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Discovering high-entropy alloys (HEAs) with high yield strength (YS) is cru-
cial in materials science. However, the YS can only be accurately measured by
expensive and time-consuming experiments, hence cannot be acquired at scale.
Learning-based methods could facilitate the discovery, but the lack of a compre-
hensive dataset on HEA YS has created barriers. We present X-Yield, a materials
science benchmark with 240 experimentally measured (“high-quality") and over
100,000 simulated (“low-quality") HEA YS data. Due to the scarcity of experi-
mental results and the quality gap with simulated data, existing transfer learn-
ing methods cannot generalize well on our dataset. We address this cross-quality
few-shot transfer problem by leveraging model sparsification “twice"— as a noise-
robust feature regularizer at the pre-training stage, and as a data-efficient regu-
larizer at the transfer stage. While the workflow already performs decently with
sparsity patterns tuned independently for either stage, we propose a bi-level op-
timization framework termed Bi-RPT , that jointly learns optimal masks and al-
locates sparsity for both stages. The effectiveness of Bi-RPT is validated through
experiments on X-Yield, alongside other testbeds. Specifically, we achieve a reduc-
tion of 8.9-19.8% in test MSE and a gain of 0.98-1.53% in test accuracy, using only
5-10% of the hard-to-generate real experimental data. The codes are available in
https://github.com/VITA-Group/Bi-RPT.

1. Introduction
Machine learning (ML)methods have recently demonstrated great promise in the field of materials
science. In this paper, we focus onML-assisted high-entropy alloy (HEA) discovery [1]. HEAs have
promising properties that traditional alloys do not hold, such as extraordinary mechanical perfor-
mance at high temperatures, making them well-suited for improved materials applications. One
particularly important mechanical property for customized HEA design is the Yield Strength (YS),
which represents themaximum stress amaterial canwithstand before it begins to deformplastically.
However, in order to accurately measure the YS of specific HEAs, expensive scientific experiments
must be performed for each alloy, often involving time-consuming and hard-to-create experimental
conditions, especially at high temperatures (mainly caused by difficulties with oxidation control).
Consequently, most of the experiments are performed at room temperature.
However, even for the least challenging YS experiments at room temperature, a team of domain ex-
perts typically requires two to four weeks to complete the entire process, including sample prepara-
tion (i.e., alloy synthesis, homogenization heat treatment, and machining) and mechanical testing.
Hence, it is extremely challenging and expensive to acquire YS measurements from such “high-
quality" experiments at scale (i.e., for multiple alloy compositions) and across relevant temperature
domains (ranging from room temperature to high temperature).
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Similar to the trends in computer vision fields [2], recent efforts attempted to mitigate the scarcity
of real-world measurements by employingmachine learning-based predictors that can directly pre-
dict their YS from the alloy inputs [3]; and such predictors could be trained using simulated data.
Indeed, materials science applications often benefit from developed simulation models, such as
the one proposed by Maresca et al. for YS prediction of single-phase body-centered cubic (BCC)
HEAs [4]. However, a domain gap exists between the simulated data and the “ground-truth" ex-
perimental data. This gap is often the result of simplifications in the simulation modeling process
that are necessary, but may not fully capture the complexity of the real-world system. For exam-
ple, the YS of a material can exhibit significant variability depending on factors such as processing
and testing conditions, as well as grain size and texture [5, 6]. However, most simulation models
commonly rely on intrinsic alloy properties and do not incorporate variations resulting from dif-
ferent experimental conditions. The lack of public datasets in this field also renders it difficult to
benchmark ML models’ progress.
In this paper, we curate a materials science benchmark, called X-Yield, that for the first time com-
bines existing experimental data with simulation data to address the problem of predicting YS in
refractory HEAs. The former were carefully screened and curated from an open-source materi-
als database [7] by domain experts while the latter were predicted by a theoretical yield strength
model [4]. While the use of “high-quality" experimental data is always preferred, it is impractical to
generate large quantities of data, especially for capturing YS at elevated temperatures. Thus, sim-
ulation data can be acquired in massive quantities to bridge the gap, despite their relatively “low
quality" due to inherent model misspecification or simplification. The low-quality simulation data
used in X-Yieldwas selected to represent ternary-septenary systems from an eleven-element palette
consisting of mostly refractory elements (Al-Cr-Fe-Hf-Mo-Nb-Ta-Ti-V-W-Zr). Although there are
experimental databases available [7] and predictive models for high-temperature YS in HEAs [4],
to the best of our knowledge, this is the first multi-fidelity dataset in the public domain that com-
bines real experimental measurements and large quantities (over 100K) of simulation data for me-
chanical property (i.e., YS) prediction in HEAs. This specialized dataset should be able to predict
high-temperature YS across a broad range of refractory HEAs. The predictions of this model could
be used to pinpoint which alloys are the strongest at elevated temperatures, allowing experiments
to focus on pre-sorted candidates for future study and eliminating the need to spend several weeks
testing a candidate without promise.
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Figure 1: Proposed two-stage workflow. The HEA yield strength prediction model is first pre-trained onmas-
sive “low-quality" simulation data, and is then fine-tuned/transferred on few-shot “high-quality" experimental
data to optimize its prediction in this target domain. Note that the tool of sparsity will be leveraged in both
pre-training and fine-tuning stages, for the purposes of gaining noise robustness/transferablity and enhancing
data efficiency, respectively.

The new X-Yield benchmark is set to facilitate ML for HEA yield strength prediction, but learning
from such a multi-fidelity dataset is highly challenging. To address this challenge, we conceptu-
alize a cross-quality few-shot transfer workflow. This involves pre-training the prediction model

2



on the data-rich yet “low-quality" source domain (simulated data), and then fine-tuning the model
towards the data-scarce yet “high-quality" target domain (experimental data). However, the effi-
cacy of this vanilla workflow is hindered by twomajor challenges: a significant quality gap between
source and target domains, and an extreme data scarcity of target data. Inspired by the recent suc-
cess of sparsity regularizers, we propose to incorporate sparsity to regularize both stages: sparsify-
ing pre-training to improve the robustness and cross-domain transferability of learned features [8–
13], and sparsifying fine-tuning to overcome data shortfalls [14–16]. We demonstrate proof-of-
concept experiments that even the simplest magnitude-based weight pruning could play effective
regularization roles in our workflow. Furthermore, to avoid the ad-hoc two-step pruning as well as
trial-and-error sparsity ratio selection at either stage, we propose a novel integrated optimization
framework termed Bi-Level Regularized Pre-training and Transfer (Bi-RPT), that jointly learns optimal
sparse masks and automatically allocates sparsity levels for both stages. Ourmain contributions are
summarized as follows:
• Dataset: We present X-Yield, the first public multi-quality materials science benchmark for re-

fractoryHEAyield strength prediction, containing alloys compositions, processing temperatures,
and yield strength. Specifically, the experimental YS of 240 HEAs are reported, while YS of the
remaining samples (over 100K) are calculated by simulations.

• Methodology: we formulate a cross-quality few-shot transfer workflow that can jointly exploit
the simulated and experimental data for accurate predictions, and we innovate to leverage spar-
sity for addressing both the simulated/experimental domain gap and the scarcity of experimental
data. While ad-hoc magnitude-based weight pruning is already found to be helpful, we further
formulate an integrated bi-level optimization framework called Bi-RPT to automate the optimal
sparse mask generation and sparsity ratio allocation at both pre-training and fine-tuning stages.
The overall pipeline is described in Figure 1.

• Results: Extensive experiments show that Bi-RPT can boost performance on the X-Yield bench-
mark alongside other synthesized testbeds. In particular, for the YS regression task, we achieve a
reduction of 19-38% on the test mean squared error by using only 5-10% of the available experi-
mental data. For the YS classification task, we achieve 0.98-1.53% improvement in test accuracy.

2. Related Works
2.1. Machine Learning in Materials Research
ML has been applied to solve a wide range of problems in materials science ranging from the fields
of inorganic chemistry [17] to sustainability [18], and metallurgy [19], with the typical purposes
to predict materials properties and accelerate simulations [20]. In general, ML techniques signifi-
cantly reduce computational time compared to traditional materials science methods and are typi-
cally fast to develop [21]. More recently, deep learning has been successfully applied to problems in
the field of HEAs, in particular to predict phase formation [22, 23]. Deep learning provides signif-
icant increases in speed compared to CALculation of PHAse Diagrams (CALPHAD) [24], density
functional theory [25], and molecular dynamics methods [26] commonly used in materials sci-
ence. Deep learning has also been applied to predict other properties such crystal structure, elastic
constants [27], hardness [28], and (most relevant to us) yield strength of refractory HEAs [3, 27].
However, previous deep learning efforts for YS prediction are restricted to the development of spe-
cific alloys [28–30] and many studies use only a small experimental dataset for prediction [31]. In
contrast, this work presents a general multi-fidelity ML model for predicting YS of HEAs at scale.

2.2. Sparsity Regularization in Deep Learning
Sparsity or pruningwas traditionally treated as amainstreammodel compression approach in deep
learning [32]. Recently, sparse regularizers have been increasingly used to enhance deep model
robustness to various noise, malicious attacks, and distribution shifts. Previous work studied the
intrinsic relationship between pruning and adversarial robustness [8, 9, 33]. Other recent work
[13] comprehensively demonstrated the benefit of model sparsification to improve robustness to
distributional shifts [34, 35]. Sparse regularizers also exhibit promise in improving data efficiency.
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For example, Zheng et al. and Liu et al. [14, 36] proposed to learn model pruning strategies for
few-shot learning and Tian et al [37] combined model sparsification with meta-learning to improve
few-shot performance. Sparse regularizers have even been proven effective beyond few-shot image
classification, such as enhancing the data efficiency in image generation [15].

2.3. Bi-Level Optimization
Bi-level optimization is a hierarchical framework where the variables in the upper-level optimiza-
tion problem are dependent on the lower-level problem. Finn et al. and Rajeswaran et al. [38, 39]
formulated the meta-learning problem in the form of bi-level optimization, and solve it by using
first-order approximations. Other applications of bi-level optimization include data and label poi-
soning [40, 41], and adversarial training [42]. In this work, we utilize bi-level optimization to for-
mulate a two-stage workflow with sparsification and find each stage’s optimal weights and sparse
masks while considering their sequential dependency.

3. X-Yield: A new benchmark for refractory HEA yield strength
prediction

Overview. Conventional alloys typically have one principal element with small amounts of other
elements added to improve material properties [43] while HEAs can have multiple principal ele-
ments. The discovery of HEAs opened the door to a significantly larger design space to explore,
most of which has yet to be examined [44]. To address the task of using ML to predict HEA yield
strength, we focus on the sub-field of refractoryHEAs (RHEAs). Thesematerials have been demon-
strated to maintain excellent mechanical properties (i.e., YS) at high temperatures [45], making
them ideal candidates for hypersonics and aerospace industry applications. Prior work adopting
ML to predict RHEA properties either uses solely experimental data [31], or restricts predictions
to smaller composition space and single temperature [30] or specific alloys such as MoNbTaTiW at
multiple temperatures [3]. Hence, a generalizableMLpredictionmodel for a broad range of RHEAs
across temperature domains is still absent. As mentioned earlier, it is impractical to generate high
quantities of experimental data, especially for capturing YS at elevated temperatures. There are
also challenges specific to high-temperature measurements such as controlling oxidation, confirm-
ing the heating profile and gradient within the samples, and use of more challenging experimental
techniques (crosshead displacement) than those at lower temperatures (extensometers).
This work develops X-Yield, the first publicly available, multi-fidelity dataset consisting of over
100K low-quality simulated points and 240 experimental data points to explore the RHEA design
space. In this study alone, the entire composition space of all alloys containing between ternary-
septenary systems from the Al-Cr-Fe-Hf-Mo-Nb-Ta-Ti-V-W-Zr family is examined. Since obtaining
real high-temperature YS data is challenging, amajority of the experimental YS data in the literature
was taken close to room temperature [7] even though there is more interest in RHEA properties at
high temperature [44]. X-Yield can be used to train a multi-fidelity ML model to predict high-
temperature YS for a broad range of RHEAs. The combination of high-temperature YS from the
simulated dataset and experimental input can generate an ML model to accurately and efficiently
predict high-temperature YS of alloys not included in the training set.
Dataset Construction. The YS of the simulation data was predicted using the analytic and
parameter-free mechanistic yield strength model developed by Maresca et al. [4]. This model de-
scribes body-centered cubic (BCC) multi-principal element alloy (MPEA) solid solution strength-
ening associated with edge dislocations, in terms of elemental atomic volumes and elastic moduli.
The YS was predicted for all ternary (1% increments), quaternary (1% increments), quinary (5%
increments), senary (5% increments), and septenary (5% increments) alloys from the Al-Cr-Fe-Hf-
Mo-Nb-Ta-Ti-V-W-Zr element family at temperatures between 300K-2500K in increments of 100K.
This resulted in over three billion data points of which approximately 100,000 were randomly se-
lected for inclusion in this study. Note that even this advanced simulation model suffers from no-
table oversimplification and data quality issues. For example, the phase stability and dislocation
character were not used to filter alloys in the study and the model may overpredict the YS of alloys
with non-BCC phases and underpredict those with different dislocation character (e.g. screw).

4



0.00

0.25

0.50

0.75

0 2 4 6
Yield Strength Value (GPa)

D
en

si
ty

Experimental
Simulation

0e+00

5e-04

1e-03

500 1000 1500 2000 2500
Temperature (K)

D
en

si
ty

Experimental
Simulation

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
Experimental (GPa)

Si
m

ul
at

io
n 

(G
Pa

)

Figure 2: Left: distribution of YS; Middle: distribution of temperature; Right: pairwise visualization of YS.

The high-quality experimental dataset was carefully filtered and curated from the database gen-
erated by Borg et al. [7] consisting of mechanical property information (e.g., YS) for MPEAs. All
extracted data points consisted solely of alloys based on the elements from the above element family
exhibiting only BCC phases, and containing a YS value at temperatures higher than 20°C.
Dataset Characteristics and “Quality Gap". As depicted in Figure 2, the simulation and experi-
mental YS have different distributions. In the low-quality simulation data, a considerable portion of
YS values is greater than 2 GPa, while the experimental data contains almost no YS points beyond
2 GPa (with only one exception). The distribution of the simulated YS is also significantly more
skewed than the experimental one. The testing temperature distributions also differ significantly,
with the simulation data presenting an near-uniform pattern while the experimental temperature
distribution is bimodal with a dominant low-end peak (i.e., reflecting the difficulty to acquire ex-
perimental data at high temperature compared to room temperature). These observations showcase
the domain shifts or a “quality gap" between simulations and experiments. As a result, the pair-
wise visualization of the YS on the 240 high-quality experimental samples suggests a substantial
deviation between simulated and experimentally observed yield strength.

4. Cross-Quality Few-shot Transfer: A Two-Stage Workflow aided
by Sparsity (Twice)

In this section, we will begin by introducing the basic two-stage workflow. Building on this founda-
tion, we propose a novel sparsification framework consisting of two approaches: a vanilla approach
called "Hand-Tune" and an improved principled framework named “Bi-RPT”.
Basic Two-Stage Workflow: Pre-training then Fine-tuning Let us denote the high-quality target
domain (experimental data) byDt, and the low-quality source domain (simulated data) byDs. Our
goal is to learn a generalizable predictor over Dt while leveraging the aid of Ds. One naive idea is
to simply combine the two data domains and jointly train a supervised model. However, the large
domain gap between Ds and Dt, as well as the sample scarcity in Dt, result in a poorly trained fit
to Dt. Instead, we propose to formulate our workflow as a two-stage pipeline: first pre-training a
model on Ds, and then fine-tuning to optimize the prediction over Dt.
Incorporating Bi-Stage Sparsity: A Vanilla Approach. Despite the usefulness of features learned
from Ds, it is inevitable that they suffer from domain gap and noise when applied to Dt. Fur-
thermore, the scarcity of data in Dt poses another challenge. In light of recent successes achieved
through the use of sparse regularizers in enhancing both robustness/transferability and data effi-
ciency, we attempt to incorporate sparsity into both stages to address the two-fold challenges.
We first prove our concepts by proposing a vanilla ad-hoc approach, which we refer to as Hand-
Tune. Starting from pre-training over Ds, we perform the standard iterative magnitude pruning
(IMP) [46] during pre-training. In particular, we alternate between (re-)training and pruning; each
time, we prune the 20% smallest-magnitude weights from the existing non-zero weights by default
and continue (re-)training the remaining non-zero weights. Such a “prune-and-retrain” routine is
repeated for Ns rounds to obtain the final sparse mask ms (1 denotes the element to be non-zero
and 0 to be pruned) associated with the pretrained model weight. Then, we move on to fine-tuning
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over Dt, and start another round of IMP on top of the pre-trained model: note that this second-
stage IMP continues only on the subset of current non-zero weights, i.e., the 1-valued regions inms.
IMP in fine-tuning repeats anotherNt round (with the identical protocol as the first stage), yielding
another sparse mask mt. The final model uses the joint sparse mask ms ⊙mt where ⊙ represents
the point-wise product.
Hereby, Ns and Nt are hyperparameters that control the sparsity allocation between two stages.
Intuitively, while certain sparsity may contribute to noise resilience, an overly large Ns will cause
the pre-trainedmodel to be over-sparsified, limiting its capacity to learn sufficiently informative and
transferable features. Fine-tuning has a similar trade-off. Therefore,Ns andNt have to be manually
tuned for the two-stage workflow to achieve good performance (see Appendix B.2).
Principled Bi-Stage Sparsity Integration with Bi-RPT. The Hand-Tune method has some notable
drawbacks. Firstly, it uses weight magnitude information to remove weight elements, which is not
explicitly driven by the task. Secondly, the two sparse masks ms and mt are determined sequen-
tially rather than jointly optimized. As a result, learning mt may be affected by any artifact in
learning ms. Finally, the sparsity ratios assigned in both stages, controlled by Ns and Nt, require
manual tuning without any clear understanding beyond an exhaustive hyperparameter search.
We, therefore, devise a more principled framework that can jointly learn the optimal sparse masks
as well as sparsity allocations for both stages, termed Bi-Level Regularized Pre-training and Transfer
(Bi-RPT). The corresponding optimization problem can be expressed as follows:

min
θ,ms,mt

E
(xt,yt)∼Dt

[Lt((ms ⊙mt)⊙ θ,xt,yt|θ∗,m∗
s)] + γR(m∗

s ⊙mt) (1)

s.t. {θ∗,m∗
s} = argmin

θ,ms

E
(xs,ys)∼Ds

Ls(ms ⊙ θ,xs,ys), (2)

where γ is a coefficient, Ls/Lt represents the objective functions for the two stages, respectively,
θ represents the models’ parameters, and R represents the sparsity regularizer. Seemingly com-
plicated at the first glance, the bi-level optimization formulation of Bi-RPT actually admits a clear
physics “workflow" interpretation. Let us start from the lower-level problem (2) which instantiates
the sparsity regularized pre-training stage over Ds: its outputs include the pre-trained weight θ∗

and the corresponding sparse maskms. Then, the upper-level problem (1) depicts the sparsity reg-
ularized fine-tuning over Dt, which inherits both θ∗ and m∗

s as its starting point. It continues to
modify the weight as well as to evolve another sparse mask mt. Eventually, a sparsity-promoting
function R enforces the total sparsity over the joint mask ms ⊙ mt, and the final model weights
could be represented as (ms ⊙mt)⊙ θ.
Importantly, the lower- and upper-level problems in Bi-RPT are solved in an end-to-end manner,
meaning that even the fine-tuning depends on θ∗ and m∗

s , it can, in turn, provide feedbacks for
adjusting the latter: hence a synergistic optimization is achieved between two stages. The sparse
mask selection now directly hinges on the end task (target domain loss Lt) rather than heuristics
such as weight magnitudes. Lastly, the sparsity levels of ms and mt do not need to be separately
designated normanually controlled: we automatically learn the sparsity ratio allocation, under only
the total sparsity regularizer R.
To practically solve the bi-level optimization of Bi-RPT, we derive algorithms whose details can
be found in Appendix A. For the sparsity regularizer R, we adopt the smoothed ℓ0 term [47] to
facilitate differentiable training: a gate function gϵ(x) = x2/(x2 + ϵ), whose outputs are almost
binary when the ϵ is small, is used. In general, for the lower-level optimization problem, we update
the model parameters θ by gradients to minimize Ls; for the upper-level optimization, we utilize
the gradient unrolling to develop update rules for θ.

4.1. Proof-of-Concept Experiments on Image Data
To evaluate the effectiveness of our proposedHand-Tune and Bi-RPT methods, we conduct proof-of-
concept experiments on a synthesized testbed of image classification. We adopt two source-domain
dataset options: ImageNet [48] and ImageNet-C [34], the latter more noisy and corrupted. Two
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target-domain options are also accompanied: CUB-200 [49] and CUB-200 (10-shot), the latter de-
signed to be rigorously “few-shot" where each class has only 10 training samples. By using different
combinations of Ds/Dt, we can conduct controlled experiments to evaluate the noise robustness
and data efficiency of various algorithm options.
Several baselines are compared to Hand-Tune and Bi-RPT: (1) Pretrain-and-transfer: the basic work-
flow of pre-training on Ds followed by finetuning on Dt, with no sparsity involved; (2) Pretrain
sparsity only /transfer sparsity only: following our proposed pretrain-and-transfer workflow, but con-
ducting IMP to only the pre-training/finetuning stage; (3) No Pretraining: directly training on Dt

without using Ds; (4) Mix Training: training one model on Ds and Dt combined. For methods in-
volving IMP, we carefully select the sparsity ratio(s) by hands for either or both stages that result in
the best generalization performance on Dt, using grid search through cross-validation.
Table 1 reports the accuracies of all methods over various source/target combinations, on the same
testing set of CUB-200 in Table 1. All methods use the same ResNet-18 backbone. We highlight
several key observations: (1) incorporating Ds in general helps both CUB-200 and CUB-200 (10-
shot), and the improvement margin is much more substantial for the few-shot case; (2) models
trained byMix Training fail to generalize on Dt - in fact even worse than No Pretraining, showcasing
the negative influence of the quality gap; (3) in the same regime of pre-training then fine-tuning,
adding appropriate sparsity helps, and two-stage sparsity can help more; (4) Bi-RPT consistently
outperformsHand-Tune (especially, very notably in few-shot cases), despite the best efforts in tuning
the latter’s hyperparameters. More observations and analysis can be found in Appendix B (Tables 4
- 7, and Figure 5): including but not limited to the backfiring effect of “over-sparsification" and the
compound influence of per-stage IMP sparsity allocation in Hand-Tune. In Section B.8, we present
additional experimental results that compareBi-RPTwith an advanced few-shot learning technique,
TIM [50]. The results clearly demonstrate that Bi-RPT achieves superior performance.
Table 1: Experiments on image data: testing accuracy of fine-tuned ResNet-18 on CUB-200 / CUB-200 (10-
shot) as Dt, after pretraining on ImageNet and ImageNet-C as Ds, respectively.

Dt Methods Two-stage ms mt
Ds

ImageNet ImageNet-C

CUB-200

No Pretraining ✗ ✗ ✗ 44.27% / 7.98%
Mix Training ✗ ✗ ✗ 30.88% / 6.72% 27.32%/6.89%

Pretrain-and-transfer ✓ ✗ ✗ 74.16% / 38.66% 71.59% / 32.14%
/ CUB-200 (10-shot) Pretrain sparsity only ✓ ✓ ✗ 76.01% / 40.73% 73.70% / 38.76%

Transfer sparsity only ✓ ✗ ✓ 74.16% / 38.90% 71.83% / 32.53%
Hand-Tune ✓ ✓ ✓ 76.01% / 40.78% 74.01% / 39.94%
Bi-RPT ✓ ✓ ✓ 78.60% / 51.55% 76.29% / 47.01%

5. Main Experiments on the X-Yield Benchmark
5.1. Implementation Details
Task Definition. On X-Yield, the most natural task is predicting the yield strength (YS) of alloys
(i.e., regression) and calculating the error between the model prediction and the “ground-truth”
experimental results. In addition to the regression task, we have formulated a surrogate classifica-
tion task by categorizing the ground-truth YS into five bins based on their values: [0, 0.5), [0.5, 1),
[1,1.5), [1.5,2), and [2,∞) in GPa. These categorical labels enable us to perform a classification task
that complements the regression analysis.
Data Representations. We featurize each HEA by mapping its composition and temperature into a
“pseudoimage" (please refer to Appendix B.3 and Figure 4). The pseudoimages have two channels.
The first channel encodes the HEA’s composition using a randomized periodic table structure [51].
The second channel embeds the HEA’s temperature, which we convert from kelvin to a normalized
temperature Tnorm = (K − 273.15)/2000, and then include as a second channel in the pseudoimage.
Architectures. Our ML predictor utilizes a convolutional neural network structure, which is com-
posed of three convolutional layers. Each layer has a kernel size of three and is followed by Batch
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Normalization [52] and ReLU [53] activation. Additionally, we have appended a multi-layer per-
ceptron to the convolutional neural network to generate the final prediction for both regression and
classification tasks. The hyperparameters we use are shown in Sec B.1.
Evaluation Metrics and Data Splits. We evaluate each method in two ways. Besides the widely
used 10-fold cross-validation, we explore two challenging extreme few-shot settings. Specifically, we
randomly sampled 5% (and 10%) of experimental data from each alloy type (ternary, quaternary,
quinary and senary) as our training set, while the remaining data served as the testing set. Note
that these alloy “types" are distinct from the classification labels, which are described in the Task
Definition subsection above. The end result is that we have only 23 (or 11) training samples and 217
(or 229) testing samples in the extreme few-shot settings. All the low-quality (simulated) data is used
for pretraining where applicable. For the regression task, we report the lowest mean squared error
(MSE) achieved on the testing samples. For the classification task, we measure model performance
by reporting their accuracy on the testing split.

5.2. Main Results
Classification and regression with extreme few-shot settings. We first apply Bi-RPT to solve the
regression and classification tasks under the two extreme few-shot settings where only 5% and 10%
of experimental data are available, respectively. Table 2 shows that: (1) pretraining on simula-
tion data can benefit the ML predictor consistently on both the regression (over 10% reduction in
MSE) and classification (over 11% improvement in accuracy) tasks, especially when the data is
more scarce; (2) the integration of sparsity into the pretraining and transfer workflow can further
strengthen the predictor’s generalization, improving accuracy by 0.98% and reducingMSE by 8.91%
in the 10% experimental data case and improving accuracy by 1.53% and reducing MSE by 19.75%
in the 5% experimental data case.
Table 2: Machine learning prediction performance on the test set of different splits of high-entropy alloy data.
The experiments are repeated 10 times, and we report both the mean and the 95% confidence interval.

Method 10% train samples 5% train samples
Test MSE Test Accuracy Test MSE Test Accuracy

No Pretraining 0.114± 0.007 54.84± 1.59% 0.212± 0.041 47.25± 0.80%
Pretrain-and-transfer 0.101± 0.001 65.85± 0.88% 0.162± 0.002 62.84± 1.96%

Bi-RPT 0.092± 0.011 66.83± 1.41% 0.130± 0.006 64.37± 1.10%

Additional classification and regression results. Table 11 presents results for the slightly more
“data-rich” 10-fold cross-validation setting. Here, we observe a similar trend: the bi-stage pretrain-
ing and transfer approach outperforms the single-stage training pipeline, and incorporating sparsity
consistently provides improvement to the ML predictor, particularly in the regression case.
Performance comparison on alloys at various temperatures. Based on the trainedmodelwith 10%
experimental data, we predict the YS of three alloys, MoNbTaTi, MoNbTaTiW and HfMoNbTaTiZr,
at different temperatures. Table 3 shows the predicted YS of these three alloys using Bi-RPT and
baselines. On the quinary and senary alloy systems, Bi-RPT shows exceptional accuracy in predict-
ing the experimental YS, while predictions on the quaternary system exhibit great improvements
compared to the initial simulation data. More scrutiny of those predictions reveals several findings
that neatly align with materials science theory. For example, it is known that screw dislocations are
more likely to be dominant than edge dislocations in MoNbTi and NbTaTi ternaries (shown from
the ternary comparison in the Citrine database [7]). Thus it makes sense that the Maresca-Curtin
model [4] based only on edge dislocations and ignoring the effect of screwdislocations (refer to Sim-
ulation data in Table 3) under-predicts theMoNbTaTi andMoNbTaTiW cases. However, our model
seems to correctly pick up these differences thanks to the multi-fidelity data sources including both
edge and screw dislocations effects and predicts a higher YS. As the effects of the MoNbTi and
NbTaTi systems are more diluted in the quinary than the quaternary system, it is interesting to note
that our model performs better for the quinary system (i.e., less “quality gap” difference between
the low and high fidelity data). Another example is that the Maresca-Curtin model over-predicts
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HfMoNbTaTiZr at lower temperatures (300K∼900K) and under-predict YS at higher temperatures
(1100K∼1300K) compared with experiments. These discrepancies are directly related to the theory
of the model, which only consider the effect of edge dislocations. For these alloys, screw disloca-
tions are assumed to dominate the YS behavior at low temperature (so the Maresca-Curtin model
is not designed to perform well in this temperature range) while edge dislocation will take over
at higher temperature (so the Maresca-Curtin model is better equipped to predict YS in this tem-
perature range, while neglecting the potential remaining influence of screw dislocations and other
mechanisms). Our predicted YS values are in a much better agreement with experiments for this
senary system, highlighting that the complex underlying behavior of screw and edge dislocations
(and other undefinedmechanisms) as functions of alloy complexity and temperature and its impact
on the resulting YS can be captured by the multi-fidelity ML models.
Table 3: Predicted YS of different alloys at different temperatures. Only 10% of the experimental data are
used for fine-tuning. We compare the predicted YS generated by Bi-RPT with our “No Pretraining” (NP) and
“Pretrain-and-transfer” (PT) baselines and the simulation. Best results (smallest errors) are marked in bold.

Alloys Temperature (K) Predicted Yield Strength (GPa) Experimental (GPa)
Bi-RPT NP PT Simulation

MoNbTaTi
293.15 1.078 1.170 1.062 0.475 1.210
473.15 0.965 1.004 0.902 0.381 0.868
673.15 0.746 0.772 0.731 0.282 0.685
873.15 0.508 0.642 0.584 0.472 0.593
1273.15 0.425 0.570 0.488 0.114 0.539

MoNbTaTiW
298.15 1.268 1.031 1.068 0.814 1.399
873.15 0.677 0.569 0.607 0.372 0.689
1073.15 0.618 0.520 0.523 0.294 0.674
1273.15 0.536 0.530 0.486 0.232 0.620

HfMoNbTaTiZr
296.15 1.527 1.051 1.132 1.849 1.515
873.15 0.861 0.556 0.685 1.178 0.973
1073.15 0.762 0.536 0.612 0.516 0.791
1273.15 0.662 0.563 0.573 0.421 0.753

0.00

0.05

0.10

1073.15 1273.15 1473.15 1673.15 1873.15
Temperature (K)

M
S

E

Method

NP
PT
Bi−RPT

Figure 3: Prediction MSE at different temperatures.
We compare the results of three methods: No Pretrain-
ing (NP), Pretrain-and-transfer (PT), and Bi-RPT.

Prediction performance at high temperatures.
One critical task in the alloy design community
is to find alloys capable of withstanding stress
at high temperatures without deforming plasti-
cally. To assess the ability of Bi-RPT to aid the
community in achieving this objective, we con-
ducted a thorough analysis of its predictive per-
formance under high-temperature conditions.
We train our model with 10% of the experimen-
tal data, predict the YS for the remaining 90%,
and compare the predictive quality ofmodels at

high temperatures in Figure 3. Our results indicate that Bi-RPT significantly outperforms the other
models, particularly at temperatures greater than 1400K. These results suggest Bi-RPT could serve
as a powerful tool for designing refractory HEAs with superior YS at elevated temperatures.
6. Conclusions
To address the important yet challenging problem ofHEA yield strength prediction, we curated and
releasedX-Yield, the first multi-fidelity HEAYS benchmark. To effectively leverage this benchmark,
we also designed a two-stage cross-quality few-shot transfer workflow and proposed to use sparsity
to tackle the two-fold challenges, i.e., low data quality during pretraining and data scarcity during
fine-tuning. We formulate a principled bi-level optimization framework to automatically learn the
optimal sparse masks and sparsity allocation between training stages. Extensive experiments on
both image data testbeds and X-Yield demonstrate that Bi-RPT shows a substantial improvement
over existing baselines. Moving forward, we areworking closelywithmaterials scientists to validate
ourMLprediction results based on their domain expertise, and the teamhas already identified some
alloy candidates that appear promising for experimental validation.
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A. More Details on Methods
In this section, we present the technical details of our proposed method and framework (“Hand-
Tune” and “Bi-RPT”).

A.1. Hand-Tune
The Hand-Tune algorithm determines the sparse masks for the two stages in an iterative manner, as
outlined in Algorithm 1.

A.2. Bi-RPT
We now build the techniques to solve the bi-level optimization problem formulated in Bi-RPT.
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Algorithm 1 Hand-Tune
Input: Initialization weights θ0, low-quality pretraining dataset Ds, high-quality fine-tuning
dataset Dt, number of IMP rounds Ns for the pretraining stage and Nt for the fine-tuning stage.
Output: the trained weights θ∗, the sparse mask ms for the pretraining stage, and the sparse
maskmt for the fine-tuning stage.
Initialize the sparse masks ms for the pretraining stage to be a all “1” mask.
Initialize the model’s weight as θ0 and train the weights on Ds to obtain θs.
for i = 1,2, . . . ,Ns do ▷ IMP at the pre-training stage

Prune 20% of the smallest-magnitudeweights from the non-zero regions ofms⊙θs, by setting
the values at corresponding positions to those weights in ms to “0”.

(Re-)train the sparse weightsms ⊙ θs on Ds. Only θs is updated.
end for
Initialize the sparse masks at the fine-tuning stage mt to be all “1” masks and freeze ms.
Initialize model’s weight as ms ⊙ θs, and train on Dt to obtain ms ⊙ θt.
for i = 1,2, . . . ,Nt do ▷ IMP at the fine-tuning stage

Prune 20% of the smallest-magnitude weights from the non-zero regions of weights (ms ⊙
mt)⊙ θs, by setting the values at corresponding positions to those weights in mt to “0”.

(Re-)train the sparse weights (ms ⊙mt)⊙ θt on Dt. Only θt is updated.
end for
Obtain the final sparse weights (ms ⊙mt)⊙ θ∗ and return θ∗,ms and mt.

Formulation
min

θ,ms,mt

E
(xt,yt)∼Dt

[Lt((ms ⊙mt)⊙ θ,xt,yt|θ∗,m∗
s)] + γR(m∗

s ⊙mt)

s.t. {θ∗,m∗
s} = argmin

θ,ms

E
(xs,ys)∼Ds

Ls(ms ⊙ θ,xs,ys).

Interpretation Let us start from the lower-level problem (2) which instantiates the sparsity regular-
ized pre-training stage overDs: its outputs include the pre-trainedweight θ∗ and the corresponding
sparse maskms. Then, the upper-level problem (1) depicts the sparsity regularized fine-tuning over
Dt, which inherits both θ∗ and m∗

s as its starting point. It continues to modify the weight as well
as to evolve another sparse mask mt. Eventually, a sparsity-promoting function R enforces the
total sparsity over the joint mask ms ⊙ mt, and the final model weights could be represented as
(ms ⊙mt)⊙ θ.
Lower-level problem We solve the lower-level problem through a p-step SGD unrolling. Let θ(k)

be the model weights, andm
(k)
s be the mask for the pretraining stage. The superscript (k) indicates

they have been updated on the upper-level for k steps.
θ(k) andm

(k)
s will be the starting points for the lower-level optimization problem. θ(t)

l andm
(t)
s,l are

the weights and mask, respectively, after being updated for t steps on the lower-level optimization
problem (implying θ

(0)
l = θ(k) andm

(0)
s,l = m

(k)
s ). The update rules can be written as

θ
(0)
l = θ(k),θ

(p)
l = θ

(p−1)
l − λl∇θLs|θ=θ

(p−1)
l

, (3)

m
(0)
s,l = m(k)

s ,m
(p)
s,l = m

(p−1)
s,l − λm,l∇mLs|m=m

(p−1)
s,l

, (4)

where λl is the learning rate for the model weight θ, and λm,l is the learning rate for the maskm
(t)
s,l

at the lower-level optimization problem.
Upper-level problem and Sparse Regularization Loss The upper-level problem is the sum of two
losses: a normal training loss Lt and a sparse regularization lossR (γ is a coefficient).
We first develop update rules for the training loss Lt. The weights θ∗(:= θ

(p)
l ) and masks m∗

s(:=
m

(p)
s,l ) from the lower-level problem after p unroll steps will serve as the initialization of the upper-

level problem. We update the model weight θ and masks at the upper level by applying gradient-
based methods (take SGD as an example):

14



θ(k+1) = θ∗ − λu
dLt

dθ∗ (5)

= θ∗ − λu(
∂Lt

∂θ∗ +
∂Lt

∂m∗
s

∂m∗
s

∂θ∗ ),

where λu is the learning rate for the weights for the upper-level optimization problem. The gradient
on mt is easy enough: ∂Lt

∂mt
, while the gradient onms is slightly complicated:

dLt

dm∗
s

=
∂Lt

∂m∗
s

+
∂Lt

∂θ∗
∂θ∗

∂m∗
s

. (6)

We expand the latter terms in Eqn. 5 and Eqn. 6 based on the first-order approximation (picking
p = 1) on the lower-level problem:

∂θ∗

∂m∗
s

=
∂(θ

(0)
l − λl∇θLs)

∂(m
(0)
s,l − λm,l∇msLs)

=
∂(θ

(0)
l − λl∇θLs)

∂θ
(0)
l

∂θ
(0)
l

∂(m
(0)
s,l − λm,l∇msLs)

+ (7)

∂(θ
(0)
l − λl∇θLs)

∂m
(0)
s,l

∂m
(0)
s,l

∂(m
(0)
s,l − λm,l∇msLs)

= (I− λl∇2
θLs)(−λm,l∇msθLs)

−1+

(−λl∇msθLs)(I− λm,l∇2
ms

Ls)
−1,

∂m∗
s

∂θ∗ =
∂(m

(0)
s,l − λm,l∇ms

Ls)

∂(θ
(0)
l − λl∇θLs)

= (I− λl∇2
θLs)

−1(−λm,l∇msθLs)+

(−λl∇msθLs)
−1(I− λm,l∇2

ms
Ls).

(8)
Further approximations can be made to avoid the matrix inverse and save computation:

∂θ∗

∂m∗
s

≈ −λl∇msθLs ,
∂m∗

s

∂θ∗ ≈ −λm,l∇msθLs.

Based on the rules,ms andmt can be optimized by:

m̂
(k+1)
t = m

(k)
t − λm

∂Lt

∂mt
|
mt=m

(k)
t

(9)

m̂(k+1)
s = m(k)

s − λm
∂Lt

∂ms
+ λmλl

∂Lt

∂θ∗∇msθLs|ms=m
(k)
s

, (10)
where the superscript (k)means the steps updated.
We then focus on the latter term. We choose the ℓ0 loss (i.e. the number of non-zero elements) as
the sparse regularizer R, which is not differentiable and difficult to optimize. Therefore, we follow
Guo et al. [47] to use the smoothed ℓ0 formulation to facilitate differentiable training. Specifically, a
gate function gϵ(x) :=

x2

x2+ϵ , where ϵ is a small positive number, is used to replace the binary masks,
which are instead parameterized by gϵ(ms) and gϵ(mt). We decay the value of ϵ every epoch, and
the gate function will gradually output only polarized numbers (i.e., 0 and 1). We further apply
the proximal-SGD [54] to minimize the ℓ0 loss: after we update the ms and mt with respect to Lt

by gradient descent-based methods (Eqn. 10), we use the proximal operator to alternatively update
each mask. Forms, the formulation can be written as:

proxλmγR(m(k+1)
s ) =

argmin
ms

1

2
∥m(k+1)

s ⊙ m̂
(k+1)
t − m̂(k+1)

s ⊙ m̂
(k+1)
t ∥22 + λmγ∥m(k+1)

s ⊙ m̂
(k+1)
t ∥0.
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We follow [47] to solve it by relaxing it to the ℓ1 norm problem, which has a closed form solution:

ms,i =


m̂

(k+1)
s,i − γλm

m̂
(k+1)
t,i

, m̂
(k+1)
s,i ≥ γλm

m̂
(k+1)
t,i

m̂
(k+1)
s,i + γλm

m̂
(k+1)
t,i

, m̂
(k+1)
s,i ≤ − γλm

m̂
(k+1)
t,i

0, − γλm

m̂
(k+1)
t,i

< m̂
(k+1)
s,i < γλm

m̂
(k+1)
t,i

, (11)

wherems,i is the i-th element in ms (the same for mt,i).
Similarly, we derive the update for mt:

m
(k+1)
t,i =


m̂

(k+1)
t,i − γλm

m̂
(k+1)
s,i

, m̂
(k+1)
t,i ≥ γλm

m̂
(k+1)
t,i

m̂
(k+1)
t,i + γλm

m̂
(k+1)
s,i

, m̂
(k+1)
t,i ≤ − γλm

m̂
(k+1)
t,i

0, − γλm

m̂
(k+1)
s,i

< m̂
(k+1)
t,i < γλm

m̂
(k+1)
s,i

. (12)

Finally, we combine all these components into Algorithm 2.

Algorithm 2 Solving Bi-RPT
Input: Initialization weights θ0, training loss functions for two stages Ls and Lt, low-quality
pretraining dataset Ds, high-quality fine-tuning dataset Dt, number of steps for gradient unroll
p.
Output: Trained model weights θ, sparse masksms andmt.
Train θ0 on Ds to get weights θ.
while not converged do

Given the fixedms, update the weights θ on Ds by gradient unrolling (Eqn. 3)
Update the weights θ by Eqn. 5
Update the masks ms and mt by Eqn. 10.
Update the masks ms and mt by Eqn. 11 and Eqn. 12.

end while

B. More Experiments Details and Results

B.1. Baselines, Hyperparameters and Architectures.
We list the hyper-parameters we used for all the baselines in this section. General Settings. When
pre-training the models onDs (ImageNet and ImageNet-C), we use the SGD optimizer and a learn-
ing rate of 4× 10−1. We linearly warm-up the learning rate within 5 epochs, and then decay it by 10
for every 30 epochs. Models are pretrained for 95 epochs on Ds, with a batch size of 1024. On Dt,
i.e., CUB-200 and CUB-200 (10-shot), we set the initial learning rate as 1 × 10−3. The learning rate
is decayed by 10 every 30 epochs, and the model is trained for 90 epochs with a batch size of 64.
For Hand-Tune, we train the models with 95 epochs from scratch on Ds to get a densely pretrained
model. The number of training epochs is reduced to 45 after the model is pretrained. Following the
pretraining stage, we continue to transfer the model on Dt using the above hyper-parameters. The
number of epochs is reduced to 45 after we prune the weights.
For No-Pretraining, we train the model using an initial learning rate of 1 × 10−2 and a batch size
of 64. For Mix-Training, as the number of classes is different for ImageNet and CUB-200, we use
two fully-connected layers on top the normal ResNet-18 backbone, and train them simultaneously.
We sample batches from the two domains (Ds and Dt) using the same batch size of 64. The initial
learning rate for these methods is 1× 10−2 and is decayed by 10 every 30 epochs.
For Bi-RPT, we follow the same learning rate settings and introduce two additional hyper-
parameters. The learning rate for the lower-level problem (λl) is 1× 10−3, the same as the learning
rate for the upper-level problem (λu). The value of γ is set to 1×10−4, which is determined through
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ablation studies in Table 9. The value of λm is set to 3.5, which is also determined through ablation
studies in Table 10.
For experiments on X-Yield, we pretrain the ML predictor on the simulation data for 10 epochs.
During the pretraining, we use the Adam optimizer [55] with an initial learning rate of 1 × 10−4

and a cosine annealing schedule [56]. For the transfer stage, we fine-tune the pretrained model
on the experimental data for 90 epochs. We use the SGD optimizer with an initial learning rate of
1× 10−3. We also decay the learning rate by 10 for every 30 epochs. The batch sizes for pretraining
and fine-tuning are 16 and 4, respectively.
The ML predictor we use is a convolutional neural network. It consists of 3 convolutional layers,
each of which has a kernel size of 3, followed by BatchNormalization [52] and ReLU [53] activation.
A multi-layer perceptron is appended after the convolutional neural network to generate the final
prediction.

B.2. Performance of Hand-Tune Under Different Levels of Sparsity.
We report the performance of the Hand-Tunemethod under different levels of sparsity. We conduct
experiments with Ns = {0,1,2,3,4,5} and Nt = {0,1,2,3,4}, resulting in sparsity levels during pre-
training of {0.00%, 20.00%, 36.00%, 48.80%, 59.04%, 67.23%} and sparsity levels during fine-tuning
of {0.00%, 20.00%, 36.00%, 48.80%, 59.04%}. We conduct experiments over all combinations of pre-
training and transfer pruning rounds. More specifically, we first perform IMP on Ds forNs rounds,
and continue to perform IMP on Dt for another Nt rounds. The experimental results over various
source and target combinations are shown in Tables 4 - 7. Note that all models are evaluated on the
testing samples in Dt.
From this series of tables we observe that: (1) sparsity during pretraining helps improve model
performance on Dt after fine-tuning, and the performance gain is larger when Ds contains more
noise and has larger domain shifts; (2) sparsity during fine-tuning also benefits performance after
fine-tuning, and the improvement is more significant when the Dt is more “data-scarce”; (3) the
optimal sparsity levels for the two stages vary for different combinations of pretrain and transfer
domains, highlighting the importance of choosing the correct pruning rounds for both stages.

Table 4: Test accuracy of fine-tuned ResNet-18 on CUB-200 after pretrained on ImageNet, under
different levels of sparsity at pretraining and sparsity at transfer.

Sparsity At Transfer Sparsity At Pretraining
0.00% 20.00% 36.00% 48.80% 59.04% 67.23%

0.00% 74.16% 76.01% 75.77% 75.87% 74.99% 74.35%
20.00% 74.15% 75.54% 75.82% 75.98% 74.73% 74.46%
36.00% 74.13% 75.08% 75.56% 75.73% 74.06% 73.94%
48.80% 73.84% 74.01% 74.56% 74.46% 72.37% 72.16%
59.04% 73.61% 73.77% 73.61% 72.89% 70.66% 70.56%

Table 5: Test accuracy of fine-tuned ResNet-18 on CUB-200 after pretrained on ImageNet-C, under
different levels of sparsity at pretraining and sparsity at transfer.

Sparsity At Transfer Sparsity At Pretraining
0.00% 20.00% 36.00% 48.80% 59.04% 67.23%

0.00% 71.59% 71.89% 73.44% 73.70% 73.63% 73.52%
20.00% 71.83% 72.44% 73.97% 74.01% 73.52% 73.39%
36.00% 71.68% 72.80% 73.46% 73.47% 72.95% 72.70%
48.80% 71.13% 71.87% 72.14% 72.40% 71.87% 71.28%
59.04% 69.26% 70.31% 70.61% 70.73% 70.11% 69.38%
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Table 6: Test accuracy of fine-tuned ResNet-18 on CUB-200 (10-shot) after pretrained on ImageNet,
under different levels of sparsity at pretraining and sparsity at transfer.

Sparsity At Transfer Sparsity At Pretraining
0.00% 20.00% 36.00% 48.80% 59.04% 67.23%

0.00% 38.66% 35.88% 38.30% 39.23% 40.73% 39.14%
20.00% 38.90% 36.56% 38.66% 40.14% 40.78% 39.33%
36.00% 38.42% 36.31% 38.95% 40.14% 40.32% 38.97%
48.80% 38.13% 35.23% 37.80% 38.02% 38.37% 35.69%
59.04% 37.02% 33.21% 35.83% 35.54% 35.55% 32.78%

Table 7: Test accuracy of fine-tuned ResNet-18 on CUB-200 (10-shot) after pretrained on ImageNet-
C, under different levels of sparsity at pretraining and sparsity at transfer.

Sparsity At Transfer Sparsity At Pretraining
0.00% 20.00% 36.00% 48.80% 59.04% 67.23%

0.00% 32.14% 34.29% 38.07% 36.12% 38.21% 36.85%
20.00% 32.53% 35.99% 39.63% 37.92% 39.94% 37.66%
36.00% 32.52% 36.07% 38.99% 38.56% 39.07% 36.95%
48.80% 31.69% 34.85% 37.59% 36.45% 36.69% 34.79%
59.04% 30.64% 32.55% 34.79% 33.31% 33.72% 32.64%

B.3. HEA Data Representations

The raw data consists of each alloy’s composition and the temperature at which the experiment is
conducted, resulting in 12-dimensional vectors. We transform these vectors into 2D images using
the process outlined in Figure 4. Given the composition of an alloy, the periodic table representation
(PTR) sets the percentage of each element into a specific position according to its position in the
periodic table and the randomized periodic table representation (RPTR) sets the percentage of each
element with a pre-defined shuffled periodic table [51]. In our experiments, we use the RPTR to
map values in a more balanced way [51].

B.4. Ablations on Image Data

Effects of sparsity at two stages. We conduct a set of ablation experiments to study the effects of
two-stage sparse masks in the Bi-RPT formulation on ResNet-18 (pretrained by ImageNet-C, fine-
tuned on CUB-200). We compare against three baselines: fixing ms, fixing mt, and fixing both of
them. The performance comparison is shown in Table 8, where we can see that learning masks at
both stage yields the highest performance.
Effects of γ. We conduct a set of ablation experiments to study the effects of different γ on ResNet-
18 (pretrained on ImageNet-C, fine-tuned on CUB-200).We vary γ within {0.5,1,2,3} × 10−4 and
present the results in Table 9. We see that γ = 1× 10−4 yields the best performance.
Effects of learning rates. We conduct a set of ablation experiments on ResNet-18 (pretrained
on ImageNet-C, fine-tuned on CUB-200) to study the effects of learning rate on ms and mt. The
learning rates we study in this ablation experiments are {2.5,3.0,3.5,4.0,4.5,5.0}. We present the test
accuracies in Table 10 and observe that Bi-RPT consistently outperform baselines (74.01%) within
a wide range of λm.

B.5. Visualization

In Figure 5, we present visualizations of the sparsity patterns learned by Bi-RPT at two distinct
stages.
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Figure 4: The pipeline for converting a raw input into a pseudoimage. The temperature is embedded
as the value of the second channel.

B.6. Cross Validation

B.7. Uncertainty Quantification

We provide additional analysis of uncertain quantification. We ensemble ten models trained with
Bi-RPT and pretrain-and-transfer (PT) methods by averaging their predictions [57], and calculate
the standard deviation of the predictions as the uncertainty. The results after ensemble are shown
in Table 12.
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Table 8: Ablation study on different sparse masks on image data. “Fixed” means the value of h unchanged.
We study the combination of pretraining on ImageNet-C and transferring to Birds.

Mask Type Test Accuracy
Fixed ms and mt 71.58%

Fixed ms 72.09%
Fixed mt 75.53%
Bi-RPT 76.29%

Table 9: Ablation study on the effects of different γ on the image data. Test accuracy of fine-tuned ResNet-18
on CUB-200 after pretrained on ImageNet-C is reported.

γ Test Accuracy
0.5×10−4 72.32%
1×10−4 76.29%
2×10−4 65.42%
3×10−4 52.59%

We see that the ensemble of sparsemodels producesmore accurate predictions overall than the base-
line ensemble of pretrain-and-transfer. Furthermore, we found that the uncertainty and prediction
error associated with the use of the sparse model ensemble are moderately positively correlated,
with a value of approximately 0.15. In contrast, the correlation between the uncertainty and pre-
diction error derived from using the ensemble of dense models is weaker, with a value of around
−0.24.

B.8. Comparison with Few-shot Methods
For these experiments, we first pre-train models on mini-ImageNet and subsequently transfer them
to CUB. We compare the performance of Bi-RPT with TIM [50], a state-of-the-art approach [58] to
few-shot classification with domain shifts. The original TIM method does not tune the backbone.
Therefore we conduct experiments where the backbones are fine-tuned (called TIM + Backbone
Tuning) for a fair comparison. We resize the input image of CUB to 224× 224 to ensure a fair com-
parison with TIM. The average accuracy from 100 runs is shown in Table 13. Bi-RPT out-performs
TIM + Backbone Tuning by 3.13%/2.14%/5.76% and out-performs TIM by 2.12%/2.20%/6.07% in
the 5/10/20-shot setting, respectively.

C. More Details on Dataset

C.1. Dataset Comparison
We have provided a comparison between different relevant datasets in Table 14. We elaborate more
on the differences:

1. Maresca et al. [4] have only sparse data from the Mo-Nb-Ta-V-W element family.
2. Lee et al. [59] have released a database of the predicted YS of 10 million alloys from the

Al-Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr family at 1300 K. Our dataset contains alloys fromAl-Cr-Fe-
Mo-Nb-Ta-V-W-Hf-Ti-Zr family at temperatures from 300 K to 2500 K. Our simulation data
are significantly larger (over 3 billion samples) and this dataset is available in its entirety,
while only 100K are included for training the ML models in this study.

3. Borg et al. [7] compile experimental data from published materials science articles since
2004. The dataset contains 630 samples with different crystal structures. Our experimental
dataset is a subset of Borg et al [7] focusing on alloys with BCC structures only.
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Table 10: Ablation study on the effects of different learning rate on ms and mt on image data. Test accuracy
of fine-tuned ResNet-18 on CUB-200 after pretrained on ImageNet-C is reported.

λm Test Accuracy
2.5 72.88%
3.0 75.73%
3.5 76.29%
4.0 75.94%
4.5 73.69%
5.0 73.34%

CUB-200, ImageNet CUB-200, ImageNet-C

CUB-200 (10-shot), ImageNet CUB-200 (10-shot), ImageNet-C

Combined

Figure 5: Layerwise sparsity learned by Bi-RPT on CUB-200 and Birds-S with ImageNet and
ImageNet-C pretraining. We report the sparsity level of the two masks, as well as their combined
sparsity (note that Bi-RPT allows for the two masks to partially overlap).

Table 11: Classification and regression performance with 10-fold cross-validation. We report both
the mean and the 95% confidence interval.

Classification (Accuracy) Regression (MSE)
No Pretraining 67.50± 5.16% 0.226± 0.027

Pretrain-and-transfer 82.09± 3.86% 0.206± 0.026
Bi-RPT 82.50± 2.93% 0.068± 0.009
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Table 12: Uncertainty estimation calculated by ensembling independently trainedmodels. We study
twomethods: pretrain-and-transfer (PT) and Bi-RPT. The results after ensemble are reported as PT-
Ensemble and Bi-RPT-Ensemble, respectively. The estimated uncertainty is reported in brackets.

Alloys Temperature (K) Predicted Yield Stress (GPa) Experimental (GPa)
Bi-RPT Bi-RPT-Ensemble PT PT-Ensemble

MoNbTaTi
293.15 1.078 1.158 (0.083) 1.062 1.054 (0.011) 1.210
473.15 0.965 1.046 (0.087) 0.902 0.908 (0.015) 0.868
673.15 0.746 0.850 (0.085) 0.731 0.740 (0.026) 0.685
873.15 0.508 0.674 (0.103) 0.584 0.604 (0.021) 0.593
1273.15 0.425 0.482 (0.088) 0.488 0.501 (0.018) 0.539

MoNbTaTiW
298.15 1.268 1.268 (0.098) 1.068 1.062 (0.011) 1.399
873.15 0.677 0.798 (0.102) 0.607 0.624 (0.022) 0.689
1073.15 0.618 0.681 (0.111) 0.523 0.528 (0.013) 0.674
1273.15 0.536 0.567 (0.124) 0.486 0.496 (0.017) 0.620

HfMoNbTaTiZr
296.15 1.527 1.392 (0.122) 1.132 1.142 (0.021) 1.515
873.15 0.861 0.864 (0.098) 0.685 0.698 (0.017) 0.973
1073.15 0.762 0.747 (0.105) 0.612 0.624 (0.022) 0.791
1273.15 0.662 0.646 (0.134) 0.573 0.587 (0.022) 0.753

Table 13: Comparison of Bi-RPT against few-shot learning methods. The experiments are repeated
100 times.

Methods 5-way 10-shot 10-way 10-shot 20-way 10-shot
TIM 75.35% 62.31% 50.76%

TIM + Backbone Tuning 74.34% 62.37% 51.07%
Bi-RPT 77.47% 64.51% 56.83%

Table 14: Comparison between different datasets.

Dataset Alloy Family Number of data points Temperature
Maresca et al. [4] Mo-Nb-Ta-V-W Sparse N/A
Lee et al. [59] Al-Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr 10 million 1300 K
Borg et al. [7] N/A 630 N/A

X-Yield Al-Cr-Fe-Mo-Nb-Ta-V-W-Hf-Ti-Zr 3 billion 300 K - 2500 K
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