than a tag to be potential PHI,
and therefore count them as false negatives.

Precision-recall estimation

Let s be the ground truth annotated text, and let
d be the deidentified text where PHI should be
replaced with a corresponding class tag pc. We
now count the number of true/false positives and
negatives TP, FP, TN, and FP .

1. Split the strings s and d on a word level, pro-
ducing the word lists S = [w1, · · · , wn] ∈ V∗

and D = [d1, · · · , dm] ∈ V∗.

2. Align S and D with Needleman-Wunsch align-
ment, producing the aligned lists of words and
gaps S∗ ∈ {V∨<gap>}∗ andD∗ ∈ {V∨<gap>}∗.
Then, for each pair of aligned tokens (wi, di) in
S∗ and D∗:

• If wi is the gap character, count it as an
insertion.

• If wi is a PHI token,

– and di is a gap, count it as a TP;

– and di is a PHI tag pc, count it as a
TP;

– and di is wi, count it as an FN;

– Otherwise, count it as an FN and a
rewrite.

• If wi is not a PHI token,

– and di is a gap, count it as an FP and
a removal ;

– and di is a PHI tag pc, count it as an
FP;

Method Precision Recall F1

Baseline 0.585 0.713 0.643
GPT-4 0.789 0.822 0.805
GPT-3.5 0.701 0.647 0.673
GPT-3 0.620 0.653 0.636

Table 5. The results of annotation/NER on our syn-
thetic test set, for exact entity matches.

Method Precision Recall F1

Baseline 0.882 0.756 0.815
GPT-4 0.818 0.892 0.854
GPT-3.5 0.730 0.882 0.799
GPT-3 0.647 0.891 0.745

Table 6. The results of single-class annotation on our
synthetic test set, counted per token.

– and di is wi, count it as a TN;

– otherwise, count it as an FN and a
rewrite.

This method gives us a way of estimating
precision-recall in a sequence-to-sequence deidentifi-
cation, and indicates how much the model rewrites
or erroneously inserts text.

6 Results

Table 5 shows the results of annotating our syn-
thetic test set with the GPT models. Here, GPT-
4 manages to recover the annotations on the syn-
thetic notes it generates, achieving the best over-
all F1 = 0.805. Table 6 and 7 compare single-
class annotation and redaction on the synthetic test
set. Surprisingly, the GPT models perform worse
when redacting terms rather than adding annota-
tions, with all models underperforming the baseline’s
F1 = 0.695. We then prompt the GPT models to
perform NER on NorSynthClinical-PHI, listing the
results in Table 8. Here, GPT-4 was unable to out-
perform the baseline F1 = 0.604 and the F1 = 0.731
reported in [1]. The per-class metrics for GPT-4 are
listed in Table 9.
We also compare single-class annotation and

redaction on NorSynthClinical-PHI in Table 10 and
11, respectively. Here, GPT-4 achieves a better F1

score than our baseline, attaining F1 = 0.859 when
redacting PHI and F1 = 0.841 when annotating it.

7 Discussion

When generating synthetic discharge summaries,
GPT-4 is able to coordinate multiple requirements,
annotating PHI while generating the summary. In
our sample in Table 2, the generated annotations
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Method Precision Recall F1

Baseline 0.633 0.771 0.695
GPT-4 0.467 0.461 0.464
GPT-3.5 0.429 0.401 0.414
GPT-3 0.410 0.400 0.405

Table 7. The results of redaction on our synthetic test
set.

Method Precision Recall F1

Br̊athen [1] 0.893 0.619 0.731
Baseline 0.721 0.520 0.604
GPT-4 0.448 0.615 0.518
GPT-3.5 0.453 0.359 0.401
GPT-3 0.380 0.285 0.326

Table 8. The results of annotation/NER on
NorSynthClinical-PHI for exact entity matches.

Class Precision Recall F1

First Name 0.886 0.861 0.873
Last Name 0.878 0.956 0.915

Age 0.206 0.352 0.260
SSN 0.600 0.750 0.666

Location/ 0.370 0.558 0.444
Health Care Unit

Date 0.633 0.746 0.685
Phone Number 0.200 0.333 0.250

Table 9. The per-class precision and recall of GPT-4
on NorSynthClinical-PHI.

Method Precision Recall F1

Baseline 0.805 0.593 0.683
GPT-4 0.851 0.830 0.841
GPT-3.5 0.826 0.552 0.662
GPT-3 0.683 0.462 0.551

Table 10. The results of single-class annotation on
NorSynthClinical-PHI, counted per token.

Method Precision Recall F1

Baseline 0.807 0.594 0.684
GPT-4 0.808 0.916 0.859
GPT-3.5 0.662 0.795 0.723
GPT-3 0.221 0.117 0.153

Table 11. The results of redaction on NorSynthClinical-
PHI, counted per token.

highly agree with the human annotations: none
of the generated annotations were mislabelled, but
a small number of generated entities were not la-
belled. Simultaneously, there is room to improve the
diversity of the generated notes: the notes end up
following a similar format with certain headlines and
recurring words, as indicated by the unigram cosine
similarity of 0.359. We also note that low n-gram
similarity does not guarantee semantic diversity [20].
When evaluating the models on multi-class dei-

dentification with exact entity matching, we find
that the GPT models do not beat the classifier in [1]
or our baseline implementation of it. However, when
the requirements are relaxed to recognizing PHI on
a token level, GPT-4 achieves a better F1 score than
our baseline on both datasets. We also found that
prompting the GPT models to directly assign terms
to a common PHI class led to lower precision and
recall than prompting them with multiple classes,
as in Figure 2, and assigning the entities to a sin-
gle class afterwards. This suggests that the models’
performance does not entirely depend on in-context
learning, but also depends on similar NER tasks
being present during pre-training or instruction tun-
ing.
We were not able to clearly show whether redac-

tion or annotation is the better framing of the task:
while GPT-3.5 and GPT-4 both see improvement in
redacting over annotating PHI on NorSynthClinical-
PHI, they do worse when redacting the synthetic test
set. These results support that zero-shot named en-
tity recognition is a challenging task for current lan-
guage models, especially decoder-only transformer
models [21]. Table 9 suggests that GPT-4 performs
well when recognizing names and dates, but does
worse on tasks which require pure pattern recog-
nition (e.g. phone numbers) and specific domain
knowledge (names of healthcare providers).
In every experiment, the GPT models’ perfor-

mance on the task were consistent with their size
and general capabilities. This suggests that dei-
dentification could be a good task to evaluate lan-
guage models, especially those tuned for healthcare
applications. Future work includes evaluating lan-
guage models with openly available weights (e.g.
Llama 2 [22]) on the n2c2 benchmark datasets [8][23],
and investigating whether guided generation meth-
ods [24] improve their performance. We will also
investigate the performance of supervised models
trained on our synthetic dataset.

8 Conclusion

We use GPT-4 to generate a synthetic Norwegian
deidentification dataset, consisting of 1200 syn-
thetic summaries. Taking a sample of 20 gener-
ated documents, we found that the generated an-
notations highly agree with human annotations,
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Anonymize the following clinical note with tags.
Replace first names with <First Name> tags.
Replace last names with <Last Name> tags.
Replace any strings that might be a loca-
tion or address, such as ”Åssiden 31” with
<Location> tags. Replace clinical and hos-
pital names with <Location> tags. Replace
the patient’s age and any texts that look
like ”X år gammel” with <Age> tags. Re-
place phone numbers with <Phone Number>
tags. Replace 8 digit long numbers with
<Phone Number> tags. Replace social secu-
rity numbers with <Social Security Number>
tags. Replace 11 digit long numbers with
<Social Security Number> tags. Replace dates
and times with <Date> tags. Do not use any
tags which were not specified above.
Example:
Georg Nordmann er 47 år gammel og innlagt p̊a
Haukeland siden 3. april . Georgs kone Åshild
ønsker at vi ringer henne p̊a telefon 770 12345
n̊ar vi vet mer .
Result:
<First Name> <Last Name> er <Age> og
innlagt p̊a <Location> siden <Date> .
<First Name> kone <First Name> ønsker at
vi ringer henne p̊a telefon <Phone Number>
n̊ar vi vet mer .

Figure 2. The prompt used to redact text. A similar
prompt is used to generate annotations, with instructions
to enclose the terms with corresponding class tags.

with F1 = 0.983. We make the dataset and the
code to generate it available at https://github.

com/UNN-SPKI/Nor-DeID-SynthData, and the code
for evaluations available at https://github.com/
UNN-SPKI/Nor-DeID-Evaluation.

Then, we apply the GPT models to the deidentifi-
cation problem itself, comparing their performance
to the baseline method by Br̊athen et al. [1] over
our synthetic dataset and the NorSynthClinical-PHI
set. We find that the GPT models underperform
the baseline method on multi-class deidentification,
suggesting that zero-shot named entity recognition
is still a challenging problem for large language mod-
els. However, for single-class anonymization, GPT-4
achieves better precision and recall than our CRF-
and rule-based baseline method.
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Utskrivningsnotat
Alder: <Age>75</Age> år
<First Name>Steinar</First Name> ble
innlagt p̊a <Health Care Unit>UNN, Narvik
Sykehus</Health Care Unit> den <Date>15.
april 2015</Date> med hoveddiagnosekode
S82425C, uforflyttet tverrbrudd i venstre fibula.
Ved innleggelse hadde pasienten senket hjerte-
frekvens, klare tegn p̊a dehydrering, begrenset
mobilitet, moderat smerte, lav kjernetemper-
atur, overfladisk pusting, høyt blodtrykk.
Utskrivningsstatus: Pasienten har forbedret seg
i løpet av oppholdet. Hydrering er oppn̊add, og
hjertefrekvensen har stabilisert seg. Pusten er
fortsatt noe grunn, og blodtrykket er høyt, men
under bedre kontroll. Pasientens temperatur er
fortsatt lav, men stabilt. Pasienten har fortsatt
begrenset mobilitet p̊a grunn av den uforflyttede
transversale frakturen i skaftet av venstre fibula.
Smerter er moderate, men kontrollerbare med
smertestillende medisin.

Figure 3. Generated Norwegian discharge summary
describing a fictional patient who has been treated for a
fracture. Personally identifying information – e.g. the
patient’s age, name and admission date – is annotated
by the model at generation time.
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