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The problem of clustering points on a union of subspaces finds numerous applications in
machine learning and computer vision, and it has been extensively studied in the past two
decades. When the subspaces are low-dimensional, the problem can be formulated as a
convex sparse optimization problem, for which numerous accurate, efficient and robust
methods exist. When the subspaces are of high relative dimension (e.g., hyperplanes), the
problem is intrinsically non-convex, and existing methods either lack theory, are computa-
tionally costly, lack robustness to outliers, or learn hyperplanes one at a time. In this paper,
we propose Hyperplane ARangentment Descent (HARD), a method that robustly learns all
the hyperplanes simultaneously by solving a novel non-convex non-smooth ℓ1 minimiza-
tion problem. We provide geometric conditions under which the ground-truth hyperplane
arrangement is a coordinate-wise minimizer of our objective. Furthermore, we devise effi-
cient algorithms, and give conditions under which they converge to coordinate-wise mini-
mizes. We provide empirical evidence that HARD surpasses state-of-the-art methods and
further show an interesting experiment in clustering deep features on CIFAR-10.

1. Introduction
Given a set of data points from a union of unknown linear subspaces

⋃K
k=1Hk ⊂ RD, how can we recover

the subspacesHk as well as determine which points belong to which subspace—in an unsupervised fashion?
This is the now classical subspace clustering problem, which finds numerous applications in computer vision
and machine learning; see [1–3] for reviews. The specific case of hyperplane clustering (when each Hk is
a hyperplane) has applications in segmenting rigid-body motions [4, 5] and 3D point clouds [6, 7], hybrid
system identification [8, 9], mixed linear regression [10, 11], and sparse component analysis [12–14].

When the subspaces are low-dimensional, one can use sparse and low-rank representation techniques to
formulate the problem as a convex optimization problem regularized with the ℓ2 [15], ℓ1 [16, 17] or nuclear
norm [18–21], or combinations thereof [22–24], leading to a fruitful line of research with efficient algorithms
[25–27] and theoretical guarantees [28–32]. However, for subspaces whose dimension is high relative to D,
sparsity and low-rankness break down, and so do these methods.

Table 1: Summary of prior work and our contributions.

theory efficient robust one shot

RANSAC little in low dim. in low dim. no
K-Hyperplanes little somewhat no yes

GPCA yes no no yes
DPCP yes yes outliers no

KH-DPCP no somewhat somewhat yes
HARD (ours) yes yes outliers yes

Table 1 summarizes representative hyper-
plane clustering methods. RANSAC [33] is
a sampling and consensus algorithm, which
finds one hyperplane at a time (not one shot)
by randomly sampling points and fitting a hy-
perplane to them until a good fit is found.
It is highly effective in low dimensions, but
it is either not robust or suffers from expo-
nential complexity in high dimensions. K-
Hyperplanes [34, 35] is a K-means like
method tailored to hyperplane clustering. While simple and intuitive, it is inaccurate and not robust to
outliers, and it has limited theoretical guarantees (e.g., of convergence to true hyperplanes). Generalized
Principal Component Analysis (GPCA) [36] is a provably correct algebraic-geometric method that recovers
all hyperplanes in one shot, but it has exponential complexity and it is not robust to outliers. Dual Principal
Component Pursuit (DPCP) [37, 38] is a robust hyperplane learning algorithm based on solving a non-convex,
non-smooth optimization problem. It is efficient and provably convergent to the true hyperplane, but when
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directly extended to hyperplane clustering, DPCP is forced to identify one hyperplane at a time (i.e., not in
one shot), which hinders accuracy and theoretical analysis [6, 7]. KH-DPCP [6] integrates DPCP into the
K-Hyperplanes framework. In doing so, it inherits the one-shot ability of K-Hyperplanes and the robustness
of DPCP to a certain extent. But it also compromises accuracy and comes with no theoretical guarantees.

Then it seems fair to ask: Can we design a hyperplane clustering method that is accurate, efficient, outlier-
robust, and supports one-shot recovery with theoretical guarantees?

Our Contributions. To design such a method, we blend the GPCA and DPCP approaches in order to explore
the best of both worlds. This idea leads us to ℓ1 or Huber-style losses for outlier-robust hyperplane-clustering,
for which we derive a number of algorithmic, theoretical, and experimental contributions:

• Algorithms: We devise algorithms to minimize the proposed ℓ1 or Huber-type losses based on the idea of
block coordinate descent [39]. Since we aim to recover the hyperplane arrangement

⋃K
k=1Hk, we name

these algorithms HARD-ℓ1 and HARD-Huber (Hyperplane ARrangement Descent), and thus the title.
• Theory: We prove that the ground-truth hyperplane arrangement

⋃K
k=1Hk is a (coordinate-wise) mini-

mizer of our loss function under certain geometric conditions (Theorems 4.2 and 4.3). Moreover, we provide
conditions under which HARD-ℓ1 and HARD-Huber converge to critical points or (coordinate-wise) mini-
mizers (Theorems 5.2 to 5.4). Even though we are not aware of similar results for prior hyperplane clustering
methods, our theory does shed light on why the proposed HARD algorithms work well.
• Experiments: We show that HARD outperforms state-of-the-art methods on synthetic data with different
parameters (e.g., ambient dimension D, number of hyperplanes K, outlier ratios). We further apply HARD
to clustering deep features on the CIFAR-10 dataset [40].

2. Prior Art
Prior hyperplane clustering methods are roughly of two types, outlier-free [34, 36, 41, 42] and outlier-robust
[6, 7, 38, 43]. Our review is focused on the two most related methods, GPCA [36] and DPCP [38].

GPCA. A linear hyperplane Hk is identified uniquely up to sign with the unit vector b∗k lying in the sphere
SD−1 := {y ∈ RD : ∥y∥2 = 1} and orthogonal to Hk, so x ∈

⋃K
k=1Hk if and only if

∏K
k=1(x

⊤b∗k) = 0.
In other words, a union of K hyperplanes can be represented by a homogeneous polynomial of degree K
whose linear factors give the normal vectors to the hyperplanes. Given N data points {xj}Nj=1 lying in K

hyperplanes
⋃K

k=1Hk, instead of solving a large system of polynomial equations
K∏

k=1

(x⊤
j bk) = 0, ∀j = 1, . . . , N, (1)

GPCA finds all hyperplanes in one shot by fitting a single polynomial to the data and factorizing it into linear
forms. This observation led to a series of provably correct algorithms for clustering a union of hyperplanes in
the absence of noise [36]. However, exact methods suffer from two major disadvantages. First, they exhibit
exponential complexity in the dimension of the data D and the number of hyperplanes K. Second, they
assume noiseless data, as polynomial fitting and factorization methods are known to be sensitive to noise.

To address both challenges, [44] considered a least squares formulation of GPCA, in which one minimizes
directly over the normal vectors (thus reducing computational complexity and handling noise)

min
{bk}K

k=1

N∑
j=1

K∏
k=1

(x⊤
j bk)

2 s.t. bk ∈ SD−1, k = 1, . . . ,K (GPCA-ℓ2)

However, at the time, this was considered a difficult problem, not only due to the non-convexity of the
objective and constraints, but also due to the existence of permutation symmetries. Indeed, despite recent
progress on analyzing problems of this kind, e.g., dictionary learning [45–47] and tensor decomposition
[48, 49], we are not aware of a provably convergent method for (GPCA-ℓ2). Moreover, the formulation in
(GPCA-ℓ2) is sensitive to outliers, which we discuss next.

DPCP. In practice, the observed data points {x̃j}M+N
j=1 := {xj}Nj=1

⋃
{oi}Mi=1 often include a set of M

outlier points {oi}Mi=1 far from the union
⋃K

k=1Hk in the (vague) sense that |o⊤
i b

∗
k| is large for every k.
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When there is only one hyperplaneH1, Dual Principal Component Pursuit (DPCP) [37, 38] finds the normal
vector b∗1 by solving the non-convex and non-smooth optimization problem

b̂1 ∈ argmin
b1∈SD−1

M+N∑
j=1

|x̃⊤
j b1|. (DPCP)

The formulation in (DPCP) dates back at least to the early work of [50], and is related to the Median K-Flats
method (MKF) [43]. It finds a lot of modern applications (e.g., robust subspace recovery [51–55], dictionary
learning [56–58], geometric vision [59–61]), and this is perhaps why it has recently received considerable
interest [62–67]. However, while existing DPCP algorithms are provably convergent to a global minimum,
and (DPCP) is provably correct (the true normal is a global minimum) and highly outlier-robust, existing
theory and algorithms can not be applied directly to hyperplane clustering, the scenario of our interest.

This motivated [6] to extend (DPCP) to multiple hyperplanes. The first idea of [6] has some greedy flavor:
solve (DPCP) anyway (even if K > 1), as this might yield a b̂1 that is (approximately) orthogonal to most
of the points [6, Theorem 6]; then remove or down-weight the points that are (approximately) orthogonal
to b̂1; then solve (DPCP) again, but now on the remaining points; and so on. This allows for learning
the hyperplane arrangement

⋃K
k=1Hk sequentially. This method assumes there is a dominant hyperplane

[7, 11, 68] containing most of the points; but if without this assumption, b̂1 might be inaccurate and damages
the subsequent estimation of hyperplanes. The second idea of [6] is to integrate (DPCP) into the above-
mentioned KH framework [34], i.e., update the hyperplanes via (DPCP) instead of Principal Component
Analysis (PCA) (cf. §C.1). While such integration improves accuracy, it inevitably inherits two drawbacks
from KH. First is the sensitivity to initialization, which can be partially alleviated by multiple initializations
[7]. Second, the underlying theory of why such an integration works well has thus far remained, to our
knowledge, obscure.

3. Overview: Formulation and Algorithms
In this section, we introduce novel objective functions for hyperplane clustering in the presence of outliers
(§3.1) and provide practical algorithms for minimizing them (§3.2). The emphasis of this section is on giving
intuition and implementation recipes, while theoretical insights of our development are left to §4 and §5.

3.1. Problem Setup and Formulation

Problem Setup. We collect the notations used previously to set up the problem. Let
⋃K

k=1Hk be a union of
hyperplanes of RD, and denote by b∗k the (unique up to sign) normal vector ofHk. Let {xj}Nj=1 be a set of N
points lying in

⋃K
k=1Hk; call each xj an inlier. Let {oi}Mi=1 be a set of M points of RD far from the union⋃K

k=1Hk; call each oi an outlier. Given the set of data points {x̃j}M+N
j=1 := {xj}Nj=1

⋃
{oi}Mi=1, we aim to

recover all hyperplanes, cluster all inliers into these hyperplanes, as well as identify and remove all outliers.

Formulation. Although we do not know whether each data point x̃j is an inlier or outlier, we do know that, if
x̃j is indeed an inlier, then the product

∏K
k=1 |x̃

⊤
j b

∗
k| is equal to 0, or otherwise this product would be large.

Therefore, to gain robustness to outliers, we propose to solve

min
{bk}K

k=1

N+M∑
j=1

K∏
k=1

|x̃⊤
j bk| s.t. bk ∈ SD−1, k = 1, . . . ,K (GPCA-ℓ1)

(GPCA-ℓ1) has an ℓ1-style objective and is an unsquared version of (GPCA-ℓ2); if
∏K

k=1 |x̃
⊤
j bk| were the

residual term for linear regression, then (GPCA-ℓ1) would become least absolute deviation, a classic problem
that is known to be outlier-robust [69]. We will soon see the robustness of (GPCA-ℓ1) to outliers as well.

To finish the section, we make some remarks and teasers:

• (Invariance) (GPCA-ℓ1) is sign-invariant, i.e., changing the sign of bk has no effect whatsoever on the
objective value. Also, (GPCA-ℓ1) is permutation-invariant, e.g., swapping b1 and b2 does not alter the value
of the product |x̃⊤

j b1| · |x̃⊤
j b2| or the objective value.
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• (Harder GPCA?) While (GPCA-ℓ1) can be regarded as robustifying (1) and (GPCA-ℓ2) to outliers, the cost
of such robustification is the need to solve a non-smooth polynomial optimization problem (GPCA-ℓ1), which
appears harder (at least conceptually) than solving equations (1) or the smooth problem (GPCA-ℓ2). More-
over, to our knowledge, there are no polynomial-time algorithms proposed for (1) and no working algorithms
ever proposed for (GPCA-ℓ2)—How can we solve the non-smooth problem (GPCA-ℓ1) efficiently?
• (Harder DPCP?) In the special case of a single hyperplane, (GPCA-ℓ1) is exactly the same as (DPCP).
Recent theoretical advances on this subject seem to give way to the open problem of proving a given algorithm
for (DPCP) is globally convergent (cf. [70, Table II]). Under such circumstances, how can we devise provably
and globally convergent methods for the harder problem (GPCA-ℓ1)?
• (Correctness) Do the true normal vectors form a global minimizer of (GPCA-ℓ1)? This is certainly the case
when there are no outliers, in which case the optimal value is zero. Critical to the theory behind (DPCP) is to
identify conditions on the data under which the global minimum is still the true normal vector despite the M
extra terms in the objective. Controlling these extra terms should be clearly harder for (GPCA-ℓ1).

3.2. Hyperplane Arrangement Descent Algorithms

This section offers intuition and practical recipes for solving (GPCA-ℓ1); theoretical analysis is deferred to §4
and §5. The proposed family of methods is termed “HARD” (hyperplane arrangement descent); cf. Figure 1.

3.2.1. HARD-L1 and HARD-L1+

HARD-ℓ1. It seems hard to solve (GPCA-ℓ1) as it has a non-convex and non-smooth objective with non-
convex constraints. However, the objective is marginally convex, e.g., it is convex in b1 (with b2, . . . , bK
fixed). This suggests minimizing (GPCA-ℓ1) in a coordinate-wise manner, resulting in what we call the
“HARD-ℓ1” algorithm (Algorithm 1). Specifically, HARD-ℓ1 initializes at {b(0)k }Kk=1, and it computes b(t+1)

k

at iteration t for every k, by minimizing a weighted ℓ1 objective over the sphere SD−1 (ℓ1). Weight w(t)
j,k is

calculated such that (ℓ1) corresponds exactly to (GPCA-ℓ1) with all other normal vectors given except bk.

Algorithm 1: HARD-ℓ1

Initialization: {b(0)k }Kk=1 ⊂ SD−1

For t← 0, 1, . . . :
For k ← 1, . . . ,K:

w
(t)
j,k ←

{∏
i ̸=k |x̃

⊤
j b

(t)
i | k = 1∏

i<k |x̃
⊤
j b

(t+1)
i | ·

∏
i>k |x̃

⊤
j b

(t)
i | k > 1

b
(t+1)
k ∈ argmin

bk∈SD−1

N+M∑
j=1

w
(t)
j,k · |x̃

⊤
j bk| (ℓ1)

The core step of HARD-ℓ1 is solving (ℓ1). This is
a weighted version of (DPCP) [37, 38], to which
many methods [38, 62–65] can be applied. How-
ever, these DPCP algorithms are iterative, so inte-
grating them into HARD-ℓ1 would require some
criteria to terminate (controlled by some hyper-
parameters) as well as multiple runs for just a sin-
gle update of b

(t)
k . This is why applying these

methods to (ℓ1) might make HARD-ℓ1 cumber-
some and inefficient.

HARD-ℓ1+. These considerations bring us to our next insight, the idea of replacing (ℓ1) by

b
(t+1)
k ∈ argmin

bk∈SD−1

N+M∑
j=1

w
(t)
j,k ·

(x̃⊤
j bk)

2

max{|x̃⊤
j b

(t)
k |, δ}

, (ℓ1+)

leading to what we call the HARD-ℓ1+ method. In (ℓ1+), δ is a small positive number to avoid division by
zero. A crucial advantage of (ℓ1+) over (ℓ1) is that (ℓ1+) can be solved via SVD. Moreover, note that

(x̃⊤
j bk)

2

max{|x̃⊤
j b

(t)
k |, δ}

+max{|x̃⊤
j b

(t)
k |, δ} ≥ 2|x̃⊤

j bk|,

thus (ℓ1+) is always an upper bound of (ℓ1) (plus some constant terms). Consequently, minimizing such upper
bound (ℓ1+) would also decrease the objective values of (ℓ1). This is related to the so-called majorization
minimization paradigm [71], and offers a loose explanation as to why HARD-ℓ1+ is a reasonable algorithm.
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3.2.2. HARD-Huber and HARD-Huber+

HARD-Huber. While HARD-ℓ1+ only requires an SVD to solve (ℓ1+) and thus can be implemented very
efficiently, the objective (GPCA-ℓ1) is still non-smooth, which creates obstacles for convergence analysis.
This motivates us to consider a Huber-like loss h(·) to smooth the ℓ1 norm:

h(r) = |r| for |r| > δ, or
r2 + δ2

2δ
for |r| ≤ δ.

Here, δ is some positive and small constant; see also (ℓ1+). Indeed, h(r) is exactly equal to |r|
except when |r| is small, in which case h(r) is quadratic and in fact h(r) → |r| as δ → 0.

(ℓ1)

(Huber+)

(Huber)

(ℓ1+)

| · |

(·)2

h(·)

(·)2

w
(t)
j,k v

(t)
j,k

| · | h(·)

≤

≤

≤ ≤

Figure 1: Relations of HARD methods (§3.2):
since | · | ≤ h(·), (Huber) upper bounds (ℓ1);
since | · | ≤ (·)2, (ℓ1+) upper bounds (ℓ1); since
h(·) ≤ (·)2, (Huber+) upper bounds (Huber);
since w

(t)
j,k ≤ v

(t)
j,k, (Huber+) upper bounds (ℓ1+).

Notably, h(r) is smooth, differently from |r|. With this
Huber-like loss h(r), we now revise (GPCA-ℓ1) into

min
{bk}K

k=1

N+M∑
j=1

K∏
k=1

h(x̃⊤
j bk) (GPCA-Huber)

s.t. bk ∈ SD−1, k = 1, . . . ,K

and revise HARD-ℓ1 into the HARD-Huber algorithm:

v
(t)
j,k ←

{∏
i̸=k h(x̃

⊤
j b

(t)
i ) k = 1∏

i<k h(x̃
⊤
j b

(t+1)
i ) ·

∏
i>k h(x̃

⊤
j b

(t)
i ) k > 1

b
(t+1)
k ∈ argmin

bk∈SD−1

N+M∑
j=1

v
(t)
j,k · h(x̃

⊤
j bk) (Huber)

HARD-Huber differs from HARD-ℓ1 in that it replaces
the absolute value |x̃⊤

j bk| into h(x̃⊤
j bk); this offers theo-

retical advantages as we will show in §5.

HARD-Huber+. Similarly to (ℓ1), solving each subprob-
lem (Huber) iteratively is undesired. Similarly to (ℓ1+), the practical recipe we advocate is replacing (Huber)
with

b
(t+1)
k ∈ argmin

bk∈SD−1

N+M∑
j=1

v
(t)
j,k ·

(x̃⊤
j bk)

2

max{|x̃⊤
j b

(t)
k |, δ}

(Huber+)

which gives the HARD-Huber+ method. It is now clear that (Huber+) is to (Huber) what (ℓ1+) is to (ℓ1) and
the difference of (ℓ1+) and (Huber+) is in the weights, w(t)

j,k and v
(t)
j,k; see also Figure 1. We will mainly use

HARD-ℓ1+ and HARD-Huber+ for practical purposes. That said, the convergence properties of these HARD
algorithms, as well as their intriguing interplay, are of sufficient theoretical interests, and will be explored in
greater detail in §5.

4. Analysis of the Objective
In this section, we first define some geometric quantities that depend on the distribution of inliers, outliers
and ground-truth normal vectors {±b∗k}Kk=1 (§4.1). Then, we show that {±b∗k}Kk=1 are coordinate-wise min-
imizers (Definition 4.1) of (GPCA-ℓ1), under conditions that depend on these geometric quantities (§4.2).

4.1. Geometric Quantities

Let {xk
i }

Nk
i=1 be the Nk inliers fromHk, and note that N = N1+ · · ·+NK . Define dkj :=

∏K
i̸=k |xk⊤

j b∗i | ≥ 0

which measures how the j-th inlier xk
j of Hk is close to other K − 1 hyperplanes. Similarly, let qkj :=∏K

i ̸=k |o⊤
j b

∗
i | measure how the j-th outlier oj is close to all Hi’s such that i ̸= k. With these, we can now

define the following

cin,k,min :=
1

Nk
min

b∈Hk∩SD−1

Nk∑
j=1

dkj ·
∣∣xk⊤

j b
∣∣ (2)
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cout,k :=
1

M

(
max

b∈SD−1

M∑
j=1

qkj ·
∣∣∣o⊤

j b
∣∣∣− min

b∈SD−1

M∑
j=1

qkj ·
∣∣∣o⊤

j b
∣∣∣)

η̄out,k :=
1

M
max

b∈SD−1

∥∥∥∥∥∥(I − bb⊤)

M∑
j=1

qkj sign(o
⊤
j b)oj

∥∥∥∥∥∥
2

+
D

M
.

Intuitively, these quantities measure the uniformity of inliers within each hyperplane, that of outliers, as well
as how inliers from one hyperplane are far from other hyperplanes. For example, cin,k,min is large if there are
sufficiently many inliers of Hk that are far from other hyperplanes Hi(i ̸= k) and uniformly distributed in
Hk. Similarly, if outliers far from all hyperplanes are sufficiently uniformly distributed in SD−1, then cout,k
and η̄out,k are small. These geometric quantities turn out to be useful in our results below.

4.2. Coordinate-Wise Minimizers

We first formally define coordinate-wise minimizers:

Definition 4.1. A feasible point {b̄k ∈ SD−1}Kk=1 of a program min{bi∈SD−1}K
i=1

f(b1, . . . , bK) is said to
be a coordinate-wise minimizer of this program, if it holds for all bk ∈ SD−1 and k = 1, . . . ,K that

f(b̄1, . . . , b̄K) ≤ f(b̄1, . . . , b̄k−1, bk, b̄k+1, . . . , b̄K).

With this definition, we will show that under conditions on the geometric quantities (2), the ground-truth
normal vectors {±b∗k}Kk=1 are coordinate-wise minimizers of (GPCA-ℓ1). In fact, we will prove that:

{±b∗k} = argmin
bk∈SD−1

N+M∑
j=1

|x̃⊤
j bk|

K∏
i ̸=k

|x̃⊤
j b

∗
i |, (3)

for k = 1, . . . ,K, which is a slightly stronger claim. Now, we are ready to state our first result:

Theorem 4.2. Any critical point of (3) either equals ±b∗k, or has a principal angle fromHk smaller than or

equal to arcsin
(

Mη̄out,k

Nkcin,k,min

)
.

Theorem 4.2 says that any critical point of (3) is either normal vectors {±b∗k} to Hk, or must be sufficiently
far away from them. Thus, if one can show that the objective of (3) is larger in the latter case than the former,
then {±b∗k} must be the solution to (3). This leads to:

Theorem 4.3. Any minimizer of (3) must be ±b∗k if

M

Nk

√
c2out,k + η̄2out,k

cin,k,min
< 1. (4)

Further, if (4) holds for k = 1, . . . ,K, then {±b∗k}Kk=1 are coordinate-wise minimizers of (GPCA-ℓ1).

We give some intuitions on Theorem 4.3. Firstly, for (4) to hold, we need the outlier ratio M/Nk with respect
to hyperplane Hk to be small, and we require inliers of Hk and outliers to be well distributed (§4.1) so
that cin,k,min is large and cout,k, η̄out,k are small. Note further that (4) decouples among data from different
hyperplanes, in that for each k (4) does not depend on inliers of hyperplanes other thanHk.

Theorems 4.2 and 4.3 are motivated by [62] and [72]. However, [62] concerns only a single hyperplane
and [72, Lemma 18] a single dominant hyperplane. Theorem 4.3 is an extension to the scenario of multiple
hyperplanes and recovers the result of [62] when K = 1.

5. Convergence of the HARD Algorithms
In §4 we provided conditions guaranteeing {±b∗k}Kk=1 are coordinate-wise minimizers and coordinate-wise
critical points of (GPCA-ℓ1). Here, we will prove that our HARD algorithms converge to coordinate-wise
minimizers or critical points. We start with the following assumption:
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Assumption 5.1 (Unique Block Minimizer). For any k = 1, . . . ,K, any bi’s (i ̸= k), and any b′k ∈ SD−1,
each of the following has a unique (up to sign) global minimizer:

min
bk∈SD−1

N+M∑
j=1

|x̃⊤
j bk| ·

∏
i ̸=k

|x̃⊤
j bi| (A1)

min
bk∈SD−1

N+M∑
j=1

h(x̃⊤
j bk) ·

∏
i ̸=k

h(x̃⊤
j bi) (A2)

min
bk∈SD−1

N+M∑
j=1

(x̃⊤
j bk)

2

max{|x̃⊤
j b

′
k|, δ}

·
∏
i ̸=k

h(x̃⊤
j bi) (A3)

Assumption 5.1 assumes the uniqueness of the global minimizer when minimizing (A1), (A2), or (A3) with
respect to each block of variables bk. Such assumption is very standard and in some sense necessary for
proving convergence of block coordinate descent methods [39, 73]. We now provide some intuitive justifi-
cation for Assumption 5.1 in our environment. Note that [38, Theorem 5] proves the continuous version of
(DPCP) always has a global minimizer ±b∗k, which sheds light on the weighted DPCP problem (A1). In-
tuitively (but not necessarily rigorously), (A2) is more likely than (A1) to have a unique global minimizer
as h is further locally quadratic (strongly convex). We emphasize that, still, (A1) and (A2) are hard to
verify and might be considered as strong assumptions. On the other hand, (A3) has a unique global mini-
mizer as long as the least two eigenvalues of the weighted covariance matrix

∑N+M
j=1 cj · x̃jx̃

⊤
j are distinct

(cj :=
∏

i̸=k h(x̃
⊤
j bi)/max{|x̃⊤

j b
′
k|, δ}), and this is expected to be true given enough (random) data points;

in fact, this is always true in our experiments where we checked that numerically the difference between the
least two eigenvalues is typically large.

In what follows, we will introduce three global convergence results, Theorems 5.2 to 5.4. Theorem 5.2 can be
proved by only assuming that (A1) has a unique global minimizer (∀k, ∀bi’s, ∀b′k); Theorem 5.3, assuming
(A2); Theorem 5.4, assuming (A3). However, we will use Assumption 5.1 consistently for simplicity.

5.1. HARD-L1

We now characterize the convergence of HARD-ℓ1:

Theorem 5.2. Under Assumption 5.1 (A1), any limit point of the sequence {(b(t)1 , . . . , b
(t)
K )}t generated by

the HARD-ℓ1 algorithm is a coordinate-wise minimizer of (GPCA-ℓ1).

The proof of Theorem 5.2 is motivated by Proposition 2.7.1 of [39]. In fact, the latter requires the constraint
sets to be convex, and we extend it for the non-convex spherical constraint SD−1 to obtain Theorem 5.2.

Can we then also prove a similar result to Theorem 5.2 for HARD-ℓ1+? The answer that we have at this
moment is, unfortunately, no. The difficulty of proving so is that HARD-ℓ1+ only minimizes an upper bound
(ℓ1+) of (ℓ1), not exactly (ℓ1). However, we will be able to prove convergence properties of HARD-Huber+
in §5.2. Moreover, h(r) upper bounds |r|, thus (Huber+) upper bounds (ℓ1+); recall Figure 1 and §3.2.
Therefore the convergence of HARD-Huber+ would shed light on the behavior of HARD-ℓ1+.

5.2. HARD-Huber

HARD-Huber. While §5.1 derived a basic guarantee for HARD-ℓ1 to converge to coordinate-wise min-
imizers (Theorem 5.2), the non-smooth nature of the ℓ1 loss of (GPCA-ℓ1) makes it hard to establishing
convergence guarantees to critical points. On the other hand, since (GPCA-Huber) has a smooth objective,
we are able to derive such guarantees for the HARD-Huber algorithm:

Theorem 5.3. Under Assumption 5.1 (A2), any limit point of the iterates {(b(t)1 , . . . , b
(t)
K )}t generated by the

HARD-Huber algorithm is a coordinate-wise minimizer and also a critical point of (GPCA-Huber).

Convergence of HARD-Huber to coordinate-wise minimizers in Theorem 5.3 is of a similar flavor to Theo-
rem 5.2. An extra result in Theorem 5.3, though, is that HARD-Huber also converges to critical points, and
this is made possible by leveraging the smoothness of (GPCA-Huber).
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Figure 2: Clustering accuracy and running time of different methods on synthetic union-of-hyperplane data
(§6.1) over 100 repeated experiments. With 50(D − 1) inliers from each hyperplane and 30% outliers, the
proposed HARD-{ℓ1+,Huber+} are the most accurate and fastest.

HARD-Huber+. Since HARD-Huber+ is easy to implement in practice, we arm it with a convergence result:

Theorem 5.4. Under Assumption 5.1 (A3), any limit point of the iterates {(b(t)1 , . . . , b
(t)
K )}t generated by the

HARD-Huber+ algorithm is a critical point of (GPCA-Huber).

Theorem 5.4 is interesting as it shows that HARD-Huber+ converges to critical points of (GPCA-Huber), even
if (Huber+) differs from (Huber). This difference, however, is double-edged: It is harder, if not impossible,
to prove HARD-Huber+ converges to coordinate-wise minimizers.

The proof device that makes Theorem 5.4 available is quite similar to that of [74], and the shared principle
is block successive upper-bound minimization: (Huber+) is a carefully constructed upper bound of (Huber)
(plus some constant) that makes use of the smoothness of (GPCA-Huber). Unfortunately, that construction
does not apply to (ℓ1+) as (GPCA-ℓ1) is not smooth. Finally, we note a key difference from [74]: We have
non-convex constraints bk ∈ SD−1, while [74] makes convexity assumptions on constraints.

6. Experiments

6.1. Clustering Synthetic Data

Data. We generate K hyperplanes {Hk}Kk=1 in RD uniformly at random. For each k = 1, . . . ,K, we sample
Nk = 50(D− 1) points from Unif(Hk ∩ SD−1), totalling N = 50K(D− 1) inliers. We sample M outliers
from Unif(SD−1) to have a certain outlier ratio M/(N +M).

Metrics. We run the algorithms to estimate a hyperplane arrangement
⋃K

k=1 Ĥk with K given. Assigning
each point to its closest estimated hyperplane, we get the clusters. This allows us to report clustering ac-
curacy, which is the number of correctly clustered inliers divided by N . We further assess how well the
algorithms separate outliers from inliers. By comparing the distance of each point to

⋃K
k=1 Ĥk to a threshold

we obtain an estimated inlier set, which in turn gives precision and recall. Enumerating all possible thresh-
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olds, we report the area under the precision-recall curve (AUC-ROC). We further report the F1-score using a
specific threshold 10−2 on such distance. Finally, we report the running time2 of each algorithm in seconds.

Methods. We compare our HARD algorithms with state-of-the-art subspace clustering methods, includ-
ing Median K-Flats (MKF) [43], Elastic-net Subspace Clustering (EnSC) with active-set solver [24], and
Sparse Subspace Clustering (SSC) with orthogonal matching pursuit solver [25]. We further compare with
K-Hyperplane (§2) variants, which use PCA (KH-PCA), Coherence Pursuit (KH-CoP) [75] and (DPCP)
(KH-DPCP) [7] to estimate a hyperplane for each cluster. Note that the latter two have been shown to achieve
state-of-the-art performance in robust subspace and hyperplane clustering respectively. We run all methods
with default or otherwise appropriate parameters.

Fixed M/(N+M), varying K,D. We first fix an outlier ratio of M/(N+M) = 30%, and vary the number
of hyperplanes K ∈ {2, 3, 4, 5} and ambient dimension D ∈ {4, 9, 27}. Figure 2 shows clustering accuracy
and running time over 100 trials. To begin with, with more hyperplanes the problem becomes harder, and all
methods yield lower accuracy. Remarkably, HARD is the most accurate in all settings of K,D, as seen by
the red curves in the left column surpassing other curves. In particular, the performance gap between HARD
and KH-DPCP gets larger in higher dimensions D, e.g., for K = 3, the gap increases from 1.1% (D = 4)
to 32.8% (D = 27). Finally, MKF, EnSC, SSC do not perform well as expected (§1), therefore they are
excluded from the experiments henceforth. Limited by space, we leave more experiments in Appendix B.

6.2. Clustering Deep Features on CIFAR-10
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Figure 3: Clustering accuracy of dif-
ferent methods on randomly projected
deep features in R24 extracted from
5 · 104 images from CIFAR-10, over
20 repeated experiments.

Finally, we perform an interesting experiment showing the potential
of using hyperplane clustering for deep features of natural images.
Inspired by the success of subspace clustering, numerous works have
proposed to use a feature map that sends natural images to a union
of subspaces. Such a map can be hand-crafted [76], or learned by
using a neural network and applying subspace clustering losses on
the image of data points or features [77–85].

We take the features learned by an unsupervised method [85] on
CIFAR-10 [40], which are 5 ·104 points in S128. We apply a random
orthogonal projection on them to points of R24, followed by normal-
izing them to S23. We run different methods on the processed data to
estimate 10 hyperplanes, and report in Figure 3 clustering accuracy
over 20 repeated experiments. As seen, HARD is considerably more
accurate than KH-DPCP. In particular, HARD-Huber+ has median
and max clustering accuracy of 73% and 81%. Encouraging as it
may sound, [85] and the aforementioned works essentially promote
the features to lie on low-dimensional subspaces (see, e.g., [83, The-
orem 2.1]), which is why a random projection on data is necessary before hyperplane clustering. Therefore,
an interesting subject of research would be to learn feature maps such that the images of data points lie on
hyperplane arrangements.

7. Conclusion and Limitations

In this paper, we considered the hyperplane clustering problem in the presence of outliers. We showed that
the proposed algorithms (HARD) are efficient, outlier-robust, allow for one-shot recovery with theoretical
guarantees, and establish state-of-the-art performance. However, our experiments showed that the accuracy
of HARD drops as the number of hyperplanes increases, and clustering more than 5 hyperplanes with greater
accuracy is still up to future research. From a theoretical viewpoint, our theorems guarantee the conver-
gence of HARD to critical points or (coordinate-wise) minimizers, and future work would consist of proving
stronger results that guarantee convergence to the true hyperplane arrangements.

2The experiments are conducted on a MacBook Pro with M2 Pro chip and 32GB memory.
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A. Proofs

A.1. Objective Analysis

This section gives the proofs for Theorem 4.2 and Theorem 4.3. We first need a light assumption, stated here:
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Assumption A.1 (Outliers are in general position). Any subset of D elements from {oi}Mi=1 are linearly
independent.

Indeed, with random {oi}Mi=1 this assumption is satisfied with probability one. Since both theorems concerns
(3), we share an insight here that the objective of (3) is equivalent to

gk(b) :=

Nk∑
j=1

dkj |xk⊤
j b|+

M∑
j=1

qkj |o⊤
j b|. (5)

=

Nk∑
j=1

|xk⊤
j b|

K∏
i ̸=k

|xk⊤
j b∗i |+

M∑
j=1

|o⊤
j b|

K∏
i ̸=k

|o⊤
j b

∗
i |


Notably, this objective does not involve (the distribution of) inliers {xk

i }
Nk
i=1(i ̸= k) to hyperplanes other than

Hk. Now we recall theorem 4.2 and give its proof here.

Theorem 4.2. Any critical point of (3) either equals ±b∗k, or has a principal angle fromHk smaller than or

equal to arcsin
(

Mη̄out,k

Nkcin,k,min

)
.

Proof. Let b be a critical point of (3) that is not orthogonal toHk, i.e., b ̸= ±b∗k.

Size of the Riemannian subgradient, inliers only. Define the subdifferential of | · | as

Sgn(x) =


1 x > 0

−1 x < 0

[−1, 1] x = 0

. (6)

With some abuse of notation let sgn(x) denote any element in Sgn(x). Since the ℓ1 norm is regular, the
Riemannian subgradient3 of (3) concerning only inliers is

(I − bb⊤)

Nk∑
j=1

dkj sgn(x
k⊤
j b)xk

j (7)

Now, we can decompose b by

b = sin(θk)sk + cos(θk)nk, (8)

where sk := ΠHk
(b)/∥ΠHk

(b)∥2, nk := ΠH⊥
k
(b)/∥ΠH⊥

k
(b)∥2, and θk is the principal angle from b to

H⊥
k = Span(b∗k). With this, it follows from [72, Lemma 18] that (7) has its ℓ2 norm squared

∥∥∥∥∥∥(I − bb⊤)

Nk∑
j=1

dkj sgn(x
k⊤
j b)xk

j

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
Nk∑
j=1

dkj sgn(x
k⊤
j b)xk

j

∥∥∥∥∥∥
2

2

− sin2(θk)

Nk∑
j=1

dkj
∣∣xk⊤

j sk
∣∣2

. (9)

Lower bound of (9). Note that the first term in (9) can be lower bounded by

3The definition of regular function and Riemannian subgradient follows from Definition 5.1 and Theorem 5.1 of [86].
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∥∥∥∥∥∥
Nk∑
j=1

dkj sgn(x
k⊤
j b)xk

j

∥∥∥∥∥∥
2

2

(10)

=

∥∥∥∥∥∥
Nk∑
j=1

dkj sgn(x
k⊤
j b)xk

j

∥∥∥∥∥∥
2

2

∥sk∥22 (11)

≥

Nk∑
j=1

dkj sgn(x
k⊤
j b)xk⊤

j sk

2

(12)

=

Nk∑
j=1

dkj sgn(x
k⊤
j sk)x

k⊤
j sk

2

(13)

=

Nk∑
j=1

dkj
∣∣xk⊤

j sk
∣∣2

. (14)

Here (12) is due to Cauchy-Schwarz. Therefore, we have

(9) ≥ cos2(θk)

Nk∑
j=1

dkj
∣∣xk⊤

j sk
∣∣2

(15)

≥ cos2(θk)N
2
k c

2
in,k,min, (16)

where (16) follows from the definition of cin,k,min in (2).

Size of the Riemannian subgradient. Recall that we assuemd b is a Riemannian critical point of (3) that is
not orthogonal to Hk. From Assumption A.1, we have that b is orthogonal to at most R ≤ D − 1 outliers.
Therefore, any Riemannian subgradient of (3) evaluated at b must satisfy

0 = (I − bb⊤)

Nk∑
j=1

dkj sgn(x
k⊤
j b)xk

j +

M∑
j=1

qkj sign(o
⊤
j b)oj + ξ

, (17)

where ξ =
∑R

j=1 βjq
k
j olj such that {olj}Rj=1 are R ≤ D − 1 outliers from {oi}Mi=1 and βj ∈ [−1, 1] for

j = 1, . . . , R. Taking ℓ2 norm on both sides and using the triangular inequality ∥a∥ ≥ ∥a − b∥ − ∥b∥, we
have

0 ≥

∥∥∥∥∥∥(I − bb⊤)

Nk∑
j=1

dkj sgn(x
k⊤
j b)xk

j

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥(I − bb⊤)

M∑
j=1

qkj sign(o
⊤
j b)oj

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥(I − bb⊤)

R∑
j=1

βjq
k
j olj

∥∥∥∥∥∥
2

.

(18)

Combining this with (16), we have

cos(θk)Nkcin,k,min (19)

≤

∥∥∥∥∥∥(I − bb⊤)

Nk∑
j=1

dkj sgn(x
k⊤
j b)xk

j

∥∥∥∥∥∥
2

(20)

≤

∥∥∥∥∥∥(I − bb⊤)

M∑
j=1

qkj sign(o
⊤
j b)oj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥(I − bb⊤)

R∑
j=1

βjq
k
j olj

∥∥∥∥∥∥
2

(21)

≤Mηout,k +D = Mη̄out,k, (22)

where the first inequality is due to (16), second due to (18). This is equivalent to saying

θk ≥ arcsin

√
1−

(
Mη̄out,k

Nkcin,k,min

)2

. (23)
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That is, a Riemannian critical point b of (3) is either ±b∗k, or b must have a principal angle from Hk smaller
than or equal to arcsin

(
Mη̄out,k

Nkcin,k,min

)
. This completes the proof.

With Theorem 4.2 characterizing critical points of the coordinate-wise problem (3), we are now ready to
prove Theorem 4.3 that studies the minimizers of (3). For convenience, we define

cout,k,min :=
1

M
min

b∈SD−1

M∑
j=1

qkj
∣∣o⊤

j b
∣∣ (24)

cout,k,max :=
1

M
max

b∈SD−1

M∑
j=1

qkj
∣∣o⊤

j b
∣∣ (25)

ηout,k :=
1

M
max

b∈SD−1

∥∥∥∥∥(I − bb⊤)

M∑
j=1

qkj sgn(o⊤
j b)oj

∥∥∥∥∥
2

, (26)

where one notes that cout,k = cout,k,max − cout,k,min and η̄out,k := ηout,k + D
M .

Theorem 4.3. Any minimizer of (3) must be ±b∗k if

M

Nk

√
c2out,k + η̄2out,k

cin,k,min
< 1. (4)

Further, if (4) holds for k = 1, . . . ,K, then {±b∗k}Kk=1 are coordinate-wise minimizers of (GPCA-ℓ1).

Proof. Let b now be a minimizer of (3). If b = ±b∗k then we are done. Suppose the contrary, i.e., b ̸= ±b∗k,
and let θk denotes the principal angle from b to H⊥

k = Span(b∗k). Since b is a solution, it must be a
Riemannian critical point, therefore by Theorem 4.2 we must have

cos(θk) ≤
Mη̄out,k

Nkcin,k,min
, (27)

i.e., b is far away from H⊥
k . We will now show that in fact b can not be far away from H⊥

k . Again taking a
decomposition of b as in (8), we have

gk(b) =

Nk∑
j=1

dkj |xk⊤
j b|+

M∑
j=1

qkj |o⊤
j b| (28)

= sin(θk)

Nk∑
j=1

dkj |xk⊤
j s|+

M∑
j=1

qkj |o⊤
j b| (29)

≥ sin(θk)Nkcin,k,min +Mcout,k,min. (30)

On the other hand, since b is a minimizer, it holds that

gk(b) = min
b∈SD−1

gk(b) (31)

≤ min
b∈SD−1,b⊥Hk

gk(b) (32)

= min
b∈SD−1,b⊥Hk

M∑
j=1

qkj |o⊤
j b| (33)

≤Mcout,k,max. (34)

Combining (30) and (34) yields

sin(θk) ≤
M

Nk

cout,k,max − cout,k,min

cin,k,min
. (35)
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To show that this leads to a contradiction, we observe from (27) and (35) that

1 = cos2(θk) + sin2(θk) (36)

≤
(
M

Nk

)2 (cout,k,max − cout,k,min)
2
+ η̄2out,k

c2in,k,min

(37)

< 1, (38)

where the last line follows from the assumption in the theorem. This completes the proof.

A.2. Convergence Analysis

Theorem 5.2. Under Assumption 5.1 (A1), any limit point of the sequence {(b(t)1 , . . . , b
(t)
K )}t generated by

the HARD-ℓ1 algorithm is a coordinate-wise minimizer of (GPCA-ℓ1).

Proof. Define the objective function of (GPCA-ℓ1) to be f(b1, . . . , bK) :=
∑N+M

j=1

∏K
k=1 |x̃

⊤
j bk|. By the

definition of HARD-ℓ1 (Algorithm 1), we have

f(b
(t+1)
1 , . . . , b

(t+1)
K ) ≤ f(b

(t+1)
1 , . . . , b

(t)
K )

≤ · · ·

≤ f(b
(t)
1 , . . . , b

(t)
K )

Since f is lower bounded (by 0), f(b
(t)
1 , . . . , b

(t)
K ) must converge to some non-negative number f . On

the other hand, since {(b(t)1 , . . . , b
(t)
K )}t is a bounded sequence, it must have a convergent subsequence,

say {(b(ti)1 , . . . , b
(ti)
K )}i. Let (b1, . . . , bK) be the limit of {(b(ti)1 , . . . , b

(ti)
K )}i. Furthermore, passing

to subsequences if needed, we can assume that {(b(ti+1)
1 , . . . , b

(ti+1)
k , b

(ti)
k+1, . . . , b

(ti)
K )}i converges to

(a1, . . . ,ak, bk+1, . . . , bK). Since the sphere is a closed set, all ak and bk are unit vectors on the sphere.

We now prove aj = bj for every j. First of all, for j = 1 and for every unit vector b ∈ SD−1, we have

f(b
(ti+1)
1 , b

(ti)
2 . . . , b

(ti)
K ) ≤ f(b, b

(ti)
2 , . . . , b

(ti)
K ).

Since f is continuous, setting ti →∞ yields

f = f(a1, b2, . . . , bK) ≤ f(b, b2, . . . , bK)

for every b ∈ SD−1. Since f(b1, b2, . . . , bK) is also equal to f and (A1) has a unique minimizer, we get
a1 = b1. Then, a similar argument that passes ti to limits would yield

f = f(b1,a2, b3, . . . , bK)

= f(a1,a2, b3, . . . , bK)

≤ f(a1, b, b3, . . . , bK)

= f(b1, b, b3, . . . , bK)

for every b ∈ SD−1. And a similar argument with (A1) proves b2 = a2. Generalizing, we can prove aj = bj
for every j, which implies (b1, . . . , bK) is indeed a coordinate-wise minimizer of (GPCA-ℓ1).

Theorem 5.3. Under Assumption 5.1 (A2), any limit point of the iterates {(b(t)1 , . . . , b
(t)
K )}t generated by the

HARD-Huber algorithm is a coordinate-wise minimizer and also a critical point of (GPCA-Huber).

Proof. One can prove convergence to coordinate-wise minimizers using the same idea as we have shown
in the proof of Theorem 5.2, therefore we omit the details here. Let (b1, . . . , bK) be such limit point (and
coordinate-wise minimizer), and we will show it is a critical point of (GPCA-Huber). Note that each bk
satisfies the optimality condition that the Riemannian gradient of Hk(b) :=

∑N+M
j=1 h(x̃⊤

j b)
∏K

i ̸=k h(x̃
⊤
j bi)

at bk is zero, that is, (
I − bkb

⊤
k

)
∇Hk(bk) = 0.
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Here I is the identity matrix of size D × D. Summing up these equalities over k, we arrive at the fact that
the Riemannian gradient of the objective of (GPCA-Huber) at (b1, . . . , bK) is equal to zero, meaning that
(b1, . . . , bK) is a critical point of (GPCA-Huber).

Theorem 5.4. Under Assumption 5.1 (A3), any limit point of the iterates {(b(t)1 , . . . , b
(t)
K )}t generated by the

HARD-Huber+ algorithm is a critical point of (GPCA-Huber).

Proof. Write b1:K for the collection of vectors {bk}Kk=1. Define H(b1:K) :=
∑N+M

j=1

∏K
k=1 h(x̃

⊤
j bk).

Define a surrogate function u of h(·) via

u(r; s) := h(s) +
r2 − s2

2 ·max{|s|, δ}
and surrogate functions (∀i = 1, . . . ,K)

Uk(z; b1:K) :=

N+M∑
j=1

u(x̃⊤
j z; x̃

⊤
j bk) ·

∏
i ̸=k

h(x̃⊤
j bi). (39)

One verifies u(r, s) ≥ h(r) for any r and s, which means Uk(z; b1:K) ≥ H(b1:k−1, z, bk+1:K) for any k,z,
and b1:K , with the equality attained when z = bk.

Define q
(t)
1 := b

(t)
1:K , and for k = 2, . . . ,K, define

q
(t)
k :=

(
b
(t+1)
1:k−1, b

(t)
k:K

)
(40)

By these definitions, we can write (Huber+) as

b
(t+1)
k = argmin

bk∈SD−1

N+M∑
j=1

v
(t)
j,k ·

(x̃⊤
j bk)

2

max{|x̃⊤
j b

(t)
k |, δ}

= argmin
bk∈SD−1

Uk(bk; q
(t)
k ),

(41)

which implies for every t and k that

Uk(b
(t+1)
k ; q

(t)
k ) ≤ Uk(bk; q

(t)
k ), ∀bk ∈ SD−1. (42)

Since {b(t)1:K}t is bounded, it must contain a subsequence {b(ti)1:K}i convergent to some limit point,
which we denote by b1:K . Each bk lies in SD−1 as SD−1 is closed. We need to show b1:K is
a critical point of (GPCA-Huber). Passing to subsequences if necessary, let us assume {q(ti)

k }ti =

{(b(ti+1)
1 , . . . , b

(ti+1)
k−1 , b

(ti)
k , . . . , b

(ti)
K )}i converges to (a1, . . . ,ak−1, bk, . . . , bK) =: qk.

From the above discussions, it follows that

H(b
(ti+1)
1:K ) ≤ UK(b

(ti+1)
K ; q

(ti)
K )

(41)
≤ UK(b

(ti)
K ; q

(ti)
K )

= H(q
(ti)
K )

≤ UK−1(b
(ti+1)
K−1 ; q

(ti)
K−1)

≤ · · ·

≤ H(b
(ti)
1:K)

(43)

This implies the sequence {H(b
(ti)
1:K)}i is non-increasing, thus convergent, say to H . Since H and Uk’s are

continuous, letting ti →∞, (43) implies

Uk(ak; qk) = UK(bk; qk) = H, ∀k = 1, . . . ,K. (44)

But substituting t = ti and then ti → ∞ into (42) shows that ak is a global minimizer of Uk(bk; qk) in
variable bk ∈ SD−1. It then follows from (44) that ak and bk are both minimizers, and from the unique
minimizer assumption that ak = bk for every k = 1, . . . ,K. Thus qk = b1:K .
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Figure 4: Area under the precision-recall curve and F1 score of different methods on synthetic data (§6.1)
over 100 repeated experiments. Here we fix an outlier ratio of M/(N +M) = 30%, vary K in the x-axis,
and D in different sub-figures.

Thus bk is a critical point of the optimization problem of minimizing Uk(bk; b1:K) in variable bk ∈ SD−1.
The critical point is in the Riemannian sense, i.e.,(

I − bkb
⊤
k

)
∇bk

U(bk; b1:K) = 0, ∀k = 1, . . .K,

where I is the identity matrix. Since∇Ubk
(bk; b1:K) = ∇bk

H(b1:K), the above condition becomes(
I − bkb

⊤
k

)
∇bk

H(b1:K) = 0, ∀k = 1, . . .K.

Summing the above equations over k shows that the limit point b1:K satisfies the first-order Riemannian
optimality condition of (GPCA-Huber), so the proof is complete.

B. Additional Experiments

B.1. Outlier Rejection Performance

Fixed M/(N + M), varying K,D. While the synthetic experiments in §6.1 compares the clustering per-
formance, we further shed light on the outlier rejection aspect. Figure 4 reports AUC-ROC and F1-score
over 100 repeated experiments. Notably when D = 27 and K = 3, HARD surpasses KH-DPCP by a large
margin: HARD-{ℓ1+, Huber+} yield at least 0.97 AUC-PR, as opposed to 0.84 for KH-DPCP. Based on
our investigations, KH-DPCP converges4 to a point whose objective value is 106% higher than that of the
true hyperplane arrangement. In contrast, HARD-ℓ1+ and HARD-Huber+ are able to achieve an objective
value within 9% and 13% of (GPCA-ℓ1) and (GPCA-Huber) evaluated at the true arrangement, respectively.
In retrospect, our algorithms outperform KH-DPCP for two possible reasons. First, the objective of KH-
DPCP is highly non-convex while (GPCA-ℓ1) is marginally convex and (GPCA-Huber) marginally convex
and smooth; in this sense, our formulations are more amenable to optimization. Second, KH-DPCP assigns
points to the hyperplanes in a ‘hard’ manner, while HARD-ℓ1+ and HARD-Huber use ‘soft’ weights as in
(ℓ1+) and (Huber+); soft weights allow for uncertain assignments, which might be less sensitive to poor
initialization.

Fixed K, varying D,M/(N +M). Now we stick to K = 3 and vary the outlier ratio M/(N +M) ∈ {0 :
0.1 : 0.5} and D ∈ {9, 27}. Figure 5 shows clustering accuracy and AUC-PR over 100 repeated experiments.
As a first observation, as the outlier ratio goes higher all methods degrade in performance. Again, HARD
is consistently the most accurate and robust in most cases. For example, HARD methods yield at least 0.97
AUC-PR with ≤ 30% outlier ratio.

4We used either projected Riemannian subgradient descent [7] or iteratively reweighted least squares [6] to solve the
(DPCP) problem inside the KH framework, and the conclusion is the same.
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Figure 5: Clustering accuracy and area under the precision-recall curve of different methods on synthetic data
(§6.1) over 100 repeated experiments. We fix K = 3, vary outlier ratio M/(N +M) in the x-axis, and D in
different sub-figures.
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Figure 6: Objective value of (GPCA-ℓ1) versus HARD-ℓ1+ iterations over 100 repeated experiments.

B.2. Empirical Evidence of HARD-ℓ1+ Does Not Increase (GPCA-ℓ1) Objective

While the proof of Theorem 5.4 shows that HARD-Huber+ does not increase the (GPCA-Huber) objective,
we have not proved its counterpart for HARD-ℓ1+ and (GPCA-ℓ1). Nevertheless, here we give empirical
evidence on why the latter is expected to be true. To do so, we run HARD-ℓ1+ using the setup in §6.1 with
D ∈ {9, 27}, K ∈ {2, 4} and M/(N+M) ∈ {0, 0.3}. We plot in Figure 6 the objective value of (GPCA-ℓ1)
each time (ℓ1+) is executed. For comparison, we do the same for (GPCA-Huber) and (Huber+) in Figure 7.
δ is set to 10−16. As seen, in all settings HARD-ℓ1+ never increases the (GPCA-ℓ1) objective.

B.3. Effect of Multiple Initializations

Since KH and HARD are sensitive to initialization, we also study the effect of the number of random initial-
izations. Specifically, we generate one random hyperplane arrangement and use that as initialization for all
methods. This is repeated multiple times, and for each method the estimated arrangement with the smallest
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Figure 7: Objective value (GPCA-Huber) versus HARD-Huber+ iterations over 100 repeated experiments.

objective value5 is kept as the final output. Figure 8 reports clustering accuracy and the final objective relative
to ground-truth using {1, 5, 9} initializations with D = 27 and K ∈ {2, 3, 4, 5}. To begin with, all methods
yield higher accuracy and lower final objective as expected. Notably, when K = 3 HARD methods yield
100% accuracy with only 5 initializations, while KH-DPCP gives less than 95% accuracy with 9 initializa-
tions. Compared to HARD, KH methods more easily converge at an objective value higher than that of the
true hyperplane arrangement, an observation consistent with §6.1.

B.4. CIFAR-10 without Projection

To further see how the methods perform on real data when D is large, we conduct the following experiment.
We take the features on CIFAR-10 (§6.2), which are 5 · 104 points in S128. We consider them directly and
do not pre-process them using projection, in contrast to the experiment in §6.2. Since points from each
ground-truth cluster lie close to a low-dimensional subspace, all the points are approximately contained in
two hyperplanes.6 Therefore, we perform hyperplane clustering on these points to extract two hyperplanes.
We report the separation rate, which is simply clustering accuracy (§6) normalized to have a maximum value
of 100%. A separation rate of 100% means that there are two ground-truth clusters, each contained in an
estimated cluster. Figure 9 reports separation rate and running time over 30 runs of the methods. As seen,
HARD-{ℓ1+,Huber+} achieve the highest separation rate, are more stable, and use the least time.

C. Connection and Extension

C.1. Connection with KH-DPCP

KH-DPCP is similar to the classic K-means. It estimates K hyperplanes and the membership of points to
them, by alternating between Hyperplane Estimation and Membership Estimation (detailed below).

5Since KH-CoP does not have an objective related to the method and that of KH-PCA is not robust to outliers, the
objective of KH-DPCP is used for the purpose of selecting a final arrangement. This is also done in [7].

6Suppose
⊕L

i=1 Si is a direct sum of independent and non-trivial subspaces in RD . Then
⊕

i ̸=1 Si has dimension at
most D − 1, so it is contained in a hyperplane; similarly for

⊕
i ̸=2 Si. This is roughly the case of the features used in

this experiment, since they are expected to lie in a union of independent subspaces.
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(a) 1 initialization
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(b) 5 initializations
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(c) 9 initializations

Figure 8: Clustering accuracy and relative optimality of robust hyperplane clustering methods on synthetic
data (§6.1) over 100 repeated experiments. Here we fix D = 27, vary K in the x-axis, and the number of
initializations for each method in different rows.
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Figure 9: Separation rate and running time of different methods on deep features in R128 extracted from
5 · 104 images from CIFAR-10. For each metric, statistics are shown over 30 runs of the methods. Notably,
the proposed HARD-{ℓ1+,Huber+} achieve the highest separation rate, are more stable and use the least time.
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1. Hyperplane Estimation: Given the membership of points to hyperplanes, estimate the hyperplanes

∀k = 1, . . . ,K, bk ∈ argmin
bk∈SD−1

N+M∑
j=1

wjk

∣∣∣x̃⊤
j bk

∣∣∣ , (45)

which is the (DPCP) problem [37, 38], solvable by many methods [38, 62–65].

2. Membership Estimation: Given the hyperplanes, assign each point to the closest hyperplane

∀k = 1, . . . ,K, ∀j = 1, . . . , N +M, wjk =

1 if k = argmin
k=1,...,K

∣∣∣x̃⊤
j bk

∣∣∣
0 otherwise

. (46)

The above can be viewed as an alternating minimization algorithm applied to the following objective:

min
{bk}K

k=1

N+M∑
j=1

min
k

∣∣∣b⊤k x̃j

∣∣∣ s.t. bk ∈ SD−1, k = 1, . . . ,K (47)

⇔ min
{bk}K

k=1,W

K∑
k=1

N+M∑
j=1

wjk

∣∣∣b⊤k x̃j

∣∣∣ s.t. bk ∈ SD−1, k = 1, . . . ,K, (48)

W ∈ {0, 1}(N+M)×K , W1 = 1.

Here, wjk is constrained to be a binary number and it is the (j, k)-th entry of the matrix W .

Beyond the empirical comparison of KH-DPCP and (GPCA-ℓ1) in previous experiments (§6 and §B), we
note that the two are conceptually related but different. For each point x̃j , its distances to the K variable
hyperplanes are computed, and some function is applied to the K distances to produce one number: the
minimum for KH-DPCP and the product for (GPCA-ℓ1). This number is zero if and only if x̃j belongs to
one (or more) of the K hyperplanes.

C.2. Extension to Clustering Subspaces of Codimension > 1

The current paper focuses on hyperplane clustering, which is motivated by many applications on its own (as
in §1). Meanwhile, one can extend this idea to clustering data that lie on a union of subspaces

⋃K
k=1 Sk ⊂ RD

of codimension c > 1.

Formulation. We can directly learn basis matrices {Bk}Kk=1 for the orthogonal complement of the sub-
spaces, by solving the following problem:

min
{Bk}K

k=1

N+M∑
j=1

K∏
k=1

∥∥∥B⊤
k x̃j

∥∥∥
2

s.t. Bk ∈ O(D, c), k = 1, . . . ,K. (49)

Here Bk is constrained to be in O(D, c) := {Bk ∈ RD×c : B⊤
k Bk = Ic}, such that the problem is properly

normalized and
∥∥∥B⊤

k x̃j

∥∥∥
2

is the distance of x̃j to the k-th subspace. An (ℓ1+)-like algorithm is

w
(t)
j,k ←


∏

i̸=k

∥∥∥x̃⊤
j B

(t)
i

∥∥∥
2

k = 1∏
i<k

∥∥∥x̃⊤
j B

(t+1)
i

∥∥∥
2
·
∏

i>k

∥∥∥x̃⊤
j B

(t)
i

∥∥∥
2

k > 1

b
(t+1)
k ∈ argmin

Bk∈O(D,c)

N+M∑
j=1

w
(t)
j,k ·

(x̃⊤
j Bk)

2

max
{∥∥∥x̃⊤

j B
(t)
k

∥∥∥
2
, δ
} (50)

where the update (50) can again be solved via SVD. Other algorithms can be extended in a similar manner.

Theoretical Analysis. For understanding the minimizers, we can extend the quantities in (2) by (re-)defining

cin,k,min :=
1

Nk
min

b∈Sk∩SD−1

Nk∑
j=1

dkj ·
∣∣xk⊤

j b
∣∣
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cout,k :=
1

M

(
max

B∈O(D,c)

M∑
j=1

qkj ·
∣∣∣o⊤

j B
∣∣∣− min

B∈O(D,c)

M∑
j=1

qkj ·
∣∣∣o⊤

j B
∣∣∣)

η̄out,k :=
1

M
max

B∈O(D,c)

∥∥∥∥∥∥(I −BB⊤)

M∑
j=1

qkj oj sign(o
⊤
j B)

∥∥∥∥∥∥
F

+
D

M
,

and it should not be difficult to extend the results in §4.2. Most proof steps should be similar, with an
additional inequality [72, Sublemma 2] to handle cin,k,min and more care on the principal angles between
two subspaces.

Results of similar flavor to those of §5 follow directly. Specifically, Theorem 5.2 can be extended directly
without any change of the proof logic. Extending Theorem 5.3 and Theorem 5.4 require some modification
to the proofs. Nevertheless, more general theorem statements have recently been shown in [73, Theorems 1
and 2] and we refer the readers to [73] for details.
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