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Abstract

We employ Clifford Group Equivariant Neural Net-
work (CGENN) layers to predict protein coordinates
in a Protein Structure Prediction (PSP) pipeline.
PSP is the estimation of the 3D structure of a pro-
tein, generally through deep learning architectures.
Information about the geometry of the protein chain
has been proven to be crucial for accurate predic-
tions of 3D structures. However, this information is
usually flattened as machine learning features that
are not representative of the geometric nature of the
problem. Leveraging recent advances in geometric
deep learning, we redesign the 3D projector part of
a PSP architecture with the addition of CGENN
layers . CGENNs can achieve better generalization
and robustness when dealing with data that show
rotational or translational invariance such as protein
coordinates, which are independent of the chosen
reference frame. CGENNs inputs, outputs, weights
and biases are objects in the Geometric Algebra
of 3D Euclidean space, i.e. G3,0,0, and hence are
interpretable from a geometrical perspective. We
test 6 approaches to PSP and show that CGENN
layers increase the accuracy in term of GDT scores
by up to 2.1%, with fewer trainable parameters com-
pared to linear layers and give a clear geometric
interpretation of their outputs.

1 Introduction

Geometric deep learning (GDL) focuses on develop-
ing models capable of handling data with an under-
lying geometric structure, including 3D point clouds,
graphs, manifolds and molecules [1–3]. Graph Neu-
ral Networks (GNNs) are one example of GDL ar-
chitecture [4], but many other types exist and have
been applied in fields such as computer vision, nat-
ural language processing, bioinformatics and social
network analysis [5–8].

In this paper, we focus on Clifford Group Equivari-
ant Neural Networks (CGENNs) as introduced in [9].
CGENNs allow us to work with objects in 3D space
without scalarizing them, thereby preserving their
geometrical meaning. CGENNs have been demon-
strated to be equivariant maps with respect to the
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Clifford group. CGENNs have revived the interest
in Clifford networks, i.e., networks whose neurons,
inputs and outputs are objects in the Clifford Alge-
bra, and have reached state of the art performance
in several inherently geometric problems [9–11].

The aim of the paper is to understand the impact
of CGENNs on protein structure prediction (PSP)
and how they compare to non-geometric machine
learning layers. GDL has been widely employed in
PSP [12–14]. Moreover, several Clifford and Geo-
metric algebra approaches to protein modelling exist
in the literature [15–18]. To the best of our knowl-
edge, this is the first example of layers working in
Clifford algebra for a PSP problem.

2 Related Work

2.1 Protein Structure Prediction

Protein structure prediction (PSP) is the estimation,
via one or more deep learning (DL) architectures, of
the 3D structure of a protein.

Input features are generally biochemical quantities
related to the protein chain, which are themselves
extracted from the amino acid sequence, i.e. the
protein’s primary structure. Commonly employed
features include the Euclidean distance between
amino acids, secondary structure predictions (i.e.
the chain’s local folding), coevolutionary informa-
tion (i.e. the reciprocal evolutionary change in a set
of interacting populations) and others [12, 19–24].

Among these features, information about the ge-
ometry of the chain has also proven to be particularly
relevant. In the literature, geometric information
has been encoded in several ways, including through
multiple distance maps [20], dihedral angles [22],
3D rigid bodies [12, 23] or geometric algebra (GA)-
instantiated features [18, 25].

A major shortcoming of the cited approaches, how-
ever, is that this geometric information always needs
to be flattened (o.e. scalarized) in order to be fed
into and interpreted by DL architectures. GDL can
be employed to overcome this issue and preserve the
geometric nature of the data. Several examples are
given in [13, 14, 25–27], in which proteins are repre-
sented as graphs, where nodes correspond to amino
acids, and edges represent interactions between them
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Figure 1. CGENN layers employed within the 3D Projector in a Protein Structure Prediction pipeline. A protein
with M amino acids can be represented as a graph with D nodes and K edges. The Graph Transformer extracts a
new node representation M ×D, while the 3D Projector maps the representation onto 3D space to obtain M × 3
3D coordinates. In CGENNs, neurons, weights and biases are multivectors, in our case in G3,0,0, whose vector part
can be interpreted geometrically.

(e.g., bonds or contacts). In this paper we aim to
implement a GDL pipeline built upon CGENN lay-
ers, which explicitly work with objects in Clifford
algebra and can model equivariant transformation
on them.

2.2 Clifford Algebra

Basics. We will use the term Geometric Alge-
bra (GA) for a real Clifford algebra and follow the
geometry-inspired approach pioneered by Hestenes
[28]. GA has found many applications in physics,
engineering, graphics and more [29, 30].

A GA Gp,q,r has n = p+ q + r basis vectors, with
p basis vectors that square to 1, q basis vectors
that square to −1 and r basis vectors that square
to 0. In this paper, we work with G3,0,0, which
is the 3D Euclidean GA. G3,0,0 is fully described
by {1, e1, e2, e3, e12, e13, e23, e123}, in which {1} is
a scalar or a 0-blade with grade 0, {e1, e2, e3} are
vectors or 1-blades, with grade 1, {e12, e13, e23} are
bivectors or 2-blades, with grade 2 and {e123} is a
trivector or 3-blade, with grade 3.

Given two GA vectors a,b, the geometric product
is defined as

ab = a · b+ a ∧ b, (1)

in which · indicates the inner product and ∧ indi-
cates the Grassmann outer product, resulting in a
scalar (a · b) plus a bivector (a ∧ b). Multiplication
of objects in GA results in multivectors, which are
linear combinations of objects of different grades.
CGENN layers operate through geometric products

on multivectors. A more comprehensive introduc-
tion to GA can be found in [31, 32].
Clifford Algebra Neural Networks. GA is a
framework that allows us to deal elegantly with ge-
ometrical objects and tranformations. It is hence
not surprising that several GDL approaches built
upon Clifford and Geometric Algebra exist in the
literature. The earliest examples of neural networks
working in Clifford Algebra are found in [33–35].
Clifford Algebra neural networks have been recently
rediscovered, and have been demonstrated to reach
state-of-the-art accuracy in several physics problems
of an intrinsically geometric nature [9–11]. In this
paper we employ CGENN layers as firstly intro-
duced in [9]. CGENNs (whose mapping is denoted
by ϕ) are networks built upon equivariant layers
and operate on multivectors of a Clifford Algebra
in any dimension in an E(n)-equivariant way, i.e.
equivariant over the n-dimensional Euclidean space.
This means that when an orthogonal transformation
ρ(w) is applied to the input data, x, the model’s
representations corotate, i.e.

ϕ(ρ(w)(x)) = ρ(w)(ϕ(x)). (2)

Operating on the transformed data is the same as
operating on the data and then transforming: for
physical transformations this would be termed as
covariance. The equivariance of CGENNs is par-
ticularly desirable in PSP problems, since ground
truth protein coordinates sit in an arbitrary ref-
erence frame which differs for each protein chain.
Moreover, CGENNs directly transform data in a
vector basis, offering a better geometric interpreta-
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tion of the network’s intermediate outputs in terms
of folding.

3 Method

3.1 Architecture

The architecture employed, shown in Figure 1, has
been derived from [13]. It is composed of two parts,
(i) a Graph Transformer (GrT) and (ii) a 3D projec-
tor. The GrT is responsible for encoding biochemical
features into graph form for each protein, extracting
information from the graph connectivity and obtain-
ing a new node representation. For further details
we refer the reader to [13, 25] The 3D projector, on
the other hand, is responsible for transforming, or
projecting the new nodes in output of the GrT onto
3D Euclidean space.

In this paper we employ two types of CGENN lay-
ers, namely (i) multivector linear (MVL) layers and
(ii) fully connectected geometric product (FCGP)
layers, within the 3D projector, and compare them
to fully connected linear (L) layers.

Given a set of multivectors {xi}Ci=1, with C input
channels, the output zj of the j-th channel of a MVL
layer is given by:

⟨zj⟩k =

C∑
i=1

ϕijk⟨xi⟩k, (3)

in which ⟨·⟩k is the extraction of the grade k elements
in multivectors x, z and ϕijk ∈ R is a learnable
weight.

The FCGP layer, on the other hand, models inter-
action terms between pairs of multivectors. Given a
learnable linear combination of the inputs

yi =

C∑
p=1

βpixp, (4)

the output of the j-th channel, zj , obeys

⟨zj⟩k =

C∑
i=1

C∑
p=1

ϕijk⟨xi(βpixp)⟩k. (5)

Both ϕijk ∈ R and βpi ∈ R are learnt, explaining the
higher number of parameters for the FCGP layers
compared to the MVL layers in Tables 1-2.
The 3D projector models a function g such that

P = g(Z(L)), (6)

where Z(L) ∈ RM×D is the output of the L-th layer
of the GrT, with D being the number of nodes,
P ∈ RM×3 are the 3D coordinates of the M Cα

atoms in the protein chain and g depends on the
type of layer chosen.

When the 3D projector is a fully connected layer,
as in [13, 25] the function g(·) is parametrized by
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Figure 2. Losses for the 6 different approaches to the
3D projector.

a weight matrix WP ∈ RD×3. When CGENNs are
employed, on the other hand, some extra steps have
to be considered:

• Reshape Z(L) ∈ RM×D into Z(L) ∈
RM×(D/3)×3, so that we can geometrically in-
terpret the output of the GrT as D/3 proposals
of 3D Euclidean coordinates,

• Embed the reshaped GrT output into the G3,0,0

algebra (i.e. assign 3D coordinates to a basis
vector {e1, e2, e3}) so to obtain an input tensor
Xin ∈ RM×(D/3)×8 representing a multivector
x ∈ G3,0,0 with 8 real coefficients (1 scalar, 3
vectors, 3 bivectors, 1 trivector) and only the
vector part non-zero,

• Downsample the multivector proposals with one
or more CGENN layers, operating according
to Eq. 3 for the MVL layer or Eq. 5 for the
FCGP layer, until obtaining an output tensor
Xout ∈ RM×1×8,

• Extract grade 1 elements from the obtained
multivectors, corresponding to the vector part,
i.e. the protein coordinates in 3D Euclidean
space P ∈ RM×1×3.

We tested a total of 6 approches: (a) 1 linear layer
(27 nodes to 3); (b) 1 MVL layer (9 3D structures
to 1); (c) 1 FCGP layer (9 3D structures to 1); (d) 2
linear layers (27 nodes to 9 to 3); (e) 2 MVL layers
(9 3D structures to 3 to 1); (f) 2 FCGP layers (9 3D
structures to 3 to 1)
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Figure 3. (a) MAE and (b) SSIM distributions over
the PSICOV150 dataset.

3.2 Dataset

We employ the PDNET dataset as presented in [21].
PDNET has D = 27 features relative to individual
amino acids, which can be arranged into nodes X ∈
RM×D=27, and K = 5 pairwise features, which can
be expressed as edges A ∈ RM×M×K=5.

PDNET includes a training set, DEEPCOV, with
3456 protein chains, and a test set, PSICOV150,
with 150 chains. PDNET is a subset of the dataset
employed in [36]. The train and test sets do not
present domain homology, i.e. the proteins in the
two sets are not alike due to shared ancestry. The
sequence lengths of the protein chains range from
50 to 500 and 50 to 266 amino acids in the training
set and test set, respectively. 20% of the training
set has been reserved for validation.

Table 1. GDT TS scores over the PSICOV150 dataset
for different 3D projection strategies.

3D projector type max median min params
(a) L layer [25] 28.69 15.15 9.07 150
(b) MVL layer 34.29 16.98 6.59 142
(c) FCGP layer 33.20 18.13 5.35 682
(d) 2 L layers 36.06 18.76 6.61 421

(e) 2 MVL layers 48.01 20.81 7.68 232
(f) 2 FCGP layers 58.04 20.56 5.45 1240

3.3 Metrics

We assessed the quality of the predictions by mea-
suring three quantities: (i) the mean absolute error
(MAE) and (ii) the structural similarity index (SSIM,

Table 2. GDT HA scores over the PSICOV150 dataset
for different 3D projection strategies.

3D projector type max median min params
(a) L layer [25] 11.06 4.27 0.74 150
(b) MVL layer 13.52 4.49 0.58 142
(c) FCGP layer 14.14 5.38 0.78 682
(d) 2 L layers 15.98 5.17 0.74 421

(e) 2 MVL layers 23.01 6.77 1.42 232
(f) 2 FCGP layers 33.62 6.79 0.61 1240

bounded between 0 and 1) between distance maps

D, D̂ built upon ground truth and predicted coor-
dinates of the alpha-Carbon atoms of the protein
chain P, P̂ , respectively; along with the (iii) global
distance test (GDT) score between P, P̂ after align-
ment. The GDT total score (TS) and half size (HA)
are defined as:

GDT TS =
p<1Å + p<2Å + p<4Å + p<8Å

4
, (7)

and

GDT HA =
p<0.5Å + p<1Å + p<2Å + p<4Å

4
, (8)

respectively, where p<nÅ indicates the percentage

of amino acids in the chains P, P̂ whose Euclidean
distance is below n Å. The distance map for a protein
chain of length M is an M ×M matrix defined as
Dij = dij , in which dij is the Euclidean distance
between amino acids i and j expressed in Å.

3.4 Training details

The loss function is identical to the one employed
[18], and is measured over distance maps D, D̂, built
from ground truth and predicted 3D coordinates
P, P̂ . This is used because distances are independent
of the reference frame.

The total loss to minimize is equal to

L = LMAE + LSSIM , (9)

in which the first termminimizes the MAE between
D (the ground truth distance map) and D̂, as

LMAE = MAE(D, D̂). (10)

The second term maximizes the SSIM between D
and D̂

LSSIM = α
(
1− SSIM(D, D̂)

)
, (11)

where α = 20 is a scalar found empirically to give
them an equal weight in the total loss.

We chose Adam as optimizer, with starting learn-
ing rate η0 = 1 × 10−2 and decay rate every 2
epochs of γ = 0.9. We chose a batch size of
B = 32 and implemented early stopping with pa-
tience P = 4 and a tolerance of ∆ = 0.1. The
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Figure 4. Input and outputs of the CGENN layers for the prediction of the 3D structure of protein 2ehwA for
approach (e). The outputs (in red) are also 3D structures, with sensible distance maps close to ground truth (in
grey). Note how the same ground truth appears rotated due to the alignment procedure.

script has been written as a notebook on Google
Colaboratory, run on an NVIDIA Tesla A100 GPU.
The operations in GA have been implemented via
[37] protein data were handled via Biopython [38].
The GrT was derived from [13] and the CGENN
layers from [10]. The code is available at https:

//github.com/albertomariapepe/CGENN-PSP.

4 Results

Results are summarized in Tables 1-2. Compared to
linear layers, CGENNs increase the median GDT TS
by up to 3% and 2.1% with one and two layers, re-
spectively. Similarly, the median GDT HA shows
increases of 1.1% and of 1.6% with one and two
layers, respectively. Note how for the MVL layers,
the improvement is given despite a reduction in the
number of trainable parameters, which is quite signif-
icant when the 3D projector is composed by 2 layers.
This trend is mirrored in the loss profiles: train and
validation losses for the 6 different approaches to
the 3D projector are presented in Figures 2(a)-2(b),
respectively. In both figures, CGENN layers loss
reaches lower minima than linear layers, despite a
slower convergence. The distributions over the test
set of MAE and SSIM measured between D, D̂ are
shown in Figures 3(a)-3(b), respectively. The lowest
MAE is obtained via approach (e), followed by (f)
and (c), all CGENN layers. The highest median
MAE, on the other hand, is achieved by approach
(a), i.e. the single linear layer of [13, 25]. Similarly,
the highest median SSIM over the test set is ob-
tained via approaches (e) and (f), while the lowest
via approach (a).

We believe that the main advantage of our ap-
proach lies in its geometric interpretability. In
Figure 4 an example of input and outputs of the
CGENN layers is given for protein 2ehwA. The D/3
coordinate proposals for case (e), in our case 9, are
fed as input to the MVL layer (top). Note how the
3D coordinates, despite being still far from the cor-
rect folding, can be used to construct distance maps
which are already close to ground truth, and hence
fully interpretable as protein chains. The 3 outputs
from the 1st MVL layer are shown in the middle
section of Figure 4: the MAE decreases, while SSIM
and GDT scores increase. The 3D structures “un-
fold”. Finally, the output of the last layer is shown
in the bottom section of Figure 4. It is not possible
to have the same interpretability with linear layers.

5 Conclusion

We applied CGENN layers to predict 3D structures
of proteins. We showed how CGENN layers, which
are E(3)-equivariant and explicitly work in 3D Eu-
clidean space via G3,0,0, improve the quality of the
predictions, reaching lower losses during training,
boosting the accuracy measured as GDT scores of
2% compared to linear layers and offering a geomet-
ric interpretation of intermediate layers’ ouputs as
3D protein structures.
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