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Traditional object detection algorithms rely on extensive annotations from a pre-
defined set of base categories, leaving them ill-equipped to identify objects from
novel classes. We address this limitation by introducing a novel framework for
Incremental Few-Shot Object Detection (iFSD). Leveraging a meta-learning ap-
proach, our hypernetworkis designed to generate class-specific codes, enabling ob-
ject recognition from both base and novel categories. To enhance the hypernet-
work’s generalization performance, we propose a Weakly Supervised Class Aug-
mentation technique that significantly amplifies the training data bymerely requir-
ing image-level labels for object localization. Additionally, we stabilize detection
performance on base categories by freezing the backbone and detection heads dur-
ing meta-training. Our model demonstrates significant performance gains on two
major benchmarks. Specifically, it outperforms the state-of-the-art ONCE approach
on the MS COCO dataset by margins of 2.8% and 20.5% in box AP for novel and
base categories, respectively. When trained on MS COCO and cross-evaluated on
PASCAL VOC, our model achieves a four-fold improvement in box AP compared
to ONCE.

1. Introduction
Despite great advances in object detection in the past years [2–13], a large portion of those ap-
proaches only tackle many-shot detection problem, and use abundant but expensive manual an-
notations to train object detectors in a batch manner. The resultant model is only able to detect
objects from a closed set of base categories. Recently, there is a surge of few-shot object detection
approaches, which can detect objects from novel categories using only few-shot examples [14–25].
In particular, we are interested in a more challenging setting called Incremental Few-Shot object Detec-
tion (iFSD) [26], where the detector is required to incrementally recognize more novel categories in
an online manner while still being able to detect objects from base categories. iFSD approaches can
be divided into two categories, depending on whether model fine-tuning is required to recognize
novel categories.
Fine-tuning-based approaches require fine-tuning the model using the training samples of both
base- and novel categories, and often suffer from the catastrophic forgetting of base categories [16,
20–22]. The demanding requirements of accessing the base category data and running model back-
propagation also make them unsuitable for on-device deployment with limited storage and compu-
tation power. In contrast, fine-tuning-free methods [14, 23, 26] waive such requirements, and our
approach falls into this category. We adopt a recent meta-learning framework ONCE [26], which
meta-trains a hypernetwork to generate class codes for novel categories on the flywithoutmodel back-
propagation. However, due to the limited number of base object categories and adversely changed
detection head duringmeta-training, ONCE struggles with both poor generalization to novel categories
and inferior performance on base categories.
To this end, we propose a novel weakly supervised approachWS-iFSD, which greatly improves the
meta-training of hyper-network by augmenting it with many weakly localized objects from one or-
der of magnitude more object categories. An off-the-shelf object localization model Grad-CAM [1]
is adopted to coarsely localize the objects of interest using only image-level labels in the ImageNet
[27]. This increases the number of classes by 18× and the number of images by 6×. Due to the
largely augmented classes and images, we demonstrate even with such coarsely inferred bounding
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Figure 1: The pipeline ofWS-iFSD approach. First, the entire detector is pre-trained on many-shot
annotations of base categories. Second, we generate a large number of pseudo object annotations
in the classification dataset using Grad-CAM [1]. Third, we combine human-labeled boxes of base
categories and weakly-labeled boxes of augmented categories to mete-train the hypernetwork. Fi-
nally, the support images of novel categories are fed into the hypernetwork, which generates the
classification weights for the detector to recognize the novel categories.

boxes the hyper-network is meta-learned to generate significantly better class codes for novel cate-
gories. WS-iFSD also addresses the issue of inferior detection performance for base categories by
freezing the backbone and detection head during meta-training. By doing this, after meta-training
we are able to completely preserve the superior detection performance on base categories achieved in
the stage of pre-training onmany-shot annotations of base categories. An overview of the proposed
WS-iFSD approach is shown in Figure 1.
We extensively evaluate WS-iFSD on two object detection benchmarks, including MS COCO [28]
andPASCALVOC [29]. OnMSCOCOdataset, we improve the state-of-the-art approachONCE [26]
by remarkably large margins of 2.8% and 20.5% box AP for novel and base categories, respectively.
On PASCAL VOC dataset, without any fine-tuning, our WS-iFSD model outperforms ONCE [26]
by over 4×more mAP.
To summarize, this work makes the following contributions.

• We tackle the challenging Incremental Few-Shot Detection problem with the constraint that
model back-propagation is not allowed when few-shot examples of novel categories are re-
ceived. A novel class augmentation approach is proposed to increase the number of object
categories by 18×, and the number of images by 6× during the meta-training of hypernet-
work. It substantially improves its generalization performance to the novel categories.

• We build a simple yet strong baseline model where the backbone is shared by the object
detector and the hypernetwork. It is accompanied with an improved pre-training recipe to
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improve the detection of base categories. We freeze the detector backbone during meta-
training and reuse the class codes of base categories from the pre-training to fully preserve
the high detection performance for base categories.

• We extensively evaluate the proposed WS-iFSD approach on 2 benchmarks including MS
COCO, and PASCAL VOC. WS-iFSD consistently outperforms other state-of-the-art ap-
proaches.

2. Related work

Object detection. Deep learning models for object detection include both two-stage [2, 30–32] and
one-stage models [7, 11, 13, 33–37]. The training of both types of detectors is often data-inefficient,
demanding the availability of large-scale human-annotated datasets [28, 29, 38, 39]. Also those de-
tectors only recognize object categories seen in the training data, and extending them to handle
novel categories is difficult or simply impossible after deployment. This work tackles the Incre-
mental Few-Shot object Detection (iFSD) problem, where the model is required to recognize novel
categories with only few-shot examples after model deployment.
Few-shot image classification. Few-shot learning (FSL) methods aim to solve the data-inefficiency
problem and produce reliable classifiers from a few training samples. Many methods have been
proposed for image classification task [40–50]. However, many findings from image classification
FSL do not transfer to the FSD problem. For example, an effective method for FSL of image classifi-
cation is to learn a strong feature extractor [51, 52] by simply pushing up the classification accuracy
on a base dataset of labeled images. This strategy has found to be counter-productive for FSD,
where simply maximizing detection performance on a base dataset leads to inferior transferability
to novel categories [26]. This work focuses on the iFSD problem, and aim to improve the detection
performance for both novel- and base categories.
Few-Shot object Detection (FSD). Existing FSD methods often require to access the data of both
base- and novel categories for iteratively finetuning the model to recognize novel categories [15, 16,
53–55]. This incurs a large storage and computational cost that is prohibitive for on-device deploy-
ment. Also, fine-tuning based approaches often suffer from so-called catastrophic forgetting, where
the detection performance on base categories degrades significantly [15, 16, 54, 56, 57]. A one-time
novel category enrollment is possible but cannot be easily extended to incrementally enroll subse-
quent novel categories [16, 58]. The recent ONCEmethod [26] tackles the iFSD problem. However,
it only uses the data of limited base categories for meta-learning, and achieves inferior performance
for both novel- and base categories. We exploit large-scale image classification dataset with only
image-level labels, and employ the off-the-shelf Grad-CAM technique to coarsely localize the object
boxes for augmenting the iFSD meta-training with more object categories.
Weakly Supervised Object Localization (WSOL). A wide variety of CNN models are shown to
be able to generate class-discriminate activation regions after being only trained on a classification
dataset [59–63]. For example, Grad-CAM [1] uses the gradients of the target image-level category at
the final convolutional layer to coarsely localize the region of the target object. It allows us to collect a
tremendously large number of coarse object boxes from image classification dataset without human
annotation. Our work adopts Grad-CAM to infer object boxes for up to 1000 object categories in the
ImageNet dataset, and use them to augment the classes during the model meta-training.
Weak-Supervision for Object Detection (WSOD). Conventional WSOD approaches only use
image-level annotations to train object detectors [64–69]. Many of them leverage image-level labels
to build soft annotations through multiple instance learning (MIL) [70–72]. More recent works ex-
ploit WSOL approaches, such as Grad-CAM, to improve the object box proposal [73], and detector
pre-training [74]. However, to our best knowledge, WSOL has not been adopted for the iFSD prob-
lem. In this work, we demonstrate that by augmenting the iFSD model meta-training with weakly
localized abundant object boxes from a large number of object categories, we are able to boost the
detection performance on novel categories.
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Figure 2: The meta-training and meta-testing of WS-iFSD. The detector network is based on
FCOS [11]. The centerness branch is omitted for simplicity. The backbone and both heads are
pre-trained on the many-shot dataset. The hypernetwork is composed of feature backbone and hy-
pernetwork head. Meta-training: The hypernetwork head S is meta-trained while other network
parts are frozen. Meta-testing: The support set of a novel class is fed into the hypernetwork to pro-
duce the class weight ω. The output weight is then imprinted into the existing classification head
C, enabling the detector to recognize novel class samples (query).

3.1. Incremental Few-Shot Object Detection Task
For completeness, we first briefly review the iFSD task introduced in ONCE work [26], which re-
quires the system to recognize two types of object categories. First, it needs to detect objects from
base categories, which have abundant annotations in the training stage. Second, it can be updated
on the fly to recognize novel object categories unseen in the training stage given only few-shot ex-
amples. To support efficient on-device deployment where the storage and computational resources
are limited, we further refrain the model from using computationally expensive back-propagation
to recognize novel categories.

3.2. Motivations
To support the learning of novel categories, ONCE does not require iterative model fine-tuning. It
only employs a hyper-network to take few-shot examples as input, and uses efficient model forward
passes to generate the class codes for novel categories. Despite being the pioneering approach to
handle the iFSDproblem, it achieves inferior performance on both novel- and base categories, which
can be attributed to the two drawbacks below.
Constraints of Limited Object Categories inMeta-Training: The model achieves a meager 1% box
AP on 20 novel COCO categories with 5-shot examples, as indicated in Table 2. We hypothesize that
this suboptimal performance primarily stems from the limited variety of base categories (e.g., 60
COCO categories) employed during the meta-training of the hypernetwork. Such a constraint leads
to overfitting on the base categories and subsequently results in poor generalization to novel classes.
To address this limitation, we introduce a novel weakly-supervised class data augmentation tech-
nique. This approach leverages an off-the-shelf Grad-CAM model to infer object bounding boxes
in a heuristic manner, thereby extending the diversity of object categories during meta-training.
Specifically, this method capitalizes on a substantially broader set of categories available in image
classification datasets, reaching up to 1,000 categories in ImageNet.
Large performance drop on base categories. ONCE adopts CenterNet detector [13], but only
achieves 17.9% base category box AP (Table 2 in [26]), which is more than 10% lower than the
original CenterNet results. This is caused by the early stopping during the pre-training of the de-
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tector on the abundant annotations of base categories, which is claimed to be effective to prevent
the feature extractor overfitting base categories (see footnote5 in [26]), while the dedicated design
of the over-parameterized hyper network intensifies the overfit on base categories. However, we
hypothesize that it is unnecessary to use early stopping to trade the detection performance on base
categories for that on novel categories, and it is possible to fully preserve the superior detection per-
formance on base categories achieved during model pre-training. We design a simple Base-iFSD
model containing a hyper network with restricted hypothesis space to validate this.

3.3. An Overview of WS-iFSD Pipeline

The pipeline of the proposedWS-iFSD is shown in Figure 1. In the first step, we pre-train the entire
detector on many-shot annotations of base categories. We choose to use one-stage FCOS [11] detec-
tor with ResNet-50 backbone due to its simplicity and high efficiency. It uses separate localization-
and classification heads to localize objects and predict categories, respectively. Second, we generate
pseudo object bounding boxes for a much larger set of object categories in the ImageNet dataset.
Third, we combine the weakly generated pseudo bounding boxes and human-annotated bounding
boxes of base categories to meta-train the hypernetwork with other model modules frozen. Last,
our iFSD model can conduct meta-testing, where the class codes of novel categories are generated
by the hypernetworkand added to the classification head. The model is able to recognize both base-
and novel categories.

3.4. Weakly-Supervised Class Data Augmentation

The meta-training of the hypernetwork is conducted in an episodic manner [75]. In each episode,
we randomly sample an iFSD task that uses a class label set of t labels. When the total number of
base category labels is limited (e.g. only 60 base categories inMSCOCOdataset), the hypernetwork
is less likely to generalize well to novel categories. Therefore, unlike traditional data augmentation
approaches, which only augment the training samples of existing categories by large-scale jitter-
ing [76], copy-paste transformation [77] or generative models [78], we propose to augment the
meta-training data with more new categories, which would also greatly increase the number of
iFSD tasks. However, collecting a large number of images and annotating bounding boxes of the
objects from many more categories is prohibitively expensive. On the other side, image-level object
labels are cheaper to obtain, and existing image classification datasets (e.g. ImageNet) often have
a much larger scale than the object detection datasets (e.g. MS COCO, PASCAL VOC) in terms of
the number of both images and categories.
Pseudo-box generation with only image-level labels. To leverage abundant image-level labels in
the image classification datasets, we propose to use Grad-CAM to annotate the bounding box for
them. Grad-CAM [1] is a visualization technique producing a coarse localization map highlighting
the focusing region of a classification model, which is achieved by leveraging gradients of a target
category flowing into the final convolutional layer. Concretely, given a classification dataset Dcls,
the labeling of object bounding boxes can be decomposed into two steps. (1) Train a normal classi-
fication model on the classification datasetDcls. (2)Use the trained model to generate the heat map
of images in Dcls. The value of generated heatmap ranges from 0 to 1. We select a highlighted area
from the heatmap whose value is above a threshold βT . Then a pseudo bounding box is generated
based on the highlighted area, which is the minimal rectangle containing it. Examples of weakly
localized objects are shown in Figure 3.
Mis-Classification Filtering. We empirically find Grad-CAM has difficulty in localizing the objects
when the original image classification model makes an incorrect image-level prediction (See Fig-
ure 3). To reduce the noise in our pseudo-box generation with only image-level labels, we introduce
a simple filtering technique, namely mis-classification filtering (MCF). We compare the object label
predicted by the classification model with the ground-truth label, and exclude those misclassified
images from our class data augmentation.
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Figure 3: The visualization of weakly localized boxes by GradCam [1]. The right column denotes
images removed by the proposed Mis-Classification Filtering, where the Grad-CAM model makes
incorrect box predictions.

3.5. Base-iFSD without Catastrophic Forgetting
To achieve high detection performance on the base categories, we also propose a baseline iFSD
model, namely Base-iFSD, which is designed to tackle the incremental few-shot detection problems
without forgetting base categories. The Base-iFSD model consists of two parts: a FCOS [11] detector
and a class weight hypernetwork.

3.5.1. Background on FCOS

FCOS is a simple anchor-free one-stage object detection model, achieving competitive results on
several benchmarks. It is mainly composed of two parts: a feature extractor F and 3 detection
heads (see Figure 2). The feature extractor F consists of a ResNet-50 [79] backbone and a feature
pyramid network [80], which is used to extract the feature of input imagesX . There are 3 detection
heads, including a box regression head R, a centerness head T , and a classification head C. The
regression head R is used to predict the distances from the location to four sides of the bounding
box. The centerness head T predicts a centerness score for the current pixel w.r.t to the object box,
which can be used to suppress these low-quality detected bounding boxes. The classification head
C is used to predict the category label of the object box at the current pixel, and is parameterized
by the classification weight αC ∈ Rn×m×k×k. Here n,m denote the input and output channel width
respectively, and k the kernel size. For more details of the FCOS detector, please refer to the original
work [11].

3.5.2. Hypothesis-Space-Restricted Hypernetwork

The class weight hypernetwork H aims to generate the corresponding class-specific classification
weight ωc for the class of the input support set images, where ωc ∈ Rn×1×k×k. c is the class of the
input support set images. The newly generated classification weight ωc for novel categories could
be combined with the existing weight αC for base categories in the classification head C later.
Different from previous work ONCE [26], which uses a separate ResNet-50 backbone in the class
weight hypernetwork, we adopted a lightweight design where the hypernetwork shares the back-
bone with the feature extractor F , and only uses a dedicated hypernetwork head S, which is only a
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single convolutional layer. During the training of the hypernetwork, only the hypernetwork head S
is optimized, while the feature extractor F is frozen. This design significantly reduces the issue of
over-fitting by restricting the hypothesis space of hypernetwork through weight-sharing [81]. Be-
sides, it also helps reduce the memory footprint tremendously. Formally, the output class weight
ωc of the hyper network could be written as:

ωc =
1

q

q∑
j=1

H(Xj) =
1

q

q∑
j=1

S(F (Xj)), (1)

where q is the number of images of the input support set. The output class weight can be imprinted
into the classification head C, and enables the detector to recognize the unseen novel class c.

3.6. WS-iFSD with Strong Generalizability
We combine the aforementioned weakly-supervised class augmentation and Base-iFSD model to
obtain the finalWS-iFSDmodel. The training of both Base-iFSD andWS-iFSDmodel can be divided
into two stages, including a pre-training stage for optimizing the feature extractor and detection
heads, and a meta-training stage that optimizes the class weight hypernetwork. We elaborate on
the pre-training, the meta-training and the meta-testing below.
Pre-training. At this stage, a regular FCOS model is trained on a sample-abundant object detection
dataset, using the samples that only come from the base categories. The feature extractor F and
detection heads (i.e. R, T , and C) are optimized using the original training recipe in FCOS. More
pre-training details are in the Appendix A.3.1.
Meta-training with class augmentation. At this stage, the parameters of the feature extractor and
detection heads are frozen, and only the hypernetworkis optimized. This stage aims to train the hy-
pernetwork to synthesize the corresponding classification weight for the class of the input support
set. Following the approach in [26], we adopt an episodic meta-training strategy [75]. A set of base
object categories are randomly sampled form an episodic task to mimic the meta-testing timewhere
the support set with few-shot examples of novel categories is received. For Base-iFSD, only human
annotations of objects from base categories are used to meta-train the hypernetwork. In contrast,
WS-iFSD combines the pseudo-labeled augmented data with human annotations of objects from
base categories to meta-train the hypernetwork, which could significantly enhance its generalizabil-
ity.
In our meta-training scenario, we consider a distribution over tasks p(T) on a mix of human-labeled
base categories and pseudo-labeled augmented categories, and require the class weight hypernet-
work to be able to generate the class weight for each of them. Concretely, the meta-training consists
of two loops. In the inner loop, a task Ti is sampled from p(T). The hypernetwork H predicts the
class weight withK support set samples as input, then tested on new samples from Ti and feedback
at the outer loop. The hypernetwork is then updated by considering the detection loss on the new
samples from the sampled task. Note that the weakly-labeled object annotations is mixed with the
human-labeled annotations during meta-training. More details can be found in the supplement.
Meta-testing. During meta-testing, each test query image comes with K support set images (K-
shot). The support set images are fed into hypernetwork H generating the corresponding classi-
fication weight, which can be imprinted into the classification head to recognize novel categories.
After that, the test query image goes through the detector (feature extractor and detection heads),
and the detection prediction can be made.

4. Implementation details

4.1. Benchmarks
We conduct our experiments on two popular benchmarks, PASCAL VOC [29] and COCO [28],
which have 20 and 80 classes, respectively. For each dataset, we split its classes into two main cate-
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Class-Aug # Classes # Images # Objects
× 60 98K 364K
✓ 1,060 598K 864K

Table 1: Comparing meta-training datasets after introducing weakly-supervised class augmenta-
tion. COCO is used as the base object detection dataset. 1K classes from ImageNet with 500 images
per class are used to construct the augmentation dataset.

gories, namely base classes, and novel classes. For COCOdataset, 20 classes are split as novel classes
while the other 60 classes are treated as base classes [26]. For PASCAL VOC, we adopt the same
setting with previous work [26]. We conduct a cross dataset experiment on it where we also use the
60 COCO base categories as the base classes for PASCAL VOC, and the whole 20 classes of PASCAL
VOC are used as the novel classes, since they do not overlap.

4.2. Pseudo-labeled Dataset

To create a pseudo-labeled object detection dataset, we leverage Grad-CAM to annotate bounding
boxes within the context of a large-scale classification dataset, specifically ImageNet [27]. ImageNet
consists of 1,000 classes, each containing a substantial number of samples, making it an ideal choice
for our purposes. We employ a ResNet-50 model pre-trained on ImageNet [79] as the base architec-
ture for Grad-CAM. To generate activation heatmaps, we set an empirical threshold value βT = 0.6
for highlighting relevant regions within an image. We construct our augmented dataset using all
classes from ImageNet-1K, limiting to 500 images per class. A summary of the dataset statistics can
be found in Table 1. Upon introducing the augmented data, we observe that, without any manual
annotation, the number of classes, images, and objects in our dataset increased by factors of 17.6×,
6×, and 2.4×, respectively.
As COCO serves as our primary benchmark dataset, we meticulously examine the overlap of object
categories between COCO and ImageNet. Our investigation reveals that 47 classes in ImageNet co-
incidewith 20 of COCO’s novel classes. These intersecting classes are designated as novel overlapping
classes, while those without any overlap are referred to as novel non-overlapping classes. The potential
impact of this overlap on performance metrics will be analyzed in Appendix A.2.3.

5. Experimental Results
For the main results we obtained in this section, we use all classes from ImageNet to construct
the augmented data, where 500 images are randomly picked for each class after applying MCF.
Comprehensive ablation studies have been conducted to substantiate the efficacy of each component
within WS-iFSD. For a detailed discussion of these experiments, please refer to Appendix A.2.

5.1. Results on COCO Dataset

The comparison with existing state-of-the-art methods on the COCO dataset is summarized in Ta-
ble 2. Remarkably, our Base-iFSD model achieves performance comparable to that of existing state-
of-the-artmethods on novel classes evenwithout utilizing class data augmentation. It also surpasses
the ONCE [26] model on base classes with a significant improvement of 20.5%AP. This remarkable
performance can be attributed to our hypernetwork design that freezes the backbone and recycles
weights from a pre-trained feature extractor. This strategic constraint effectively reduces the hypoth-
esis space, thus mitigating the risk of overfitting on base classes. Consequently, there is no need to
employ early stopping during the training of the feature extractor to preserve its generalizability, a
practice suggested in [26] that could compromise performance on base classes. After integrating
our proposed weakly-supervised class data augmentation technique, we observed a nearly 4-fold
improvement in performance under 5-shot and 10-shot settings for novel classes. Notably, our 1-
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Shot Method Novel Base
Classes mAP Classes mAP

1

MAML [82] 0.1 N/A
Feature-Reweight [14] 0.1 2.5
ONCE [26] 0.7 17.9
Base-iFSD (ours) 0.8 (+0.1) 38.4 (+20.5)
WS-iFSD (ours) 2.3 (+1.6) 38.4 (+20.5)

5

MAML [82] 0.4 N/A
Feature-Reweight [14] 0.8 3.3
ONCE [26] 1.0 17.9
Base-iFSD (ours) 1.0 38.4 (+20.5)
WS-iFSD (ours) 3.8 (+2.8) 38.4 (+20.5)

10

MAML [82] 0.8 N/A
Feature-Reweight [14] 1.5 3.7
ONCE [26] 1.2 17.9
Base-iFSD (ours) 1.2 38.4 (+20.5)
WS-iFSD (ours) 4.0 (+2.8) 38.4 (+20.5)

Table 2: iFSD results on COCO val2017 dataset. We report detection metric box AP under 1, 5, and
10 shot test settings. The delta value is calculated based on previous SOTA work ONCE.

Method 1-Shot nAP 5-Shot nAP 10-Shot nAP
MAML [82] - 0.6 1.0
ONCE [26] - 2.4 2.6
Base-iFSD (ours) 3.1 4.7 (+2.3) 5.1 (+2.5)
WS-iFSD (ours) 6.3 9.8 (+7.4) 11.2 (+8.6)

Table 3: Cross dataset evaluation results on PASCAL VOC 2007. We report the box mAP for novel
categories under 1, 5, and 10 shot test settings. Our WS-iFSD outperforms other methods by a large
margin. The delta value is calculated based on previous SOTA work ONCE. Here “nAP” is short
for “novel classes mAP”.

shot performance with WS-iFSD surpasses the previous state-of-the-art 10-shot results by a factor
of 2.

5.2. Transferability on PASCAL VOC Dataset

To demonstrate the generalizability of our model, we further conducted a cross-dataset experiment
from COCO to PASCAL VOC. We test the performance of our method on novel categories of PAS-
CAL VOC using Base-iFSD and WS-iFSD models we obtained in the last section directly, without
any further adaptation. The results are shown in Table 3. The proposed WS-iFSD outperforms ex-
isting work by a large margin under all shot settings. Specifically, WS-iFSD surpasses the previous
SOTA work ONCE by 4.1×, 4.3× under 5 and 10 shot settings, respectively. Even the 1-shot result
has surpassed the 10-shot result of ONCE, confirming our method’s strong generalizability.

6. Conclusions

This paper introduces WS-iFSD, a novel framework that addresses the pressing issue of incremen-
tal few-shot object detection through weakly supervised class data augmentation. Utilizing only
image-level labels from a large-scale classification dataset, our approach significantly enhances the
generalizability of the hypernetwork, particularly towards novel categories. To counteract overfit-
ting and preserve performance on pre-trained base categories, we freeze the backbone of the hyper-
network during training. Our method showcases superior performance, effectively balancing the
trade-off between detecting novel and base categories. Future work may explore further optimiza-
tion techniques and applications of this framework in real-world settings.
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A. Appendix

A.1. Training & Evaluation Details
A.1.1. Training Details

The training process is composed of two parts, pre-training, and meta-training. During the pre-
train, the hyper-parameters are set following FCOS [11]. SGD optimizer is adopted with a learning
rate of 0.02 and the batch size is set to 32. The feature extractor along with heads are pre-trained for
45 000 iterations in total. Note that only the base classes are used for pre-train. During meta-train,
48 tasks are sampled at each iteration. The task length t is set as 3. The learning rate is set to 0.005.
The hypernetwork is optimized for 25 000 iterations in total.

A.1.2. Evaluation Protocol

Concretely, we follow the convention to use Average Precision (AP) to evaluate the results on
COCO [28] dataset. Mean Average Precision (mAP) is used to evaluate the results on PASCAL
VOC datasets [29]. By default, the results of base classes (using the classification weights from
pre-training) and novel classes (using the classification weight predicted by the hypernetwork) are
obtained by evaluating them separately. All ablation studies are conducted on COCO dataset and
results are reported under different choices of shots.

14



Grad-CAM Threshold 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Novel Classes AP 1.6 1.6 1.7 1.9 1.8 1.5 1.4

Table 4: The study on theGrad-CAM threshold. The novel classes AP is not sensitive to the thresh-
old from 0.5 to 0.7.

Class Aug. MCF Novel Classes AP Base Classes AP
× N/A 1.1 38.4
✓ × 1.9 38.4
✓ ✓ 2.9 38.4

Table 5: The effect of mis-classification filtering (MCF) on the final box AP. MCF can improve
the novel classes AP by 1%.

A.2. Ablation Studies
To better supplement the results in our paper, we conduct additional experiments in this section.
We use MS COCO [28] as the benchmark dataset.
In this section, we conduct several ablative studies on the WS-iFSD. By default, the class augmen-
tation dataset used in the studies is constructed by 47 object categories randomly selected from
ImageNet that do not overlap with COCO novel categories. We use 100 images per augmented
category, and MCF is turned off. We report results on COCO.

A.2.1. Is WS-iFSD Sensitive to Grad-Cam threshold?

Grad-CAM [1] outputs the highlighted heatmap in the input image, with a higher activation value
on the relevant part for the target class. In order to get a proper pseudo bounding box of the object,
we need to delicately choose a threshold value to crop the object out with the heatmap. Therefore,
we perform an experiment to find themost suitable threshold value. We use Grad-CAM to generate
pseudo bounding boxes for these images, which are used alongwithCOCOdataset during themeta-
training stage. The threshold for the bounding box ranges from 0.3 to 0.9. As shown in Table. 4, the
threshold 0.6 appears to be the roughly best threshold value in our situation. However, it is worth
noting that our method is not sensitive to the Grad-CAM threshold from 0.3 to 0.7.

A.2.2. Does Mis-Classification Filtering Help?

Here, we verify the effectiveness of the proposed mis-classification filtering (MCF) technique,
which removes the misclassified images by the Grad-CAMmodel from the augmented data. Qual-
itatively, Grad-CAM might fail to highlight the target object in misclassified images as shown in
Figure. 3. To confirm the toxicity of these misclassified images in iFSD task, a quantitative study is
conducted, and the results are presented in Table. 5. Line 1 (L1) is the baseline Base-iFSD. L2 and L3
denote WS-iFSD with and without MCF applied, respectively. Even without MCF, L2 still achieves
a strong result over Base-iFSD. After applying MCF, the novel classes AP is further improved by
another 1 AP, showing its effectiveness. The result also confirms that the misclassified images in
class augmentation are harmful.

A.2.3. The Impact of Novel Overlapping Classes

We study on the following 3 questions: (1) Would the existence of novel overlapping classes in
augmented data be more beneficial to iFSD task? (2) In the case that novel overlapping classes
exist in the augmented data, would adding more novel non-overlapping classes help? (3) If novel
overlapping classes are not available, does simply increasing the number of novel non-overlapping
classes help?
We conduct experiments and present results in Table 6. The first row in the table denotes the ex-
periments using the augmented dataset containing the same 47 novel overlapping classes. The ex-
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# Aug. Classes 0 47 100 200 500
nAP w/ Novel Overlapping Classes 1.1 2.2 2.3 2.3 2.5
nAP w/o Novel Overlapping Classes 1.1 1.9 2.2 2.2 2.4

Table 6: The study on the number of classes and the effect of novel overlapping classes. More
classes are beneficial to iFSD task. Compared to non-overlapping classes, novel overlapping classes
is more helpful. “nAP” denotes novel classes AP.

# Images per Class 0 50 100 200 500 1000
Novel Classes AP 1.1 1.8 1.9 2.0 2.1 2.1

Table 7: The study on the number of images per augmented class. Better performance are achieved
with more images per augmented class, up to 500 images per class.

periments in the second row use the augmented dataset without any novel overlapping classes. In
general, we could observe that results in the first row is better than the second row, which means
including novel overlapping classes in augmented data would bemore beneficial. We could also see
that the novel classes AP increase gradually with the adding of non-overlap classes in both rows,
which answers the rest two questions. Adding more novel non-overlapping classes to either novel
overlapping classes or novel non-overlapping classes improves iFSD.

A.2.4. The Effect of Augmented Class Frequency

We further investigate the effect of the number of images per augmented class by designing the
following experiment. We gradually increase the number of images per augmented class from 0
to 1000. The results are shown in Table 7, showing a positive correlation between the novel class
AP and the number of images per class. It is also worth noting that the growth of novel classes
AP becomes saturated when the per class images number exceeds 500, indicating that adding more
images might be unnecessary.

Pre-train Meta-train Novel Base
Class Aug. Reg. Loss on Aug. Class Aug. Class AP Class AP

× N/A × 1.1 38.4
✓ ✓ × 1.5 37.2
× N/A ✓ 1.9 38.4
✓ ✓ ✓ 1.9 37.2
✓ × × 2.0 37.4
✓ × ✓ 2.5 37.4

Table 8: Augmentation Data Using stage. Applying the class augmentation in pre-training stage
could also benefit the novel classes AP, while the base classes AP would drop.

A.2.5. The Impact of Data Augmentation on Pre-training

Previously, we confirmed class data augmentation improves the meta-training. In this study, we
assess the impact of using it during the detector pre-training. The results are shown in Table 8. In
the first block, we can observe adding the augmented data into either the pre-training (L2) or meta-
training stage (L3) could help improve the novel class AP. However, enabling class augmentation
on both stages fails to bring further improvement. Moreover, enabling class augmentation in pre-
training leads to performance degradation on the base class AP.
We hypothesize that this is due to the low-quality bounding box annotations in the pseudo-labeled
data, which is harmful and leads to performance degradation in the regression head. Therefore,
we propose to disable the regression loss on the pseudo-labeled augmented data during the pre-
training stage. The results are shown in the last two rows (L5, L6). We could observe that such a
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Framework Pre-training Hypernetwork nAP bAP APEarly Stopping Weight-sharing
ONCE [26] ✓ × 1.2 17.9 13.7

Base-iFSD
✓ × 1.0 24.2 18.4
✓ ✓ 1.6 24.2 18.6
× × 0.8 38.4 29.0
× ✓ 1.2 38.4 29.1

Table 9: Effects of pre-training early stopping and hypernetwork backboneweight-sharing. Here
“nAP” and “bAP” denotes novel and base classes APs, respectively. “AP” represents the AP across
all classes. The last row is the final setting of our Base-iFSD, achieving the best AP with better
base-novel AP trade-off.

Class Augmentation Novel Classes
Enable Pseudo Label Ground-truth Label AP
× N/A N/A 1.2
✓ ✓ 4.0
✓ ✓ 6.2

Table 10: Class augmentation with ground truth ImageNet object detection annotation. For class
augmentation, we use all classes from ImageNet to construct the augmented data, where 500 images
are randomly picked for each class.

simple technique could further improve the novel class AP and reduce the performance degradation
on base classes.

A.2.6. Ablation about Pre-training Early stopping and Hypernetwork Weight-sharing

In ONCE [26], it applies early stopping on detector pre-training, aiming at improving the gener-
alizability of the model to novel classes. Also, it adopts a heavy-designed hypernetwork, where
a dedicated ResNet-50 is used as the hypernetwork backbone. However, we argue that these de-
signs are unnecessary and may bring critical issues instead. First, applying early stopping during
pre-training scarifies the detector performance on base classes a lot. Second, using a dedicated over-
parameterized hypernetwork deteriorates its generalizability to novel classes.
We conduct experiments to verify our arguments and present results in Table. 9. In line 2 (L2) of the
table, we design a Base-iFSD variant, which adopts pre-training early stopping and uses a dedicated
FCOS feature extractor as the hypernetwork backbone. To verify the effectiveness of our backbone
weight-shared hypernetwork, we compare L2 with L3. A significant performance improvement of
0.6 could be observed after applying hypernetwork weight-sharing. The same phenomenon could
also be spotted comparing L3 and L4. To find the effect of pre-training early stopping, we can com-
pare L2, L3 to L4, L5. Indeed, early stopping could offer a minor improvement on novel classes AP
(+0.3∼ 0.4). However, it deteriorates the base classes AP a lot (-14.2), which is not a good trade-off.
Therefore, the setting of L5 becomes the final setting of our Base-iFSD, which achieves the best all
classes AP and has a better novel-base AP trade-off.

A.2.7. The Upper Bound of Using ImageNet Data as Augmentation

To explore the upper bound of using additional classes from ImageNet [27] in iFSD task, we conduct
experiments that use the ground truth object detection annotation of ImageNet directly. Compared
with our pseudo-labeled annotation, it is more accurate and may lead to better results. The results
are presented in Table. 10. We could see that there is still a performance gap of 2.2% on novel
classes AP between using ground-truth labels and the proposed weakly-supervised pseudo labels,
indicating there is still space to improve.
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A.3. More Details of Our Approach

Algorithm 1:Meta-train the class weight hyper network in WS-iFSD.
Notation: p(T): distribution over tasks on object detection and augmented pseudo-labeled

datasets.
Result: A class weight hyper network that can generalize well to novel classes.
Inner loop: Produce the class weight given the support set.
Outer loop: Updates the class weight hyper network.
while not converged do

Sample batch of tasks Ti ∼ p(T);
for Ti do

Sample K datapoints D =
{
x(j),y(j)

} from Ti;
Generate the class-specific weight ωi through the weight hyper network H with the
input support set x(j);
Sample datapoints D′ =

{
x(j),y(j)

} from Ti for the meta-update
end
Update parameters of the class weight hyper network:
αH ← αH − β∇H

∑
Ti∼p(T) [Lcls(X,Y ;αH) + Lreg(X,Y ;αH) + Lcenter(X,Y ;αH)].

end

A.3.1. Details About Pre-training

Following the original FCOS [11], the model is optimized by 3 loss terms, namely classification loss
Lcls, regression lossLreg and centerness lossLcenter. The total training loss at the pre-training stage
could be formulated as:

Ltrain = Lcls(X,Y ;αF , αC) + Lreg(X,Y ;αF , αR) + Lcenter(X,Y ;αF , αT ). (2)
HereX,Y denote the input images and the corresponding labels, respectively. α denotes the param-
eter. F , C, R, and T represent the feature extractor, classification head, regression head, centerness
head in our paper, respectively.

A.3.2. Details about Meta-training

To supplement the illustration of our meta-training process in the paper, we further provide a de-
tailed pseudo algorithm inAlgo. 1. Themeta-training consists of two loops. In the inner loop, a task
Ti is sampled from p(T). The hypernetworkH predicts the class weight withK support set samples
as input, then tested on new samples from Ti and feedback at the outer loop. The hypernetwork is
then updated by considering the detection loss on the new samples from the sampled task. Note
that the weakly-labeled object annotations are mixed with the human-labeled annotations during
meta-training.

A.4. Future Work & Limitations
Wenotice that there’s still improvement space in ourwork. Specifically, failure cases of pseudo labels
generated by Grad-CAM could still be spotted even with our MCF applied, as shown in Figure.
4. To improve the annotation quality, a naive straightforward way might be considering replacing
Grad-CAM [1] with a more advanced “visual explanation” model, such as Grad-CAM++ [83],
XGrad-CAM [84], Ablation-CAM [85], Eigen-CAM [86].
Another future directionmight be considering augmentingwith a larger-scale classification dataset,
like ImageNet-21K, which has more classes and might be more beneficial.
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Ground Truth Bounding Box Pseudo Bounding Box

Figure 4: Failure cases of pseudo labels generated by Grad-CAM [1] with MCF.
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