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Abstract
In this paper, we will consider place recognition,
more commonly know as loop closure, with a low
resolution single-chip millimeter wave (mmWave)
radar in indoor environments. It is an essential part
in simultaneous localization and mapping (SLAM)
systems to avoid drift. By using a novel method to
create descriptors or latent codes with an autoen-
coder in combination with exploiting the temporal
similarity between our latent codes, we are able to
successfully extract loop closures with a radar-only
system without requiring ground truth. Our pro-
posed method is validated in an industrial IoT lab
on an Unmanned Aerial Vehicle (UAV) and on a
cargo bike in a parking building.

1 Introduction
Loop closure can be divided in two parts, firstly a
sensor reading has to be translated in to a descrip-
tor or latent code which can be used to compare
frames. Similar descriptors need to be extracted
and verified as a genuine loop closure. In [1], an
image is translated into a bag of words which is
matched with other frames. Variations exist where
multiple images are used to create one descriptor[2],
or by comparing the descriptor of one image to a se-
quence of images[3, 4].

Recently, neural networks have been used to pro-
vide descriptors. An excellent overview is given by
[5]. These methods can use fully connected (FC)
layers as descriptors, feature maps from intermedi-
ate CNN layers and/or pooling layers to provide a
more compact descriptor. The current state-of-the-
art [6] uses a combination of convolutional layers
and generalized max/average pooling layers.

When descriptors fail to distinguish between vi-
sually similar but not exactly the same scenes, a Vi-
sual Similarity Matrix (VSM) [7, 8] is constructed
between all image pairs in which long sequences of
high similarity are extracted as loop closures by
using, for example, the Smith-Waterman [9] algo-
rithm.

All the methods above mainly work on place
recognition based on camera images. The release of
the Oxford radar dataset [10] launched more loop

closure research with radar sensors. In [11], a pose
estimation neural network is proposed and re-used
for loop closure based on predicted keypoint descrip-
tors. Based on these, the cosine similarity is calcu-
lated between all pairs of radar images. All pairs
above a certain threshold are extracted as loop clo-
sures. In [12], a modified NetVLAD architecture is
proposed for the radar domain. A comparison with
the standard NetVLAD architecture for the visual
domain is made and the benefits of specific process-
ing for radar data are made clear. The descriptor
contains 4096 dimensions. Thanks to the highly
detailed radar images, the descriptors contain suffi-
cient detail to unambiguously compare different lo-
cations. For a low power FMCW radar sensor, we
are interested in descriptors that are significantly
smaller due to the limited range and azimuth reso-
lution.

There are also a lot of similarities between loop
closure on Lidar point clouds and radar images. In
[13] an overview is given, methods can be divided
in 2 categories: segmentation and descriptor (both
global and local) based methods. While being simi-
lar sensors, these methods require a high resolution.

To the best of our knowledge, no research has
been performed yet on using a low power mmWave
radar only-system for loop closure. In [14], joint
radar and event based camera (DVS) latent codes
are used for loop closure detection on an Unmanned
Aerial Vehicle (UAV). The DVS camera and a spik-
ing radar image is fed to multiple Spiking Neural
Networks (SNN). The output spikes from the differ-
ent SNN are used as latent codes for loop closure.
While the authors use also a low power radar, no re-
sults are reported for a radar-only system. Further-
more, the loop closure detection method does not
take into account perspective changes when there is
a loop closure.

In this paper, our main contribution is to use
an autoencoder to obtain a good descriptor from
which loop closures can be extracted by using the
temporal similarity between the descriptors. We
also propose a method to determine the exact point
of loop closure by taking into account perspective
changes.
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Figure 1. Training and operating mode of the neural
network. In operating mode, the decoder part is skipped
and the output at the bottleneck is used for loop closure
detection.

2 Proposed method
We will perform loop closure in an indoor environ-
ment with a low resolution radar sensor on a UAV
and a cargo bike. Firstly, range-azimuth radar im-
ages are converted to latent codes by an autoen-
coder. By looking at the similarity and temporal
information between latent codes, we will detect
loop closures. Finally, since a loop closure never
happens at exactly the same point we propose a
method to calculate the perspective change or pose
transformation. Recording and processing of the
radar data happens in the local coordinate system
of the UAV. In practice, roll and pitch angles are
small. By approximating them by 0, processing is
simplified from a 6 to 3 degrees of freedom problem.

2.1 Creating latent codes using au-
toencoders

An autoencoder network consists of an encoding
part and a decoding part. The network is trained
to have an output identical to the input, but it is
forced to learn patterns in the input data due to
the bottleneck. Mathematically, an autoencoder
can be expressed as follows. Let f(x) be the en-
coder, and g(f(x)) the decoder. The goal of the
neural network is then to minimize a loss function
L(x, g(f(x))) where L is a loss function penalizing x
being dissimilar from g(f(x)), in our case the mean
squared error (MSE). The output of the neural net-
work, after training, is a denoised range-azimuth im-
age which shows better the features of the environ-
ment. The neural network tries to capture all the
relevant information in the bottleneck from which
the input image can be the most accurately approx-
imated. The representation at this point is thus the
most suited to be used as latent code. An overview
of the autoencoder is shown in Fig. 1.

The similarity between latent codes ti and tj for
respectively radar frame i and j is calculated using
the cosine similarity δ as follows:

(a) S0 (b) S2

Figure 2. Similarity matrix and the rank-reduced ver-
sion. Loop closures can be seen in the long sequences
of high similarity around the sub-diagonals

δi,j = δ(ti, tj) =
ti · tj

∥ti∥∥tj∥

The cosine similarity is calculated for every possi-
ble frame pair resulting in a similarity matrix S with
Sij = δi,j . A sequence of n radar frames results in
a matrix of size n× n.

This matrix is shown in Fig. 2(a). The checker-
board pattern is caused by similar areas in our ware-
house between the different aisles. An aisle looks
very similar for the radar, independently of its po-
sition in the aisle. This leads to high similarity be-
tween the latent codes.

2.2 Ambiguity reduction with a sin-
gular value decomposition

As illustrated by the authors in [7], it is possible
to reduce the ambiguity in the similarity matrix by
looking at the singular value decomposition (SVD)
and removing the biggest eigenvalues which are re-
sponsible for the ambiguities. Their method is sum-
marized below since it is an important part of our
algorithm. Since S is a symmetric real n×n matrix,
there is an orthogonal matrix Q and a diagonal ma-
trix Λ such that S = QΛQT . The columns of Q
are eigenvectors and the diagonal elements of Λ are
eigenvalues.

When removing an eigenvalue, we reduce the
rank of our similarity matrix. We refer to our rank
reduced matrix as Sr.

Sr = QΛrQ
T (1)

= Q


0 . . . . . . 0
... λr

...
... . . . ...
0 . . . . . . λn

QT (2)

For S2, shown in Fig. 2(b), many ambiguities have
been removed and loop closures can be easier iden-
tified.

2



2.3 Sequence detection using tempo-
ral information

From a rank reduced similarity matrix, we want to
calculate frame sequences A = [a1, ..., ai, ..., an] and
B = [b1, ..., bi, ..., bn] where ai, bj are frame indexes.
The tuple (ai, bi) is a corresponding frame pair
within a corresponding sequence of frames noted
as the tuple (A,B). In [7], a modified version of
the Smith-Waterman algorithm is used. It is a dy-
namic programming method by using a scoring ma-
trix H to keep track of the matching scores for all
possible sequences. We modified the algorithm in
[7] to extract multiple corresponding subsequences.
Each element Hi,j can be considered as the cumula-
tive score of a subsequence (A, B). When aligning
sequences, there are 3 possible moves through the
matrix S: diagonal, horizontal and vertical. Hor-
izontal and vertical receive a penalty δ, since we
assume the vehicle always has a non-zero velocity,
however due to velocity differences they have to be
allowed. The matrix H is initialized to 0 and then
constructed recursively as follows:

Hi,j =


0 if Si,j < α

Hi−1,j−1 + Si,j if Hi−1,j−1 = Hmax
i,j

Hi,j−1 + Si,j − δ if Hi,j−1 = Hmax
i,j

Hi−1,j + Si,j − δ if Hi−1,j = Hmax
i,j

(3)
Hmax

i,j = max(Hi−1,j−1,Hi,j−1,Hi−1,j) (4)

The end of a possible sequence is signaled by Si,j <
α, where α is empirically chosen. A smaller value of
α favors more weak associations and leads to longer
extracted subsequences, however if the value of α is
chosen too small the probability of extracting false
positive loop closures is increased.

The maxima of H represent the endpoint of se-
quences with the best cumulative scores. To ex-
tract different maxima, a threshold value has to
be determined. The criterion used for selection is
Hij,peak > β ∗max(H) where β < 1 and empirically
chosen. For each maximum, we backtrack in matrix
H according to the reverse of the steps in equation 3.
The row indices of the obtained sequence in H form
A and the column indices form B.

2.4 Loop closure extraction
Once a sequence has been obtained, the point of
loop closure has to be selected. Furthermore, the
pose transformation in SE(2) between the two
radar scans has to be calculated. We use the
method in [15] to obtain a proposed transformation
and motion score.

The extension in this paper determines the ex-
act frame pair and verifies that it is not ambiguous
with other frame pairs. If the proposed pair cannot
be distinguished from other pairs by their motion

(a) Drone platform. (b) Bike platform.

(c) Warehouse dataset. (d) Parking dataset.

Figure 3. Capturing platform and dataset overview
for the two datasets.

score, we cannot confidently conclude this is the cor-
rect loop closure. In consequence, it is discarded to
reduce the amount of false positives. The procedure
goes as follows:

• Given two subsequences A = [a1, a2, ...] and
B = [b1, b2, ...] resulting from section 2.3. The
center element al from A is taken fixed.

• For each bj in [bl−25, ..., bl, bl+25], execute the
procedure summarized in [15]. A transforma-
tion is obtained for each frame pair al and bj .
For each pair (al, br) the mean squared error
(MSE) is calculated between the overlapping
regions in the radar scans. The pair with the
lowest score is taken as a potential candidate
for loop closure.

• To avoid false positive loop closures, the
MSE is calculated in a window left and
right from the potential candidate (al, br).
With L = 1

m

∑m
i=1 MSE(al, br−i) and R =

1
m

∑m
i=1 MSE(al, br+i), it is required that

αMSE(al, br) < L and αMSE(al, br) < R. α
is chosen empirically and in our experiments
set to 1.1.

3 Experiments and implemen-
tation details

We use a TI IWR1443 mmWave radar (detailed in
[15]) on a drone platform and a cargo bike. We eval-
uated our method on two datasets (see Fig. 3). The
first dataset is recorded in a warehouse and consists
of loops through the different aisles in a random or-
der as shown in Fig. 4. The aisles are difficult to dis-
ambiguate and make for a challenging dataset. The
dataset consists of 5 drone flights totaling around
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Figure 4. Layout of the warehouse with a potential
trajectory included in red. On the right, the radar range-
azimuth response is displayed in various positions in the
warehouse.

35 minutes of flight time (9000 frames). One flight
is used as test set. The second dataset is recorded
in a parking building consisting of two floors. Train-
ing data is recorded on both floors clockwise, test
data is recorded counterclockwise on the first floor.
This dataset consists of around 13000 radar frames.

We vary the number of layers and channels in
the autoencoder to find the optimal trade-off be-
tween size of the bottleneck and performance. The
amount of channels is doubled with every layer. The
input size of the image is 64×64. Experiments with
smaller input sizes, failed to capture meaningful fea-
tures.

Results are shown in Fig 5, our method results in
a high quality number of loop closures. Each loop
closure is manually verified since we have no ground-
truth information in our warehouse and classified as
a true or false positive. It shows that architectures
where the dimension of the bottleneck is smaller
than 512 fail to extract a good descriptor for loop
closure. We observe that if a neural network is ex-
tremely good in one dataset, it performs poorly in
one dataset. Likely this is a result of the bottleneck
being too small and forces the network to focus on
one dataset.

To adapt to new environments retraining will be
likely necessary. However, since usually the oper-
ation environment is known beforehand this is not
necessarily a problem.

4 Conclusion and future work
In this paper, we propose to use an autoencoder
to obtain qualitative latent codes from a low power
radar sensor that can be used for loop closure in in-
door environments without requiring ground truth
for training. While it is hard to obtain hand-crafted
features on low power radar sensors, the autoen-
coder provide us such a descriptor automatically.

Figure 5. Results on different tested configurations.
Higher is better. Both the amount of false positive and
true positive loop closures as indicated as negative and
positive bars. The size of the bottleneck is indicated as
D(B).

After describing how we use the temporal similar-
ity between latent codes, we also propose a method
to determine the pose transformation in a loop clo-
sure. Our proposed algorithm is most suited for in-
door environments and mobile platforms that have
a restriction on sensor capability. We show that it
is possible to extract loop closures, but the radar’s
lack of detail and susceptibility to clutter make it
not ideal for this purpose. Our future research di-
rections include a more in-depth study of the latent
space and additional radar pre-processing steps to
further improve the quality of the descriptor. Fur-
thermore, our tested environments have been static.
To consider dynamic environments, some form of
doppler-filtering will be necessary to focus on the
static scene. We will also investigate fusing other
sensors to improve the robustness of our algorithm.
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