Protein Structure Prediction

Abstract

We employ Clifford Group Equivariant Neural Net-
work (CGENN) layers to predict protein coordinates
in a Protein Structure Prediction (PSP) pipeline.
PSP is the estimation of the 3D structure of a pro-
tein, generally through deep learning architectures.
Information about the geometry of the protein chain
has been proven to be crucial for accurate predic-
tions of 3D structures. However, this information is
usually flattened as machine learning features that
are not representative of the geometric nature of the
problem. Leveraging recent advances in geometric
deep learning, we redesign the 3D projector part of
a PSP architecture with the addition of CGENN
layers . CGENNs can achieve better generalization
and robustness when dealing with data that show
rotational or translational invariance such as protein
coordinates, which are independent of the chosen
reference frame. CGENNSs inputs, outputs, weights
and biases are objects in the Geometric Algebra
of 3D Euclidean space, i.e. G300, and hence are
interpretable from a geometrical perspective. We
test 6 approaches to PSP and show that CGENN
layers increase the accuracy in term of GDT scores
by up to 2.1%, with fewer trainable parameters com-
pared to linear layers and give a clear geometric
interpretation of their outputs.

1 Introduction

Geometric deep learning (GDL) focuses on develop-
ing models capable of handling data with an under-
lying geometric structure, including 3D point clouds,
graphs, manifolds and molecules [1-3]. Graph Neu-
ral Networks (GNNs) are one example of GDL ar-
chitecture [4], but many other types exist and have
been applied in fields such as computer vision, nat-
ural language processing, bioinformatics and social
network analysis [5-8].

In this paper, we focus on Clifford Group Equivari-
ant Neural Networks (CGENNS) as introduced in [9].
CGENNSs allow us to work with objects in 3D space
without scalarizing them, thereby preserving their
geometrical meaning. CGENNs have been demon-
strated to be equivariant maps with respect to the
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Clifford group. CGENNSs have revived the interest
in Clifford networks, i.e., networks whose neurons,
inputs and outputs are objects in the Clifford Alge-
bra, and have reached state of the art performance
in several inherently geometric problems [9-11].

The aim of the paper is to understand the impact
of CGENNSs on protein structure prediction (PSP)
and how they compare to non-geometric machine
learning layers. GDL has been widely employed in
PSP [12-14]. Moreover, several Clifford and Geo-
metric algebra approaches to protein modelling exist
in the literature [15-18]. To the best of our knowl-
edge, this is the first example of layers working in
Clifford algebra for a PSP problem.

2 Related Work

2.1 Protein Structure Prediction

Protein structure prediction (PSP) is the estimation,
via one or more deep learning (DL) architectures, of
the 3D structure of a protein.

Input features are generally biochemical quantities
related to the protein chain, which are themselves
extracted from the amino acid sequence, i.e. the
protein’s primary structure. Commonly employed
features include the Euclidean distance between
amino acids, secondary structure predictions (i.e.
the chain’s local folding), coevolutionary informa-
tion (i.e. the reciprocal evolutionary change in a set
of interacting populations) and others [12, 19-24].

Among these features, information about the ge-
ometry of the chain has also proven to be particularly
relevant. In the literature, geometric information
has been encoded in several ways, including through
multiple distance maps [20], dihedral angles [22],
3D rigid bodies [12, 23] or geometric algebra (GA)-
instantiated features [18, 25].

A major shortcoming of the cited approaches, how-
ever, is that this geometric information always needs
to be flattened (o.e. scalarized) in order to be fed
into and interpreted by DL architectures. GDL can
be employed to overcome this issue and preserve the
geometric nature of the data. Several examples are
given in [13, 14, 25-27], in which proteins are repre-
sented as graphs, where nodes correspond to amino
acids, and edges represent interactions between them
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Figure 1.

CGENN layers employed within the 3D Projector in a Protein Structure Prediction pipeline. A protein

with M amino acids can be represented as a graph withD nodes andK edges. The Graph Transformer extracts a

new node representation M

D, while the 3D Projector maps the representation onto 3D space to obtain M 3

3D coordinates. In CGENNSs, neurons, weights and biases are multivectors, in our case in Gs;0;0, Whose vector part

can be interpreted geometrically.

(e.g., bonds or contacts). In this paper we aim to
implement a GDL pipeline built upon CGENN lay-
ers, which explicitly work with objects in Cli ord
algebra and can model equivariant transformation
on them.

2.2 Cliord Algebra

Basics. We will use the term Geometric Alge-
bra (GA) for a real Cli ord algebra and follow the

on multivectors. A more comprehensive introduc-
tion to GA can be found in [31, 32].

Cliord Algebra Neural Networks . GAis a
framework that allows us to deal elegantly with ge-
ometrical objects and tranformations. It is hence
not surprising that several GDL approaches built
upon Cli ord and Geometric Algebra exist in the
literature. The earliest examples of neural networks
working in Cliord Algebra are found in [33{35].
Cli ord Algebra neural networks have been recently

geometry-inspired approach pioneered by Hestenesrediscovered, and have been demonstrated to reach

[28]. GA has found many applications in physics,
engineering, graphics and more [29, 30].

A GA Gyqr hasn = p+ g+ r basis vectors, with
p basis vectors that square to 1,q basis vectors
that square to 1 andr basis vectors that square
to 0. In this paper, we work with Gs.p.0, Which
is the 3D Euclidean GA. Gs.0.0 is fully described
by f1;e:;e;€s;€12; €13; €23; €1230, in which fig is
a scalar or a Oblade with grade 0, fe;; e;; e3q9 are
vectors or 1blades with grade 1, fe;;; e13; €39 are
bivectors or 2-blades with grade 2 and fe;o3gis a
trivector or 3-blade with grade 3.

Given two GA vectors a; b, the geometric product
is de ned as

ab=a b+ a”b;

(1)

in which indicates the inner product and * indi-
cates the Grassmann outer product, resulting in a
scalar (@ b) plus a bivector (a” b). Multiplication

of objects in GA results in multivectors, which are
linear combinations of objects of di erent grades.
CGENN layers operate through geometric products

state-of-the-art accuracy in several physics problems
of an intrinsically geometric nature [9{11]. In this
paper we employ CGENN layers as rstly intro-
duced in [9]. CGENNs (whose mapping is denoted
by ) are networks built upon equivariant layers
and operate onmultivectors of a Cli ord Algebra
in any dimension in an E(n)-equivariant way, i.e.
equivariant over the n-dimensional Euclidean space.
This means that when an orthogonal transformation
(w) is applied to the input data, x, the model's
representationscorotate, i.e.

( W)= (w)( (x): )

Operating on the transformed data is the same as
operating on the data and then transforming: for
physical transformations this would be termed as
covariance. The equivariance of CGENNSs is par-
ticularly desirable in PSP problems, since ground
truth protein coordinates sit in an arbitrary ref-
erence frame which di ers for each protein chain.
Moreover, CGENNSs directly transform data in a
vector basis, o ering a better geometric interpreta-



tion of the network's intermediate outputs in terms
of folding.

3 Method

3.1 Architecture

The architecture employed, shown in Figure 1, has
been derived from [13]. It is composed of two parts,

(i) a Graph Transformer (GrT) and (ii) a 3D projec-
tor. The GrT is responsible for encoding biochemical
features into graph form for each protein, extracting
information from the graph connectivity and obtain-
ing a new node representation. For further details

we refer the reader to [13, 25] The 3D projector, on

the other hand, is responsible for transforming, or
projecting the new nodes in output of the GrT onto
3D Euclidean space.

In this paper we employ two types of CGENN lay-
ers, namely (i) multivector linear (MVL) layers and
(i) fully connectected geometric product (FCGP)
layers, within the 3D projector, and compare them
to fully connected linear (L) layers.

Given a set of multivectors fx;g%, , with C input
channels, the outputz; of the j -th channel of a MVL
layer is given by:

x
th ik =
i=1

TRLAs 3)

in which h iy is the extraction of the gradek elements
in multivectors x;z and j 2 R is a learnable
weight.

The FCGP layer, on the other hand, models inter-
action terms between pairs of multivectors. Given a
learnable linear combination of the inputs

x
Vi = pi Xp; (4)

p=1
the output of the j-th channel, z;, obeys

X X
hejiy = ik P ( piXp)ik: )
i=1 p=1
Both jx 2 Rand 2 R are learnt, explaining the
higher number of parameters for the FCGP layers
compared to the MVL layers in Tables 1-2.
The 3D projector models a function g such that

P=gz®); (6)

whereZ(t) 2 RM D s the output of the L-th layer

of the GrT, with D being the number of nodes,

P 2 RM 3 are the 3D coordinates of theM C

Figure 2.
3D projector.

() Train Loss

(b) Validation Loss

Losses for the 6 di erent approaches to the

a weight matrix Wp 2 R® 3. When CGENNSs are
employed, on the other hand, some extra steps have
to be considered:

Reshape z(&) 2 RM D jnto z(M) 2

RM (D=3) 3 50 that we can geometrically in-
terpret the output of the GrT as D=3 proposals
of 3D Euclidean coordinates,

Embed the reshaped GrT output into the Gs.0.0
algebra (i.e. assign 3D coordinates to a basis
vector fer; e; €3g) so to obtain an input tensor
Xin 2 RM (P=3) 8 representing a multivector
X 2 Gs.0.0 With 8 real coe cients (1 scalar, 3
vectors, 3 bivectors, 1 trivector) and only the
vector part non-zero,

Downsample the multivector proposalswith one
or more CGENN layers, operating according
to Eg. 3 for the MVL layer or Eq. 5 for the

FCGP layer, until obtaining an output tensor

Xou 2 RM 18,

Extract grade 1 elements from the obtained
multivectors, corresponding to the vector part,
i.e. the protein coordinates in 3D Euclidean
spaceP 2 RM 1 3,

We tested a total of 6 approches: (a) 1 linear layer

(27 nodes to 3); (b) 1 MVL layer (9 3D structures

atoms in the protein chain and g depends on the to 1); (¢c) 1 FCGP layer (9 3D structures to 1); (d) 2

type of layer chosen.

linear layers (27 nodes to 9 to 3); (e) 2 MVL layers

When the 3D projector is a fully connected layer, (9 3D structures to 3 to 1); (f) 2 FCGP layers (9 3D
as in [13, 25] the functiong( ) is parametrized by structures to 3 to 1)
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