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Abstract

In this article, we propose a novel standalone hy-
brid Spiking-Convolutional Neural Network (SC-NN)
model and test on using image inpainting tasks. Our
approach uses the unique capabilities of SNNs, such
as event-based computation and temporal process-
ing, along with the strong representation learning
abilities of CNNs, to generate high-quality inpainted
images. The model is trained on a custom dataset
specifically designed for image inpainting, where
missing regions are created using masks. The hybrid
model consists of SNNConv2d layers and traditional
CNN layers. The SNNConv2d layers implement the
leaky integrate-and-fire (LIF) neuron model, captur-
ing spiking behavior, while the CNN layers capture
spatial features. In this study, a mean squared er-
ror (MSE) loss function demonstrates the training
process, where a training loss value of 0.015, indi-
cates accurate performance on the training set and
the model achieved a validation loss value as low as
0.0017 on the testing set. Furthermore, extensive
experimental results demonstrate state-of-the-art
performance, showcasing the potential of integrat-
ing temporal dynamics and feature extraction in a
single network for image inpainting.

1 Introduction

Recent proposed CNN-based approaches are able
to learn and exploit high-level features and spatial
dependencies in damaged images effectively, which
helps in the generating of these corrupted images’
accurate and visually high-quality results such as
inpainted image tasks. However, CNN-based ap-
proaches often struggle to capture temporal dynam-
ics and complex spatial dependencies [1]. To ad-
dress these limitations, this research study proposes
a novel stand-alone hybrid approach that combines
the capabilities of spiking neural networks (SNNs)
and CNNs for image inpainting. SNNs are a third
generation of neural networks inspired by the be-
havior of spiking neurons in the brain. Unlike tra-
ditional artificial neural networks, which rely on
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continuous-valued activations, SNNs capture tem-
poral information by representing neural activity as
discrete spikes over time [2]. This allows SNNs to
encode and process information in a more biologi-
cally realistic manner. By simulating the behavior of
spiking neurons, SNNs have the potential to capture
complex temporal patterns information through the
dynamics of neural spikes in image data [3]. On
the other hand, CNNs are powerful deep-learning
models commonly used for image-processing tasks
and well-known for their ability to extract mean-
ingful features from images through convolutional
layers [4]. These layers apply filters or kernels to the
input image, capturing spatial patterns and local
dependencies. This process is particularly effective
in capturing spatial dependencies and extracting
meaningful features from images.

In the proposed architecture, the SNNmodel is uti-
lized to capture the temporal dynamics and contex-
tual information in the image, while the capabilities
of CNNs are used for feature extraction processing
to inpaint the missing or corrupted regions. The
proposed model introduced SNNConv2d layers to
incorporate the principles of spiking neurons into
the convolutional layers. By utilizing SNNConv2d
layers, the model is able to capture not only spa-
tial information but also temporal dynamics and
contextual information from the input image. This
temporal information is then combined with the spa-
tial features extracted by the traditional CNN layers.
The integration of both types of layers allows the
model to benefit from the strengths of both SNNs
and CNNs. Therefore, the SNNConv2d layers mod-
ify the behavior of traditional convolutional layers
by introducing spike-based computations. Instead
of using basic activation functions, such as ReLU or
sigmoid. The SNNConv2d layers used spike-based
activation functions that generate spikes in response
to certain stimuli. These spikes represent the acti-
vation of neurons and encode temporal information.
Therefore, by combining the strengths of SNNs and
CNNs, the hybrid model can produce more accu-
rate and visually high-quality results, making it a
promising approach for advancing ML models.
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Figure 1. The image shows the architecture of the proposed hybrid model for image inpainting. It consists of
six layers, five of which are regular CNNConv2d layers responsible for standard convolutional operations. The
one layer, SNNConv2d, utilizes the LIF neural mode to introduce spiking behavior into the network. ReLU
activation functions are applied after each layer to enhance non-linearity and feature extraction. The model
effectively combines the advantages of spiking neural processing and conventional convolutional operations, making
it well-suited for image inpainting tasks by capturing both spatial and temporal information.

2 Discussion and Results

2.1 Temporal Dynamics

The existing methods often struggle to simultane-
ously capture intricate temporal dynamics and spa-
tial features when dealing with missing or corrupted
regions [5]. Traditional techniques rely solely on
CNN, which may lack the ability to effectively model
the temporal evolution of image content [6], leading
to suboptimal results in dynamic scenes or scenarios
requiring precise temporal information for several
reasons:

• Limited Temporal Context: CNNs are pri-
marily designed to process spatial features and
patterns within individual frames of an image.
They lack a built-in mechanism to capture the
temporal dynamics that occur over multiple
frames or time steps. This limitation can result
in an incomplete or inaccurate representation
of dynamic scenes where the content changes
significantly over time.

• Loss of Temporal Information: CNNs typ-
ically operate on fixed-size input windows or
patches, which may not be sufficient to capture
the full range of temporal changes in dynamic
scenes. Fast-moving objects, subtle temporal

variations, or long-range dependencies between
frames can be challenging for CNNs to model
effectively, leading to a loss of important tem-
poral information.

• Inability to Handle Events: CNNs, being
designed for continuous and spatially structured
data, might struggle to handle such event-based
information efficiently. This can lead to diffi-
culties in accurately representing the temporal
evolution of events.

• Complex Interactions: In dynamic scenes,
objects, and elements can interact in complex
ways over time. CNNs may have difficulty cap-
turing intricate cause-and-effect relationships
between objects, especially when the interac-
tions involve non-linear and temporally varying
patterns.

These limitations underscore the need for a com-
prehensive solution that seamlessly integrates both
temporal processing and spatial feature extraction.
On the other hand, SNNs exhibit promising capabil-
ities in capturing temporal dynamics through event-
based computation and the temporal dynamic ap-
proach using SNNs has played a vital role in bridging
the gap between biological systems and artificial in-
telligence.
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Thus, Multiple platforms have been designed to
support the computational capabilities of SNNs [7,
8], aiming to validate the effectiveness of this ap-
proach through experimental results. In the vali-
dation and evaluation of neural models, many re-
searchers like Bzdok et al. [9] highlight the impor-
tance of learning from the brain using computational
approaches. Wang et al. [10], on the other hand,
provides a comprehensive review of spike learning
rules for training deep SNNs and discusses the eval-
uation methods employed to assess the performance
of these networks. Fang et al. [11], propose real-
istic neuron and synapse models, considering the
temporal dynamics crucial for pattern detection.

Therefore, our proposed standalone hybrid SC-
NN model uniquely addresses these challenges by
harnessing the power of SNNs for temporal context
and CNNs for spatial awareness. Moreover, this
novel approach not only advances the field of im-
age inpainting but also showcases the potential of
unifying temporal and spatial information within a
single network architecture, paving the way for more
versatile and accurate solutions in various computer
vision tasks.

2.2 Proposed Hybrid Approach

The architecture of the proposed SC-NN model in-
volves utilizing SNNs and CNNs, by combining the
strengths of these two neural networks. The hybrid
approach aims to create a more comprehensive and
biologically inspired model that can effectively han-
dle complex inpainting tasks. Therefore, The fusion
of SNN and CNN architectures enables the model to
capture both the local and temporal aspects of visual
data, potentially leading to improved performance
and more efficient processing in tasks such as image
inpainting. The model architecture can be seen in
Figure 1. Furthermore, The hyperparameters of the
proposed architecture include parameters like the
learning rate, the batch size, the number of train-
ing epochs, the specific architecture configurations
and layer settings, the loss function, noise-related
parameters that influence data augmentation [12],
and hyperparameters in the context of SNNConv2d
class based on LIF neural model, the “membrane
potential”, represents a neuron’s internal state that
accumulates signals, and it plays a critical role in
determining when the neuron generates a “spike”
- an essential occurrence event in spiking neural
networks. The ”leak factor” controls how quickly
these potential decays, with lower values maintain-
ing more information, while the “spike threshold”
signifies the critical potential level for spike gener-
ation. Additionally, introducing controlled “noise”
into the output improves in adapting the neuron’s
behavior during training, enhancing the model’s ro-
bustness and adaptability. These hyperparameters

collectively define the dynamic and adaptive nature
of neurons within the network. This stand-alone
SC-NN hybrid approach offers several compelling
advantages.

• Effective handling of spatial and temporal de-
pendencies: The hybrid approach is capable of
capturing both spatial and temporal informa-
tion in the image. This is crucial for inpainting
tasks where the missing or corrupted regions
may depend on both the surrounding context
and the temporal dynamics of the image.

• Synergy between SNNs and CNNs: The inte-
gration of SNNs and CNNs in the hybrid model
can generate a strong model, using the unique
advantages of each model. Where SNNs spe-
cialize in capturing the temporal dynamics and
contextual information within the image, while
CNNs excel in extracting intricate spatial fea-
tures. This fusion of models facilitates a holistic
comprehension of the image content, combining
both temporal and spatial aspects to enhance
the overall inpainting process.

• Potential for improved performance: The hy-
brid SC-NN approach is not solely focused
on achieving better performance compared to
CNN-based models. Instead, it aims to explore
the potential benefits of combining SNNs and
CNNs. But this fusion enables a more com-
prehensive understanding of the image content,
which may lead to enhanced inpainting results.
Therefore, the focus is on using the combined
strengths of SNNs and CNNs to unlock new
possibilities in ML models rather than solely
aiming for improved performance compared to
CNN-based models.

• Biologically inspired and interpretable solution:
The SC-NN model incorporates the temporal
dynamics of spiking neurons, making it more
biologically inspired. This behavior allows the
model to function similarly to the human brain
and provides a more interpretable solution.

• Flexibility and adaptability: The proposed hy-
brid approach allows for flexibility in adjusting
the balance between the SNN and CNN com-
ponents based on the specific requirements of
the inpainting task. This adaptability makes
the approach suitable for a wide range of image
inpainting scenarios.

Therefore, the SNNConv2d layers with LIF neu-
rons capture spiking behavior by modeling how neu-
rons accumulate input signals, apply a leak to the
membrane potential, generate spikes when a specific
threshold is reached, and introduce controlled noise
to enhance adaptability. This spiking behavior is a
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Figure 2. The basic graphical structural representation of LIF neural model. (a) temporal dynamics of membrane
potential (Vt) and the input current (It) at time t in the post-neuron. (b) equivalent circuit model of the LIF
neuron.

fundamental characteristic of SNNs and to incorpo-
rate temporal dynamics into the architecture, The
proposed model inherently captures the temporal
aspect of data processing utilizing the LIF neuron
model. The essence of temporal dynamics in this
context lies in the accumulation of input signals
over time and the rate at which the membrane po-
tential decays (controlled by the leak factor). As
the membrane potential accumulates and integrates
input information, it reflects how the network pro-
cesses data events asynchronously and responds to
changing patterns over time. This temporal process-
ing capability is one of the distinguishing features
of SNNs, enabling them to effectively handle tasks
where the timing of events is critical, such as in the
case of image inpainting and other time-sensitive
applications.

2.2.1 LIF Neural Model

In the proposed architecture, SNN used the Leaky
Integrate-and-Fire (LIF) neural model. The basic
structure of the LIF model using post-neuron activ-
ities is shown graphically in Figure 2. It computes
the membrane potential, generates spikes when the
potential crosses the threshold, resets potential, and
produces output. Also, Figure 2(b) demonstrates
the equivalent circuit model of the LIF neural model.
It describes how a neuron integrates incoming in-
put signals and generates spikes (action potentials)
based on a membrane potential threshold. In this
model, the membrane potential of a spiking neuron
is represented by V(t), which is the electrical poten-
tial difference across the neuron’s cell membrane [13].
The membrane potential is influenced by incoming
input signals and a leakage factor. The implemented
LIF model approximates the membrane potential
dynamics with the equation 1,

dV (t)

dt
=

I(t)− V (t)
R

C
(1)

where dV (t)
dt represents the rate of change of the

membrane potential over time, I(t) represents the
input current at time t, R represents the membrane
resistance, and C represents the membrane capaci-
tance. This equation is based on the methodology
of how the membrane potential changes based on
the difference between the input current and the

leakage current V (t)
R , divided by the membrane ca-

pacitance (C). Therefore, the threshold and spike
generation works the same as in computational bi-
ology [14]: when the membrane potential reaches a
certain threshold value, the neuron generates a spike
(action potential) and resets its membrane potential
to a reset value. The following equation 2 is used
for spike generation in the LIF model:

if V (t) ≥ Vth, then V (t)← Vreset(EmitSpike) (2)

V th represents the spike threshold and V reset
represents the membrane potential reset value. The
implemented version of the LIF model incorporates
a leakage factor to simulate the gradual decrease in
the membrane potential over time. It represents the
loss of charge across the neuron’s membrane. The
leakage in the LIF model is described in equation 3,

dV (t)

dt
=
−V (t)

τ
(3)

Here, τ represents the time constant of the leakage
process. Furthermore, the proposed hybrid model
used a custom ”Forward Method”, this method per-
forms the forward pass of the spiking convolutional
layer. First, it applies the traditional convolution
operation to the input x and then adds random noise
to the output by multiplying it with noise (Standard
deviation of noise = 0.1) sampled from a normal
distribution. Finally, it applies the spiking behavior
by calling the Spike method, which converts it into
binary spikes (positive or negative values).

Additionally, the use of the LIF neural model in
the proposed hybrid approach offers several specific
advantages:
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• Biological Plausibility: The use of the LIF neu-
ral model in the proposed temporal dynamic
approach offers several specific advantages, such
as this approach ensures that the neural model
closely mirrors biological neuron behavior, en-
hancing the model’s practicality and applica-
bility to neuromorphic computing and neural
processing.

• Event-Driven Computation: The LIF model,
which is a fundamental component of the pro-
posed temporal dynamic approach, is inherently
event-driven, which means it generates spikes
only in response to significant input changes.
This event-driven behavior, central to the tem-
poral dynamic approach, enables efficient data
processing, particularly in scenarios where most
of the information is irrelevant.

• Robustness to Noisy Input: The proposed tem-
poral dynamic approach, based on LIF neurons,
exhibits robustness to noisy input. Neurons in
this approach can effectively process informa-
tion even in the presence of noise, making it
suitable for noisy environments and tasks in-
volving image inpainting, and object detection.

• Integration of Temporal Information: The pro-
posed temporal dynamic approach inherently
integrates temporal dynamics into neural behav-
ior. LIF neurons adapt to the timing of input
events, allowing the network to process data
over time and capture temporal features. This
temporal integration has been characterized by
the proposed approach.

• Spike Encoding: In the context of the proposed
temporal dynamic approach, spikes generated
by LIF neurons serve as a natural means of
encoding information in the network. The tim-
ing and rate of spikes are used to represent and
transmit data, making this approach well-suited
for tasks that demand precise timing, such as
image inpainting and event recognition.

• Low Energy Consumption: Finally, the pro-
posed temporal dynamic approach, through the
utilization of LIF neurons, promotes low en-
ergy consumption. These neurons are active
only when spikes are generated, reducing power
requirements. This energy-efficient aspect is
particularly advantageous in embedded systems
and edge computing.

Therefore, the advantages of using the LIF neu-
ral model in the proposed hybrid approach include
its biological plausibility, event-driven computation,
low energy consumption, robustness to noisy input,
temporal information integration, efficient spike en-
coding, and many more. These qualities make LIF

Model Parameters Values

Threshold Value 1
Reset Potential 0
Noise (ms) 10
Refractory period (ms) 1
Firing rate (minimum) (Hz) 100
Firing rate (maximum) (Hz) 200
Membrane time constant (ms) 40
Post-synaptic current (ms) 60
Membrane capacitance (ms) 80

Table 1. Set of parametric values used in the proposed
architecture of LIF model

neurons a valuable choice for tasks that benefit from
spiking behavior and temporal processing in neural
networks.

2.3 Dataset

In this study, the LSDIR Dataset [15] (A Large Scale
Dataset for Image Restoration) was utilized for im-
age inpainting. The proposed architecture demon-
strates a novel approach by utilizing this dataset
for inpainting tasks, which loads images and cre-
ates masks that deliberately contain missing regions.
These masks are essential as they provide the ground
truth for the inpainting process. Furthermore, the
dataset used in this study incorporates various in-
painting scenarios, including occlusions and object
removal. By intentionally introducing missing re-
gions into the images, it enables the model to learn
and generalize inpainting techniques for diverse real-
world scenarios.

2.4 Experimental Results

The training process was successful in achieving
accurate performance on the training set, with a
low training loss value of 0.015. Furthermore, the
model’s exceptional generalization ability is evident
from its performance on the testing set, where it
achieved a validation loss value of 0.0017. To achieve
this, we utilized an MSE loss function to guide the
training process and enable the model to generate
plausible content within the masked regions. To
thoroughly evaluate the effectiveness of our hybrid
SC-NN model, we conducted extensive experiments
on a testing dataset. The results of these experi-
ments were quite promising, showing visually appeal-
ing inpainted images and competitive performance
metrics using table 1 hyperparameteric values. Thus,
our hybrid model offers a strong solution to the chal-
lenging problem of image inpainting, showcasing the
potential of deep learning techniques in content com-
pletion tasks. In addition to the experimental results,
we discussed potential applications of the proposed
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(a) (b) (c)

Figure 3. The test images containing a missing or corrupted region and the model attempt to restore the missing
part of the image using the hybrid SC-NN approach.

Methods MSE

Liu et al. [16] 0.07
Pathak et al. [17] 0.23
Yang et al. [18] 2.21
Yan et al. [19] 0.02
Yu et al. [20] 1.6
Proposed Hybrid SC-NN ap-
proach

0.015

Table 2. The table presents a comparison of the MSE
achieved by different image inpainting methods. Our pro-
posed hybrid SC-NN model achieves a significantly lower
MSE compared to existing state-of-the-art approaches,
demonstrating its superiority in terms of reconstruction
accuracy.

model and outlined future research directions. This
hybrid SC-NN model proved effective in generating
high-quality inpainted images when evaluated on a
custom dataset containing images with missing or
corrupted regions. The training process involved op-
timizing the model using the Adamoptimizer with
a learning rate of 0.001. Across multiple epochs,
we observed consistent improvements in the model’s
performance, as evidenced by the decreasing training
loss and improved results. The validation loss also
displayed a downward trend, indicating the model’s
ability to generalize well to unseen data.

Therefore, to comprehensively evaluate our hybrid
model for image inpainting, we conducted a thor-
ough comparison with state-of-the-art approaches
based on the training and validation loss. The hybrid
SC-NN model demonstrated remarkable advance-
ments in terms of both reconstruction accuracy and
visual quality, surpassing existing methods, as de-
picted in Table 2. By analyzing the training and
validation loss metrics, the proposed hybrid SC-NN
model showcased superior performance compared
to the recent proposed work in image inpainting
[16–20]. The model’s ability to effectively mini-
mize both training and validation loss indicates its
strong generalization capability and robustness. Fig-
ure 3(a), 3(b), and 3(c), demonstrate some of the
results generated by our proposed hybrid SC-NN
model. It takes test images with missing or cor-

rupted regions (represented by masks) and success-
fully restores these images, leading to visually com-
pelling and high-quality outputs. When compared
to state-of-the-art approaches, our hybrid SC-NN
model outperformed existing methods, as evident
from the loss comparison in Table 2. Not only did
it achieve lower training and validation loss, but
it also provided visually pleasing results with pre-
served image details, even in challenging scenarios.
The successful integration of SNNs in combination
with CNNs highlights the potential of our hybrid
model for image inpainting applications. This fu-
sion of different neural network architectures allows
us to benefit from their complementary strengths,
resulting in improved performance and better gener-
alization. Overall, our experimental findings present
the importance of the hybrid model and its ability
to outperform state-of-the-art performance.

3 Conclusion

This paper presents a simple yet effective hybrid
SC-NN architecture that combines the strengths of
SNNs and CNNs to address the advances in ML
tasks effectively. By introducing SNNConv2d lay-
ers, the model is capable of capturing both spatial
information and temporal dynamics, allowing it to
encode contextual information from the input image.
The experimental findings demonstrate the impor-
tance of the hybrid SC-NN model and its ability
to outperform state-of-the-art approaches based on
the training and validation loss metrics. This inte-
gration of SNNConv2d and traditional CNN layers
enables the model to benefit from the advantages
of both SNNs and CNNs. We believe that the pro-
posed architecture achieves state-of-the-art results,
demonstrating its effectiveness and accuracy of com-
pared to existing methods. Therefore, the future
directions for the hybrid SC-NN approach involve
pushing the boundaries of its capabilities through
improvements in architecture, loss functions, and
data handling.
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