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Abstract
This work examines the adaptability of Deep Per-
ceptual Similarity (DPS) metrics to context beyond
those that align with average human perception and
contexts in which the standard metrics have been
shown to perform well. Prior works have shown
that DPS metrics are good at estimating human
perception of similarity, so-called perceptual simi-
larity. However, it remains unknown whether such
metrics can be adapted to other contexts.

In this work, DPS metrics are evaluated for their
adaptability to different contradictory similarity con-
texts. Such contexts are created by randomly rank-
ing six image distortions. Metrics are adapted to
consider distortions more or less disruptive to simi-
larity depending on their place in the random rank-
ings. This is done by training pretrained CNNs to
measure similarity according to given contexts. The
adapted metrics are also evaluated on a perceptual
similarity dataset to evaluate whether adapting to
a ranking affects their prior performance.

The findings show that DPS metrics can be
adapted with high performance. While the adapted
metrics have difficulties with the same contexts as
baselines, performance is improved in 99% of cases.
Finally, it is shown that the adaption is not signifi-
cantly detrimental to prior performance on percep-
tual similarity.

The implementation of this work is available on-
line 1.

1 Introduction
Image similarity metrics are used in many tasks and
methods. Research on image similarity has focused
on so-called perceptual similarity, where the goal
is to approximate human (or animal) perception
of similarity. Perceptual similarity metrics can be
directly applied to tasks such as image retrieval [1]
and image quality assessment [2].

Recently a method called deep perceptual similar-
ity (DPS) has achieved close to human performance
on perceptual similarity [3, 4]. DPS metrics compare
the difference between the deep features (activations)
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of a neural network, called the loss network when
the input is one image compared to another. This
approach has been used to calculate deep perceptual
loss (DPL) for computer vision models. DPL has
been successfully applied to image generation [5],
style-transfer [6], and super-resolution [7], image
segmentation [8], depth prediction [9], and more.

However, perceptual similarity has long been
known to be an ambiguous concept [10], with the
perception of similarity varying between populations
and even within individuals as the context or focus
changes. Additionally, it has been shown that there
is no strong correlation between loss network per-
formance on DPS and DPL [11]. This introduces
further ambiguity as performance can be measured
either by agreement with humans or downstream
performance. The context of the image also affects
how similarity should be measured. For example,
blurring a medical image would significantly hamper
the similarity of the samples, while the same opera-
tion could leave a photo of a cat recognizable [12].

Ambiguity raises the question of whether percep-
tual similarity metrics can adapt to varying contexts.
Some rule-based metrics have hyperparameters that
can be altered to fit the metric to particular circum-
stances, though the hyperparameters are typically
limited in how they can alter the metrics [13]. DPS
metrics, on the other hand, are based on neural net-
works that could theoretically be retrained to suit a
given context.

Training a neural network for each context would
be resource-intensive. For this reason, DPS is com-
monly implemented with pretrained networks, and
the most common uses of DPL utilize pretrained
networks as well. These networks are typically pre-
trained using ImageNet [14], an image dataset the
size of which makes it computationally intensive to
train on. Such ImageNet pretrained DPS metrics
are the baseline for DPS metrics in this work.

As training on ImageNet is computationally ex-
pensive it might be expensive to retrain metrics for
each given context. However, it is possible that no
retraining is needed. Networks trained on ImageNet
learn a large number of features that might be useful
for many different definitions of similarity. So rather
than retraining the network itself, a layer of scalars
could be learned to balance the relevant features for
a given circumstance.
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However, it is unknown whether DPS metrics
based on ImageNet pretrained CNNs can be trained
to adapt to certain contexts, especially those where
the baseline pretrained metrics perform poorly. For
example, CNN architectures are known to have flaws
that make them vulnerable to certain distortions of
the input [15]. Additionally, ImageNet pretrained
CNNs have been shown to be biased toward the
texture of the image over other structures [16].

Zhang et al. [3] showed that training positive
scalars to weigh the different extracted feature maps
could be used to improve the performance of per-
ceptual similarity for the specific image-distortion
distribution that the networks were trained on. How-
ever, performance decreased for image distortions
outside the training set. Additionally, this was only
examined for improving performance on agreement
with human judgments of similarity which the Im-
ageNet pretrained DPS metrics already performed
well on. Whether DPS metrics can be adapted to
contexts where the baseline metrics perform poorly
remains unknown. Knowing if this is possible could
unlock further use cases on domains where the aver-
age human perception is not as applicable or even
detrimental.

This work investigates whether DPS metrics can
be adapted to a specific context by training posi-
tive scalars that weigh the extracted features. The
limitation to positive scalars may hamper the per-
formance of the adapted metrics but allows analysis
of whether the features learned by the pretrained
networks are sufficient for adaption. The contexts
used are created by randomly ranking six common
image distortions. For a given ranking a distorted
image is considered more similar to the original im-
age than another distorted image if the distortion
type applied to the first is earlier in the ranking. 20
contexts of random rankings are used for evaluation
which provides a spectrum of contexts where the
baseline DPS metrics either perform

The DPS metrics that are evaluated consist of
combinations of three ImageNet pretrained CNNs
and five methods of comparing the extracted fea-
tures. The metrics are adapted to each context by
training scalars in the same way as was done by
Zhang et al. [3], to recognize some distortions as
more similar than others. The metrics are adapted
on images from the SVHN dataset [17] and evalu-
ated by how well their similarity scores align with
the given ranking on images from the test sets of
SVHN and STL-10 [18]. Additionally, the adapted
metrics are evaluated on the BAPPS dataset [3] to
evaluate how the adaption affects their performance
on known human judgments. For reference, pre-
trained baseline metrics without adaption are also
evaluated.

The results show that metrics can be adapted to
the given contexts and outperform baseline metrics.

Figure 1. Example images from the test sets of SVHN
and STL-10 with the six distortion types used in this
work applied.

The performance of baseline and adapted metrics
on the same ranking are shown to be correlated,
meaning they perform well on the same rankings.
This also means that while adaption can improve
performance for contexts where baseline models per-
form poorly, the performance of adapted metrics is
limited by the features of the baseline metrics being
better suited for some contexts. Additionally, the
adaption training has a slim detrimental effect on
the performance on BAPPS.

The work also discovers a potential flaw in the
established training procedure for DPS metrics that
are used in this work. Improvements inspired by
the field of contrastive learning in which different
training methods adapted to specific domains are
being explored [12] are discussed.

2 Datasets

Three datasets are used in this work, SVHN [17],
STL-10 [18], and BAPPS [3].

SVHN and STL-10 are image classification
datasets, but only the images are used in this work.
The SVHN training images are used to train metrics
to adapt to a given ranking of distortions and the
test images of SVHN and STL-10 are both used for
testing the adaption. The two datasets are used
since they are drawn from different distributions,
which tests whether adaptions learned on one image
distribution generalize to another. The difference is
shown in Fig. 1, which shows samples from both.

BAPPS is a perceptual similarity dataset used
in this work to evaluate how adaption affects the
metrics performance on human perception of similar-
ity. BAPPS is split into two parts, Two-Alternative
Forced-Choice (2AFC) and Just Noticeable Differ-
ences (JND). 2AFC consists of triplets of an image
(x) and two distorted versions (x0 and x1), labeled
by the fraction of human judges (J) that considered
x0 to be more similar to x. JND consists of slightly
distorted image pairs labeled by the fraction of hu-
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Table 1. Loss networks and feature extraction layers.

Architecture Feature Extraction Layer

AlexNet [19] 1st, 2nd, 3rd, 4th, and 5th ReLU

SqueezeNet 1.1 [20] 1st ReLU
2nd, 4th, 5th, 6th, 7th and 8th Fire

VGG-16 [21] 2nd, 4th, 7th, 10th, and 13th ReLU

man judges that considered the pair to be the same
image.

3 Methodology

This work investigates whether the deep features of
ImageNet [14] pretrained CNNs contain the neces-
sary information to adapt to different definitions of
similarity and if this adaption can be achieved by
learning scalars of the features for each definition.
To do this an altered version of the experiments by
Zhang et al. [3] are used.

The experiments test many combinations of loss
networks, feature comparison methods, and training
procedures. Three loss networks pretrained on Ima-
geNet [14] with different architectures are used for
extracting features at different layers. Five methods
for comparing the extracted features are used to
create metrics for each loss network. The metrics
are evaluated both as baseline metrics without ex-
tra training and as adapted metrics trained on a
specific ranking of distortions. Each combination is
trained and tested on 20 different random rankings
of distortions. Each adapted metric being trained
four times to evaluate variance in training. All of
these parts are detailed in the following subsection.

3.1 Loss Networks

This work uses the same three loss networks as Zhang
et al. [3]. They are AlexNet [19], SqueezeNet 1.1 [20],
and VGG-16 [21] pretrained on the ImageNet [14]
dataset. The specific implementation of each archi-
tecture and the trained model parameters were taken
from the Torchvision [22] framework version 0.11.3.
The features were extracted from layers throughout
the convolutional parts of the models as detailed in
Table 1.

3.2 Similarity Calculations

The similarity between two images is calculated by
using them each as input to the same loss network
and then using the difference between the extracted
deep features of each image as a distance metric.
This work uses the spatial, mean, and sort compari-
son methods used by Sjögren et al. [23] for feature
comparison. The methods are detailed in Eq. 1 to 3
below, where zlx are the activations in layer l from a

Table 2. Distortions and the intervals from which their
parameters are randomly chosen.

Distortion Parameters and intervals

Rotating 30 to 330 degrees
Translating −0.5 to 0.5 of image size
Lowering brightness 0.1 to 0.5 of original brightness
Shifting hue −0.5 to 0.5 hue factor

Gaussian blurring 11 to 21 kernel size
4 to 10 std. dev. for kernel values

Zooming in 1.1 to 2 scale of zoom

loss network with input x and extraction layers l ∈ L.
z and z↓ are the average and descending sorting of
the channels in z respectively. wl are the scalars for
the features of layer l, which are set to 1 in the base-
line cases and adapted to be positive values during
adaption training. In addition, two combinations are
used consisting of the sum of the spatial and mean
metrics (dspatial+mean = dspatial + dmean), as well
as spatial and sort (dspatial+sort = dspatial + dsort).

dspatial(x, x0) =
∑
l∈L

1

ClHlWl
||wl⊙ (zlx−zlx0

)||22 (1)

dmean(x, x0) =
∑
l∈L

1

Cl
||wl ⊙ (zlx − zlx0

)||22 (2)

dsort(x, x0) =
∑
l∈L

1

Cl
||wl ⊙ (zl↓x − zl↓x0

)||22 (3)

3.3 Distortions
To train and evaluate metrics for their ability to
adapt to varying definitions of similarity, six distor-
tions taken from commonly applied image augmen-
tation procedures [24] are used. The distortions are
rotating, translating, lowering brightness, shifting
hue, Gaussian blurring, and zooming in. The dis-
tortions are implemented using the Torchvision [22]
framework and are applied with parameters chosen
randomly from the intervals shown in Table 2. Fig. 1
shows random applications of the six distortion types
to images from test sets of SVHN and STL-10.

3.4 Adaption Training
Metrics are adapted to each ranking of the distor-
tions by training the scalars (w) using the images
from the SVHN training set. For each image, a
2AFC triplet is created with the original image and
two versions each distorted by one of the six distor-
tions chosen at random. The triplet is labeled 0 if
the first distortion is earlier in the ranking and 1
otherwise. The metric is then used to calculate the
similarity scores between the original image and the
two distortions.

During training, loss is given by the Binary Cross-
Entropy (BCE) between the labels and predictions

3



by an auxiliary CNN that classifies which image is
more similar using the similarity scores as input.
This is the same as the 2AFC training implemented
by Zhang et al. [3], and exact details can be found
in that work. An additional loss Lsync is used until
the validation 2AFC score is higher than random
for one epoch (0.5). The loss is detailed in Eq. 4
where d is the metric being trained, x is the original
image, x0 and x1 are the distorted versions, J is 0
if the distortion of x0 is earlier in the ranking and 1
otherwise, and σ is the sigmoid function.

Lsync(x, x0, x1, J) =

10 ·max(0,BCE(σ(d(x, x0)− d(x, x1)), J))
(4)

Training is performed for 10 epochs with valida-
tion using 20% of the training data. During the last
5 epochs, the learning rate decays linearly towards 0.
Each adapted metric is trained four times in order
to measure the variance of training.

3.5 Evaluation

For each ranking, each baseline metric, and each
metric adapted to that ranking four performance
scores were gathered. The first two were gathered by
taking the test set images in SVHN and STL-10 and
creating 2AFC triplets consisting of the image and
two versions of it distorted by two different randomly
chosen distortions. The 2AFC score of the metrics
was calculated by whether they consider the version
whose distortion is earlier in the ranking to be more
similar. The two remaining performance scores are
the 2AFC and JND scores for the respective parts
of the BAPPS dataset. The JND score is the mean
average precision between the image pairs when
ordered by how many human annotators judged
them to be the same and the order of similarity
produced by the metric. The calculation of the
2AFC score for a single sample is detailed in Eq. 5
for distance metric d, an image x, distorted versions
x0 and x1, and the fraction J of judgments that
consider x1 more similar to x than x0. In the SVHN
and STL-10 evaluations, J is 0 if the distortion used
for x0 is earlier in the ranking and 1 otherwise. The
final 2AFC score is the average score for each sample.

2AFC(x, x0, x1, J) =

{
J, if d(x, x1) < d(x, x0)

1− J, otherwise
(5)

4 Results and Analysis
The 2AFC scores for measuring similarity according
to the rankings on SVHN and STL-10 is shown in
Fig. 2. The figure shows the score for each combina-
tion of ranking, loss network, comparison method,
and whether the metric is baseline (•) or adapted

Figure 2. The 2AFC score of baseline (•) and adapted
(×) metrics on SVHN and STL-10. The color indicates
which ranking the metric was evaluated on, going from
the ranking with the lowest STL-10 2AFC score for
baselines (red) to the highest (blue).

(×). The four versions of each adapted metric are
shown as an average and standard deviation. The
points are colored by ranking, with red indicating
rankings where baseline models had low STL-10
2AFC scores and blue high scores.

The adapted metrics significantly outperform the
baseline on SVHN and mostly outperform them on
STL-10 as well. Out of 300 adapted metrics, only
2 do not outperform their baseline counterparts on
average, and in both cases, the performance differ-
ence is ∼ 0.01. The disparity likely comes from the
metrics being adapted specifically to SVHN which
contain quite different images to STL-10.

The baseline and adapted metrics also perform
better on the same rankings. The Spearman cor-
relation between the baseline and adapted average
performances for each ranking are 0.66 and 0.72 for
SVHN and STL-10 respectively. This would likely
not have been the case if the adapted metrics had
been allowed to learn negative scalars since a metric
that performs worse than random can be improved
by simply inverting its predictions. This shows that
the features present in the baseline metrics are suffi-
cient for adapting with decent performance to each
evaluated context. However, the adaptions do not
generalize well to images from another distribution
than they were trained on. Additionally, the correla-
tion suggests that the features are better for certain
contexts than others.

Fig. 3 shows the average performance on all rank-
ings on STL-10 images for the different loss networks
and comparison methods for baseline (lower bars)
and adapted metrics (upper bars). It is clear that the
adapting metrics provide a significant advantage on
the average ranking. The figure also indicates that
the specific loss network and comparison method
does not significantly impact results, at least among
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Figure 3. The average 2AFC score on STL-10 on all
rankings for each loss network and comparison method.
The lower bars are the baseline metrics and the upper
their adapted counterparts.

Table 3. Average performance of metrics with AlexNet
models and the spatial comparison method.

BAPPS SVHN STL-10
Method 2AFC JND 2AFC 2AFC

Baseline 0.6895 0.5757 0.5312 0.5197
Adapted Scalars 0.6817 0.5663 0.8916 0.7517

Adapted Net 0.6644 0.5552 0.9921 0.7961

the networks and methods evaluated in this work.
The equivalent performance does not stem from dif-
ferent networks and methods performing well on
different contexts. The average Pearson correlation
coefficient for the 2AFC on STL-10 on all rankings
between each combination of networks and methods
is 0.79, which shows that the metrics on average
perform well on the same rankings.

The adaption training is slightly detrimental to
the metrics’ performance on both the 2AFC and the
JND parts of the BAPPS dataset. Both scores lower
by ∼ 0.01 on average for the adapted metrics com-
pared to their baseline counterparts. It is interesting
that the average baseline outperforms the adapted
metrics on BAPPS on all rankings. This suggests
that adaption training the entire loss network might
be even more detrimental than the simple scalars
learned in this work as it would have the potential
to completely alter the features used.

To test whether adapting the entire loss network
would be even more detrimental to the BAPPS
scores an additional smaller run of experiments was
conducted where DPS metrics with AlexNet archi-
tecture and spatial comparison were adapted by
fine-tuning the parameters of the AlexNet model, in
addition to training the scalars. Table 3 shows the
results from this trial.

Adapting the entire network leads to better per-
formance on the adapted context, but decreased
performance on BAPPS. A significant part of the
performance boost on SVHN and STL-10 can be

attributed to allowing the inversion of features that
the positive scalars could not perform. This is made
clear by the lower correlation between which rank-
ings the baselines perform well at compared to which
the adapted scalars and adapted network metrics
perform well on. The Spearman correlation between
the baseline and scalar adaption is 0.70 and it is
0.35 between the baseline and network adaption.

5 Discussion

The results show that DPS metrics can be adapted
through learning positive scalars for the extracted
features to a context given by which distortions
should be considered more similar. Additionally,
the adapted metrics generalize to images from an-
other distribution. This suggests that the features
of ImageNet pretrained CNNs can be made suit-
able for similarity measurement in different contexts
by weighing them differently. However, the perfor-
mance is not great for all rankings, especially on the
out-of-distribution images. Some of the lackluster
performance can be attributed to forcing positive
scalars. Even with negative scalars allowed, the
rankings on which the baseline metrics have close
to random performance would likely still be diffi-
cult. Whether this is applicable beyond the proof-
of-concept contexts that have been examined would
require further evaluation.

Adaption to a context is shown not to be signifi-
cantly detrimental to the performance on BAPPS.
This is desirable because it allows adapting metrics
to specific contexts without significant risk of losing
other desirable properties. For example, a metric
could be adapted to deal with some invariances in
the data without having to simultaneously train it
on the original data. However, adapting metrics by
fine-tuning the loss network was further detrimental
to performance which could lead to collapse issues
seen in continuously updated models [25]. Another
approach might be to integrate the adaption with
the pretraining of the loss network. Kumar et al. [4]
have shown that the pretraining procedure signifi-
cantly impacts on perceptual similarity performance.
Including the adaption context among the other pre-
training data or pretraining on a dataset specific
to the domain could improve performance. Though
this would likely be resource-intensive.

That performance is equivalent between different
comparison methods is surprising. Previous work
has shown that spatial DPS metrics struggle with
translation and rotation [23], both of which are
included in the rankings.

One potential answer is that the metrics might
have learned to classify the distortions rather than
measure their impact on similarity. For example,
the translation and rotation operations used in this
work color the missing pixels black. The metrics
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might learn to discover if there is black in the image
and then weigh that according to where the two
distortions show up in the ranking. Such a quirk
would be discoverable by all comparison methods,
making their differences less impactful. It is also
noted that the metrics might not be adapting to
measure the similarity of images but rather to dis-
tinguish different distortion types from each other.
If this is the case, it likely arises from only training
on triplets from the same image, meaning that being
able to classify distortions is enough to achieve high
accuracy. This could be solved by taking inspira-
tion from contrastive learning, which forms negative
pairs from different images. Interestingly, this is-
sue would also be present in BAPPS training that
has been conducted by prior works [3, 4, 26]. The
same solution would be applicable in this case as
well, which could likely improve performance on the
dataset even further. Such improved training may
also prove efficient at solving the generalization is-
sues found in this work, as well as those found by
Zhang et al. [3].

6 Future Work

There are many promising future directions in am-
biguity and adaptability. The adaption method
explored in this work could be applied to more real-
istic scenarios. Medical images and non-RGB sen-
sors where the perception of similarity might differ
from natural images are interesting cases. For these
domains and other applications, the question of how
to get the data for adaption training is raised. Per-
haps the use of distortions is applicable, where the
rankings are defined by experts in the field.

Similar questions are being explored in the field
of contrastive learning. In contrastive learning, dis-
tortions are used to learn features that are similar
even as the image is distorted. However, it has been
noted that the distortions that work well for natural
images from ImageNet, do not generalize to other
domains [12]. Instead, information in the data can
be used to determine which distortions to use [12].
For perceptual similarity, it is not desirable to learn
that two distortions of an image are the same, but
similar approaches might be applicable.

DPL is another domain where adapting metrics
to a specific context is useful. Loss functions can be
evaluated by how well they work to train models for
a given task. Adapting loss networks to calculate
DPL for a given task might be beneficial. Which
loss function works best might also change as train-
ing progresses, so making loss networks that target
different stages of training is another idea.

Tasks where similar images have pixel-level dif-
ferences are likely well suited to explore the impact
of ambiguity and adaptability. The field of image
retrieval has already acknowledged the issues that

come with ambiguity [27, 28]. For example, when
performing an image reverse search the desired re-
sult can vary heavily even for the same input image.
One user might want to find images with the same
composition while another wants to find scenes con-
taining similar objects. In these scenarios having
several metrics based on different contexts would be
useful.

7 Conclusion
This work explores whether DPS metrics can be
adapted to contexts where similarity does not ad-
here to the average human perception and where
baseline metrics perform poorly. The contributions
of this work consist of a proof-of-concept evaluation
and analysis of the results. The proof-of-concept
evaluation which shows that adaption improves per-
formance on such contexts in 99% of cases, but that
the performance of adapted metrics is limited by
the performance of the baseline metrics. It is also
shown that fine-tuning leads to better adaption but
at the cost of prior performance, which may be a
sign of overfitting. The analysis reveals a potential
flaw in the training procedure commonly used for
DPS metrics. Further work is proposed to address
this flaw using training methods inspired by the field
of contrastive learning.
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