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Abstract

Background: The mapping of tree species within
Norwegian forests is a time-consuming process, in-
volving forest associations relying on manual labeling
by experts. The process can involve aerial imagery,
personal familiarity, on-scene references, and remote
sensing data. The state-of-the-art methods usually
use high-resolution aerial imagery with semantic seg-
mentation methods.
Methods: We present a deep learning based tree
species classification model utilizing only lidar (Light
Detection And Ranging) data. The lidar images are
segmented into four classes (Norway Spruce, Scots
Pine, Birch, background) with a U-Net based net-
work. The model is trained with focal loss over
partial weak labels. A major benefit of the approach
is that both the lidar imagery and the base map for
the labels have free and open access.
Results: Our tree species classification model
achieves a macro-averaged F1score of 0.70 on an
independent validation with National Forest Inven-
tory (NFI) in-situ sample plots. That is close to,
but below the performance of aerial, or aerial and
lidar combined models.

1 Introduction

1.1 Motivation

Forest management and biodiversity hotspot identi-
fication require detailed, spatially continuous map-
ping of forests and tree species [1, 2]. These maps are
ideally up-to-date and complete. Norway has had a
National Forest Inventory since the 1920s [3], and
model-assisted national mapping (SR16) is avail-
able [4], but often higher resolution maps are re-
quired for forest management tasks.

In Norway, the three main species used for produc-
tion are Norway spruce, Scots pine, and Birch (more
generally: broadleaf species). Current methods for
mapping the spatial distribution rely heavily on up-
dating previous maps using aerial and lidar sources.
This multivariate data is processed by forestry ex-
perts, who carry out manual classification. Forest
inventories are therefore both time-consuming and
expensive. For this reason, maps are often reused

between updates, and only actively logged stands
will be passed through expert validation, which in-
troduces a possible drift between the map and the
actual stands.

To tackle these challenges, deep learning-based se-
mantic segmentation seemed to be an obvious choice.
Indeed, semantic segmentation with deep learning
has seen increased usage within forest monitoring [5,
6].

We only found studies that are using additional
data sources besides lidar, or use higher resolution
gridded or point cloud data. Therefore, we per-
formed a feasibility study to establish whether mod-
els trained on 1 m resolution, gridded lidar data is
comparable to 0.2 m resolution RGB images [7] for
Norwegian tree species mapping.

2 Background and related
work

Machine learning methods used for tree species iden-
tification have recently shifted from model-assisted
methods [4] and traditional machine learning-based
methods [8, 9] towards deep learning [5, 6]. Deep
learning is able to utilize contextual and texture in-
formation, which opens up opportunities for better
utilization of the information available in the very
high-resolution imagery data and open lidar data
products.

Lidar frequently complements other data
sources [4, 10] as the canopy height and tree-crown
structure are a strong predictor variable for tree
species identification. Other deep learning ap-
proaches utilize the point cloud itself for classifying
tree species. However, these are rarely applicable
across large areas due to the need for intensive
data processing and often aim for single-tree
classification [11, 12]. Overall, related published
deep learning models are not directly comparable
to a model that uses rasterized medium-resolution
lidar-derived data products such as Digital Surface
and Digital Terrain models. The importance of
resolution is highlighted in [13], among others.
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3 Materials and Methods

3.1 Data sources

We used three main data sources for training the
segmentation model:

1. Digital terrain model (DTM) with a resolution
of 1 m [14].

2. Digital surface model (DSM) with a resolution
of 1 m [14].

3. Norwegian forest resources map (Skogres-
surskart, SR16 [4]) with a resolution of 16 m.

Input features were derived from the DTM and DSM,
and SR16 served as a weak label.
In addition, we used land borders from Open-

StreetMap [15] to limit the area only to land and
exclude sea and major lakes. For internal validation,
we split the data into train and validation regions.

The National Forest Inventory (NFI) was used
as test data. The NFI is a continuous inventory
system of permanent plots, with 1

5 of the plots are
measured every year. The permanent sample grid
covers all land use classes, and if it does not contain
trees, the land use class is assigned based on visual
interpretation of aerial images. In forests, more
than 120 variables are measured in circular plots of
250 m2. For instance, the timber volume of each
main tree species (Norway spruce, Scots pine, and
Birch) with diameter > 5 cm has been recorded.
More details can be found in [16].
In this study, we used the plots measured in the

2017-2021 NFI cycle within the 3 km × 3 km grid.
Split plots had been excluded from the analysis.
The plots without stocked volume were set as the
”background” class, and the dominant tree species
classes were determined based on the timber volume.

3.2 Lidar pre-processing

The lidar data was downloaded at a resolution of
1 m in gridded surface and elevation models. To
capture tree canopies, we generated what is known
as a canopy height model, which is the difference
between the surface and elevation models:

CHM = DSM−DTM

3.3 Label pre-processing

There are several challenges with matching 1 m
resolution lidar data with 16 m resolution label data
(SR16).

The first challenge is the time-wise mismatch.
Both the SR16 map creation and the lidar data
collection campaign took several years. This led to
local mismatches where either canopy loss is not yet
visible on SR16 but present in the lidar data, e.g.

due to construction. The opposite also appeared
in the data: SR16 missing areas that are clearly
forested in the lidar data. This could be due to
a later canopy loss that happened after the lidar
campaign but before the SR16 update.

The second problem is the resolution of the data:
16 m label pixels which have a forest border approx-
imately in the center of the pixels will inevitably
contain almost 50% error by rounding the pixel into
one of the classes. When such label is resampled to
1 m resolution, it could yield a several meters wide
band of mislabeled pixels at the forest border due
to the coarse resolution of the original label.

Finally, the SR16 map only contains tree species
within forested areas, while at 1 m resolution, canopy
openings would fall into the ”background” class that
does not exist in SR16 within forests.

In order to address these issues, we used the follow-
ing procedure to pre-process the map into training
labels. First, all unlabeled pixels were set to the
background class. Second, all forest/no-forest bor-
der pixels were set to unlabeled, effectively tackling
the forest borders. After this step, the forest map
was upsampled to 1 m resolution by nearest neigh-
bor upsampling. Finally, an 11 m × 11 m median
filter was applied to the CHM data. Every location
where the CHM median value was below 0.3 m was
labelled as background.

A second round of labeling was performed after
a full training. In this second round, larger areas
(100 SR16 pixels (25600 m2) or larger) which were
consistently labeled as background and predicted as
any kind of forest, or forest label that was consis-
tently predicted as background, got unlabeled. That
step is an attempt to remove systematic labeling
errors which could severely impact classification per-
formance [17] when the label and the features are
different due to e.g. recent clearcuts. This attempt
to reduce label noise reduced the total labeled area
insignificantly (< 0.1%). A second training was per-
formed with this refined, partially unlabeled data,
and only this second training on clean data is re-
ported as result.

3.4 Deep Learning model

A standard U-Net network [18] was used. The net-
work parameters are summarized in Table 1.

At inference time, the following extra post-
processing steps were applied:

1. The prediction logits were blurred with a Gaus-
sian filter (σ = 1 px) in order to reduce single
pixel noise.

2. The tiles were cropped by removing a 64 pixel
wide edge in order to reduce edge artifacts orig-
inating from tiling.
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Table 1. Summary Parameters of a U-Net Network

Parameter Value

Image size 2048 × 2048 px
Input channels 2 (DTM, CHM)
Output channels 4

Depth 5
Initial number of filters 16
Upsampling method convolution
Padding method reflection
Normalization instance

3.5 Loss function

Focal loss [19] with γ = 3 was selected in order to
reduce the contribution of easy samples. The soft-
maxed logits were cut off at a p ≤ 0.1 level in order
to avoid contribution from mislabeled pixels. The
classes were weighted inversely with their frequency.

3.6 Augmentation

As augmentation of the raw data, standard geomet-
ric transformations were used (i.e. rotation and
flipping). We did not change the brightness as the li-
dar values have a direct impact on the interpretation
of species.

Another less known augmentation was used, which
we call ’CowBatchMix’ (see Fig. 1). Originating
from the ’CowMix’ augmentation [20], this augmen-
tation mixes two batch samples in a cow pattern.
The reasoning for its selection was that the forest
edges were unlabeled, therefore, the network might
have difficulties learning forest – no-forest transi-
tions due to the lack of sharp transitions. Close to
edge pixels are hard to classify even in fully super-
vised settings which could be mitigated by distance
maps-based positional weighting [18] when borders
are known, or by downweighting already learned
samples, see our focal loss [19] choice. By mixing
the images with CowMix, artificial edges were in-
troduced with sharp transitions. This incentivizes
the network to both learn local features and be pre-
cise about transitions. Furthermore, it acts as a
regularizer against overfitting.

3.7 Study area

The study area was a large area south of Oslo, Nor-
way. The data was split into train (8869 km2) and
validation data (541 km2), depicted in Fig. 2. The
independent test data was the NFI sample plots.
The exact locations are not public.

4 Results

The full study area was evaluated using the indepen-
dent NFI plots. If the plots were mixed, either in the
reference or in the prediction, the largest contributor
was used as the ’dominant species’ or background
class.

An inherent limitation of the evaluation comes
from the plots. If the plot contains a mix of species,
then small prediction errors might be amplified. For
instance, a prediction might mismatch by just a few
percent, but e.g., 45%-55% reference and 55%-45%
for prediction is accounted as a single miss, just like
a 0%-100% vs 100%-0% mismatch.

The confusion matrix results with derived metrics
(precision, recall, F1 score) are presented in Table 2.
In addition, an example region is visualized in Fig. 3
to give a qualitative impression.

5 Discussion

5.1 Limitations of the validation

The training data is as independent of the testing
data as possible. In Norway, NIBIO produces a 16 m
resolution forest resource map (SR16) [4]. This map
is model-assisted and generated in an automatic way
with traditional machine learning methods. Since
we use the SR16 map as input, there is a slight
dependency chain between our input data and the
test data. To the best of our knowledge, SR16 is
used in all known Norwegian forest maps, including
private companies’ own inventories where they often
use SR16 as a base and update their local area. We
are not aware of any publicly available Norwegian
tree species map that does not rely at least partially
on SR16 and therefore indirectly on the NFI plots.
This is an inherent limitation, and we did not see
any way to overcome this challenge. The difference
between our model output and SR16 maps shows
that they are structurally different.

5.2 The benefits of the lidar source

There are several benefits of using lidar only for tree
species detection. First, lidar is an active source;
it lacks terrain shadows, which frequently cause
problems in satellite or aerial imaging. Similarly, at-
mospheric effects do not affect it because campaigns
are performed in clear sky conditions, and eleva-
tion measurements use time-of-flight measurements,
which removes the issue with local reflectance (i.e.,
color of the forest). Finally, another significant bene-
fit is the national coverage with freely available data.
Aerial imagery campaigns also exist for Norway [7],
but these datasets are expensive.

3



(a) canopy height model (b) digital terrain model (c) species labels and background

Figure 1. Cowmix augmentation: mixing two images in cow patterns introduces, best visible on the elevation
data (B), but also noticeable in the two other subfigures. Species are in RGB, background is white, unlabeled is
gray.

Table 2. Testing results: confusion matrix, per-class recall, precision, F1 score, overall accuracy (OA), and
macro-averaged F1 score.

NFI plots
Background Birch Scots Pine Norway Spruce

∑
Precision

P
re
d
ic
ti
on

s Background 352 14 23 23 412 0.85
Birch 9 64 15 36 124 0.52

Scots pine 6 17 153 43 219 0.70
Norway spruce 4 26 34 187 251 0.75∑

371 121 225 289 1006 OA: 0.75
Recall 0.95 0.53 0.68 0.65 avg.F1:

F1 Score 0.90 0.52 0.69 0.69 0.70

Figure 2. Training (red) and validation (green) data
split in the study area (Viken, Norway).

5.3 The drawbacks of the lidar source

Several drawbacks are also present. First and fore-
most is the resolution. The national 1 m gridded
data is very likely on the edge of feasibility, and
seasonal changes of leaves could affect the detection
of deciduous species. Moreover, the shape of the
tree and the shape of the forest are not independent.
In dense forest, the canopy can form a continuous

unit where the canopy shape is the result of the
interaction between trees, while in sparse forests
the shape of individual trees can be more easily rec-
ognized. This issue is especially challenging with
freshly planted, dense forest where the trees are
small and densely packed. These forest structures
are not only dependent on the species themselves
and the age of the trees but also on the soil, water ac-
cess, climate, etc. Due to these limitations, we think
the model is regionally applicable: it is validated in
the same type of area, but if climate, soil, potential
species change, then a new regional model would be
necessary. While the study area was selected with
these issues in mind and tried to incorporate diverse
data, verification on a larger scale remains future
work.

In addition, lidar cannot capture spectral infor-
mation. Spectral and hyperspectral information
can be very important for tree species classifica-
tion [21] when the number of species are larger and
the species have similar height and crown structure.
These regional differences in tree species distribu-
tion makes it hard to compare our results to related
work. A study [22] performed in the middle of Nor-
way reported macro-averaged F1 score of approxi-
mately 0.75 by using semi-supervised deep learning
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(a) Google Maps satellite view (b) Canopy Height Model

(c) Satellite view overlaid with unmodified SR16 (d) Overlay with our model’s prediction

Figure 3. Example prediction: the high-resolution prediction follows local edges more closely.

on 20cm resolution aerial imagery by using weak la-
bels. While this study achieved slightly higher score
(0.75) than our results (0.70), it used a significantly
higher resolution input. On top of that the region
is also slightly different, and it was compared to for-
est stand level majority classes instead of pointwise
comparison.

5.4 Comparison to SR16

We have compared our lidar-based tree species clas-
sification map with the SR16-based tree species map.
We have found that some errors from SR16 are in-
dependently distributed in the training data and
the only-lidar map does not reproduce the same
errors. This improvement can be the result of using
the shape of the trees in training. However, both
methods (SR16 and the one presented in this paper)
are sensitive to the density of the forests. Density-
related systematic mislabels in SR16 might also be
learned by our model. On the other hand, our model
is more precise with regards to the forest borders,
including but not limited to forest roads and sparse
forests with open spaces. While these results are
not visible in the numerical comparison, we argue
that this increased resolution has great utility for
planning (e.g., housing, construction work), where
the exact species are less important than the forest
borders.

5.5 Impact and utility

Using a free data source and achieving compara-
ble results to aerial-based tree species classification
has the potential to reduce cost of accurate forest
mapping. Some potential application areas:

1. Improving the accuracy of the estimation of
forest attributes such as timber volume and
biomass.

2. High-resolution mapping of tree species is im-
portant for planning sustainable forest manage-
ment [1].

3. It can provide important information for cli-
mate adaptation and mitigation and biodiver-
sity assessment and biodiversity hotspot identi-
fication [2].

6 Conclusion

Our work suggests that the use of lidar-only meth-
ods is not only feasible with regards to detection and
segmentation of Norwegian tree species, but it also
comes with the benefits of utilizing publically avail-
able, open access data. This allows the creation of
larger, higher resolution maps, without dependence
upon commercial data, at comparatively lower cost,
without sacrificing much in terms of performance.
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7 Future work

A current limitation concerns the study area. Al-
though it encompasses approximately 9400 km2, it
is confined to a specific region of Norway. For our in-
ternal test, we produced a country-wide tree species
map. However, the independent validation was solely
focused on the South of Norway region, as detailed
in earlier sections. In upcoming work, we anticipate
extending the validation from this regional scope to a
national one, and possibly to neighboring countries.
A potential direction for future work lies in en-

hancing prediction accuracy by integrating higher
quality data sources. Examples include additional
gridded lidar metrics, higher resolution gridded data,
or more refined point cloud data.

Subsequent ablation studies might delve into eval-
uating the significance of particular choices, such as
the label noise removal technique or the influence of
the CowMix augmentation.
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