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Optimizing for reduced computational and bandwidth resources enables model
training in less-than-ideal environments and paves the way for practical and acces-
sible AI solutions. This work is about the study and design of a system that exploits
sparsity in the input layer and intermediate layers of a neural network. Further, the
system gets trained and operates in a distributed manner. Focusing on image clas-
sification tasks, our system efficiently utilizes reduced portions of the input image
data. By exploiting transfer learning techniques, it employs a pre-trained feature
extractor, with the encoded representations being subsequently introduced into se-
lected subnets of the system’s final classificationmodule, adopting the Independent
Subnetwork Training (IST) algorithm. This way, the input and subsequent feedfor-
ward layers are trained via sparse “actions”, where input and intermediate features
are subsampled and propagated in the forward layers.
We conduct experiments on several benchmark datasets, including CIFAR-10,
NWPU-RESISC45, and the Aerial Image dataset. The results consistently showcase
appealing accuracydespite sparsity: it is surprising that, empirically, there are cases
where fixedmasks could potentially outperform randommasks and that themodel
achieves comparable or even superior accuracy with only a fraction (50% or less) of
the original image, making it particularly relevant in bandwidth-constrained sce-
narios. This further highlights the robustness of learned features extracted by ViT,
offering the potential for parsimonious image data representationwith sparsemod-
els in distributed learning.

1. Introduction
Motivation. In distributed computing, the importance of efficiency stands as an unshakeable prin-
ciple. The interplay between communication and computation underlines the challenges of this
domain. Communication –i.e., exchanging information among workers– comes at a substantial cost
in terms of time and resources. Network latencies and bandwidth limitations compound this ex-
pense, resulting in bottlenecks that hinder system performance [1–3]. Equally crucial is the cost of
computation, where intensive tasks demand substantial processing power per worker [1, 4–12].
Striking a balance between these pillars is paramount. By optimizing communication patterns and
judiciously allocating computational tasks, the efficiency of distributed systems can be vastly en-
hanced. Algorithms that target such “sweet spots” in training may be categorized into model par-
allel and data parallel methodologies. In the former [13, 14], portions of the model are partitioned
(“sparsified”) across different compute nodes to reduce computation per worker. In contrast, in
the latter [15, 16], the complete model is updated with different (“sparse subsets” of) data on each
compute node to reduce data movement; more details in recent overviews of distributed ML tech-
niques [17–19]. Recognizing the duality of these costs serves as a guiding beacon toward unlocking
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(a) Centralized (b) Distributed
Figure 1: Proposed pipelines and architectures.

the full potential of this field. With this work, we study scenarios beyond these cases, where sparsity applies
both in input data features and model parameters simultaneously.

Input sparsity by nature. Beyond efficiency, robustness and resilience against erroneous com-
putations are necessary. The data processing pipeline –from capturing data to updating model
parameters– could introduce errors that could become pivotal for decision-making. Observations
are often characterized by significant sparsity due to the sensing characteristics. For example, in the
case of (passive) remote sensing of Earth via spaceborne satellites, a potentially significant portion
of observations may be affected by cloud coverage or imaging limitations [20]. In natural images,
illumination conditions and physical obstructions can also lead to similar situations [21], while in
medical imaging, patient movement can also lead to missing regions [22].
Input sparsity for efficiency. Apart from naturally sparsified input layer due to noise, intentional
inputmasking is an option to achieve efficiency. As an exemplar, a significant challenge in numerous
Vision Transformer architectures requires many tokens to achieve desirable results. Even with a
patch tokenization strategy, the token count becomes considerable. Yet, is processing the entire image
necessary, or could comparable outcomes be achieved by focusing on some patches of it [23]?

For Transformers, tokenmasking plays a crucial role in pre-training, seen inmasked languagemod-
eling [24, 25] andmasked imagemodeling [26, 27]. This involvesmasking input tokens and training
the model to predict masked content using contextual cues. Such a technique reduces computa-
tional and memory complexity. For masked language modeling, [28] suggests joint pre-training of
encoder and decoder, excluding masked tokens in the latter for efficiency. In masked image model-
ing, [27] shows that omitting masked image patches before the encoder leads to significantly better
performance and over 3× lower pre-training time and memory usage. This concept extends to [29]
where, in language-image pre-training, removing masked image patches results in 3.7× faster pre-
training than the original CLIP [30]. This showcases the power of token masking for enhancing
efficiency during pre-training.
This work. We help democratize further neural network training by focusing on efficiency and
robustness in less-than-ideal computing environments. We aim to design and study a system that
exploits sparsity in the input layer and in the intermediate layers of a neural network that gets trained
and operates in a distributed manner by resource-constrained workers. We aim to apply sparsity
end-to-end (and where it is allowed) and observe how these decisions affect image classification
tasks. The training of our model is facilitated by an algorithm that exploits sparsity for distributed
efficiency. Such an approach extends to scenarioswhere data corruption is inherent or input sparsity
is essential for enhancing communication efficiency.
Our hypothesis is based on the power of large-scale foundational models. Such models are often
treated as “black boxes”; depending on how one “pokes” them, we get different answers and behav-
iors. This work studies how sparse inputs and post-processing can retain and exploit most features
extracted from such large models.
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Our model is based on a notable attribute of the visual pre-trained encoder within the framework
of the masked autoencoder (MAE) [27]. We rely on the masking operations of the input layer. This
encoder acts as a feature extractor within our model, generating CLS tokens associated with the
Vision Transformer (ViT) utilizedwithin the encoder. These tokens subsequently serve as inputs for
amultilayer perceptron (MLP), where, in distributed settings, the training of thisMLP is conducted
using the Independent Subnetwork Training (IST) algorithm [1].
Figure 1 depicts our model’s centralized and distributed configuration. Our experimental design
incorporates scenarios in which distinct random masking is applied to each image during every
epoch, alongside instances where a singular masking strategy is employed per image.
Summary of our findings. We summarize what we think are interesting findings from this study:
• We propose a distributed system that utilizes both sparse input and models, showcasing the po-

tential of end-to-end sparse systems.
• We demonstrate that a single masked representation of each image during training suffices, elim-

inating the necessity for diverse random masks to be applied to inputs at each iteration and em-
powering the creation and preservation of significantly smaller datasets.

• We evaluate our system across diverse image datasets, showcasing substantial performance en-
hancements, particularly in scenarios involving highly masked input images (50% or more).

2. Proposed architecture
ViTs and the use of Masked Autoencoders (MAE). Vision Transformers (ViTs) [31] comprise an
embedding layer, a Transformer encoder, and a classification head. The embedding layer transforms
the input into patch sequences featuring a special classification token (CLS) summarizing the entire
image. ViTs have exhibited strong performance across diverse computer vision benchmarks, often
outperforming state-of-the-art CNN architectures [26, 27, 31–34].

Figure 2: The MAE Architecture: we keep only
the pre-trained encoder in our task.

Masked autoencoders (MAE) [27] are vision
transformers that are being pre-trained to re-
construct pixel values out of a high portion
(e.g., 75%) of masked patches. Such a method
of trainingViTs can outperform supervised pre-
training after fine-tuning. Using such a model
in our scenario is very natural, where the input
is sparse due tomissing patches of the input im-
ages. Differently from the work above, our task
is not to reconstruct themasked image, but to classify
it. Thus, there is no need for the decoder of the
MAE and of the latent representation that the
encoder gives. All that is needed is the encoder
module and the CLS token that it produces; see Figure 2.
Data Pre-processing. Depending on the application and the desiderata, the available dataset could
have full images (unmasked) or sparse images (masked).
In the case of naturally masked images, a pre-trained encoder is applied to all images to create a new
dataset containing a single CLS token for every image and then use this dataset to train the MLP.
An alternative approach is when, during model training, the masked image passes through the
pre-trained encoder at every iteration as a pre-processing step, and the extracted CLS token is used
to train the MLP. This scenario corresponds to the cases where, naturally, the input is corrupted
(sparsified), and the hope is to classify such datasets based on sparse inputs.
For unmasked images, a singlemasking could be performedper image, and either create a newdataset
or pass masked images through a pre-trained encoder to save the corresponding CLS tokens (fixed
masks case). These datasets can be used as described before. Otherwise, the entire image could be
an input to the model, and at every iteration, a new randommasking could be applied to the model
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(random masks case). This scenario corresponds to cases where we care about efficiency, and the
input layer could be a bottleneck (computational or communication); thus, sparsifying the input
layer in a controlled way could provide some non-negligible tradeoffs.
Independent Subnetwork Training (IST). IST [1] combines ideas from model- and data-parallel
training (see Related Work), decomposing fully connected neural network layers into disjoint sub-
nets distributed across different sites [35, 36]. Each subnet is trained independently for some local
stochastic gradient descent (SGD) iterations before synchronization happens [37]. After that, pa-
rameters are redistributed based on randomneuron sampling, and the local subnet training repeats.
IST significantly reduces communication volume and memory usage, making it more suitable for
hardware-constrained environments. It does not require fine-grained communication, and no pa-
rameters are shared between subnets during synchronization. The authors in [1] focus on neural
networks with fully connected layers (MLPs), which are prevalent in various neural network archi-
tectures. IST offers significant performance speedup for mandatory distribution scenarios, where
hardware limitations and highly distributed training are present. Overall, IST presents a promising
approach towards (as much as possible) end-to-end sparse training, better communication effi-
ciency, and improved convergence speed in less-than-ideal hardware environments. To the best of
our knowledge, this is the first work that studies sparse input with IST.

2.1. System Design
Pre-trained ViT (feature extractor). We use a vision transformer, pre-trained using the MAE ap-
proach2 [27]. This design involves a series of Transformer blocks [38], each comprising amulti-head
self-attention component and anMLP component. These components incorporate LayerNorm (LN)
[39]. The encoding process is finalized with the application of LayerNorm. For the training of our
MLP module, we extract features from the output of the encoder. A class (CLS) token within the
ViT architecture [16] facilitates the training of the MLP classifier. The pre-trained ViT variant we
utilize is specifically the ViT-Base model [31]. This particular choice aligns with our objective of
managing computational resources effectively, as the ViT-Base configuration represents the least
computationally demanding variant offered by the authors, with a parameter count of 86 million,
compared with ViT-Large and ViT-Huge that have 307 and 632 million parameters, respectively.
MLP Classifier. The classification module is a multilayer perceptron (MLP) featuring two hidden
layers. The input dimension of this MLP is set to 768, corresponding to the dimensions of the CLS
token from the ViT. Each hidden layer comprises 1000 neurons, providing enough capacity to cap-
ture intricate patterns in the datasets we consider. The output layer is tailored to match the specific
number of classes pertinent to the classification task, ensuring a suitable arrangement for accurate
categorization.
Training. During IST training, we exclusively focus on training theMLP, while the ViT only extracts
features. Most existing distributed protocols, such as the data parallel, involve training of replicated
fullmodels at each distinct location before averaging. In contrast, IST [1] partitions the entire model
into non-overlapping segments, which are then allocated to different compute sites. All neurons or
activations are allocated randomly across active sites during a global training iteration. A weight is
only dispatched to a site if it connects two neurons assigned to that specific site. As a result, each site
involves training a considerably smaller subnetwork than the entire model. Due to the independent
nature of the subnetworks, no averaging is necessary; it is all about concatenating different parts of
the model, along with proper scaling and normalization. After the completion of localized training,
the updated weights undergo a shuffling process before the next iteration starts, either assisted by a
central server orwithout it. Several adaptations of thismethodology exist in the literature, including
FjORD [40], HeteroFL [41], LotteryFL [42], FedSelect [43], FedRolex [44], Federated Dropout [45],
PVT [46], as well as the IST variants [1, 11, 12, 47, 48]. We apply the latter version with MLPs on
non-federated learning scenarios to focus explicitly on the effect that sparsity has on the data process
pipeline.

2https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth
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The MLP classifier’s training occurs through centralized and distributed methods, as Figure ?? de-
picts. IST is shown on the right-hand side, where the MLP layers are decomposed into subnets.

3. System study
Datasets Description. Our method is evaluated using three publicly accessible datasets: the
CIFAR10 dataset [49] and two remote sensing image datasets, the NWPU-RESISC45 dataset
(RESISC45) [50] and the Aerial Image dataset (AID) [51]. We are shifting our focus from well-
studied datasets to applications and datasets that directly align with real-world use cases. For in-
stance, consider a compelling scenario involving a distributed system comprised of imaging sensors,
where sensor data could be naturally sparsified and only locally assigned. Additionally, the com-
puting capability of each worker might be inherently restricted due to energy constraints. Such
situations could find their roots in applications like outer space imaging, such as constellations of
Proliferated Low Earth Orbit (p-LEO) satellites, which represent examples of networks operating
beyond Earth’s confines. We partitioned the datasets into training and test sets to train our models,
following standardized 80%-20% rules. Detailed information is presented in Table 1.

Dataset Classes Image Size Images per Class Total (Training - Test Set)
CIFAR10 10 32× 32 6, 000 60, 000 (50, 000 - 10, 000)
RESISC45 45 256× 256 700 31, 500 (27, 000 - 4, 500)

AID 30 600× 600 220 ∼ 420 10, 000 ( 8, 500 - 1, 500)

Table 1: Characteristics of the datasets.

OS Ubuntu 20.04.6 LTS
SW PyTorch 1.10.2
CPU Intel Xeon 4214 CPU @ 2.20GHz
GPU 4× Tesla P100 SXM2 (16GB)

Table 2: Experimental environment.

Training Details. The experimental setup de-
tails are presented in Table 2. All conducted ex-
periments underwent a 30-epoch training phase.
The implementation of all experiments was ex-
ecuted using PyTorch version 1.10.2. Our com-
putational resources comprised four Tesla P100
SXM2 (16GB) GPUs in a single machine. Train-
ing occurred on one of these GPUs in scenarios where computations were centralized, whereas
training was distributed across two or four GPUs in distributed setups.
Our feature extraction was achieved using the MAE model [27], and the ViT-Base [31] was em-
ployed as the foundational architecture of our model. We use pre-trained weights obtained via
self-supervised training of the MAE model on ImageNet-1K3 [52]. We train our model using the
pre-trained ViT solely as a feature extractor and by training only on the MLP module.

config value

optimizer Adam
base learning rate 10−3

weight decay 0
optimizer momentum β1, β2 = 0.9, 0.999
batch size 64
training epochs 30
loss function CrossEntropyLoss

Table 3: Training setting.

The training was conducted using both central-
ized and distributed approaches. In the central-
ized scenario, we executed the training for both
the fixed masks case and the random masks case.
However, in the distributed scenario, we solely
implemented the fixed masks case. This decision
was informed by observing comparable perfor-
mance in the centralized system with the ran-
dom masks case while also considering the sub-
stantially reduced computational overhead as-
sociatedwith the fixedmasks case. The neural net-

work is trained using the configuration outlined in Table 3. For the distributed training scenario,
IST was adopted to train the MLP. We assume that each worker can access the same dataset. It is
important to emphasize that all the subsequent results presented here have been obtained without undergoing
extensive fine-tuning procedures.

3https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth
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3.1. Results
To highlight the capabilities of a pre-trained ViT using the MAE technique, we conduct a compar-
ative analysis involving a pre-trained ResNet50 model. Both pre-trained models that we use were
trained on the ImageNet-1K dataset. During our experiments, we treat those models as feature
extractors, with their fully connected last layers excluded. The extracted features are then used
to train a simple classifier (MLP). The pre-trained models that we use are ViT-Base and ResNet50
(nvidia_resnet504), with 83.66% and 78.59% accuracy on ImageNet-1K, respectively. Our experi-
mentation is carried out using the CIFAR10 dataset (without anymasking), and the ensuing results
are visually presented in Figure 3. As we can see, the pre-trained ViT performs much better in this
transfer learning task, resulting in almost 25% greater maximum accuracy, 5 times greater than the
pre-trained models on ImageNet-1K.
3.1.1. Centralized
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Figure 3: Comparing ViT-Base and
ResNet50 pre-trained models. Perform-
ing a transfer learning task, with un-
masked CIFAR10 input dataset.

Random – Fixed masks. The accuracy-performance
trends across diverse datasets are vividly depicted in Fig-
ure 4. This figure illustrates the impact of various mask-
ing ratios applied to input images on the achieved accu-
racy. Each dataset is examined under two distinct varia-
tions, the random masks and the fixed masks cases, offering
a comprehensive analysis of the model’s behavior.
Insights into the CIFAR10 dataset are depicted in Fig-
ure 4a, while Figure 4b presents findings from the
RESISC45 dataset, and Figure 4c delves into the AID
dataset. The model consistently demonstrates compa-
rable performance in both masking cases, with instances
where performance is even superior in the fixed masks case.
This outcome defies expectations, as the random masks
case allows the model to gradually assimilate the entirety
of the input image over iterations, in contrast to the fixedmasks scenario, where themodel is limited
to a single masked representation for each image in the dataset. This phenomenon underscores the
efficacy of transformers in harnessing the potential of transfer learning scenarios.
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Figure 4: Centralized.

Datasets Size. The imperative for having a dataset with reduced storage size is evident. We adopt a
strategy where specific patches are removed from the images within our dataset, resulting in a new
dataset that holds masked versions of the original images. This approach becomes advantageous
when a compact dataset is desired, and a slight tradeoff in model accuracy is acceptable. Referenc-
ing Figure 5 and Table 4, we observe that the masking ratio for input images influences the size of
the masked images dataset. In contrast, the size of the CLS tokens datasets remains consistent, irre-
spective of the masking ratio. This constancy is attributed to the fixed dimensions of the extracted
CLS token from the encoder—specifically, 768 × 1 in the case of the ViT-Base, which we employ.

4https://github.com/NVIDIA/DeepLearningExamples
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Remarkably, in the case of the remote sensing datasets analyzed, the CLS tokens datasets are signif-
icantly smaller than the corresponding masked images datasets. This discrepancy primarily arises
from the substantial sizes of the images within the dataset. Conversely, in the case of CIFAR10, the
sizes of the datasets intersect around a masking ratio of approximately 0.3. What is interesting from
Table 4 is the underlying redundancy in image datasets: it is obvious that masking ratios around ∼ 0.5− 0.6
tend to retain the maximum accuracy, if not improving the overall performance.

Masking Ratio 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
IF
A
R
10

Masked Images Size (in GB) 0.205 0.184 0.164 0.143 0.123 0.102 0.082 0.061 0.041 0.020

CLS Tokens Size (in GB) 0.1536

Max Accuracy 0.823 0.837 0.836 0.840 0.848 0.851 0.847 0.829 0.805 0.697

R
ES

IS
C
45 Masked Images Size (in GB) 7.078 6.370 5.662 4.954 4.247 3.539 2.831 2.123 1.416 0.708

CLS Tokens Size (in GB) 0.083

Max Accuracy 0.893 0.891 0.889 0.891 0.882 0.880 0.869 0.857 0.824 0.749

A
ID

Masked Images Size (in GB) 12.240 11.016 9.792 8.568 7.344 6.120 4.896 3.672 2.448 1.224

CLS Tokens Size (in GB) 0.026

Max Accuracy 0.923 0.925 0.928 0.916 0.918 0.917 0.916 0.909 0.883 0.810

Table 4: Approximate size of datasets (for raw images, without any compression applied) given
maximum accuracy.
The dataset sizes listed in Table 4 are calculated using the following formulas:

Masked Images Dataset Size = (Image Size× (1−Masking Ratio)× Training Set)× 4 bytes,
CLS Tokens Dataset Size = (CLS Token Size× Training Set)× 4 bytes,

where 4 is for the float32 representation of our data.
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Figure 5: Centralized. Masking Ratio vs Dataset Size.
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Figure 6: Centralized. Dataset Size vs
Maximum Test Accuracy. Dotted lines
denote the original dataset size.

Remarkably, in specific scenarios, our approach of mask-
ing out patches from the original images can enhance
model performance rather than hinder it (Figure 6).
Moreover, the dataset containing the masked images
could serve as an alternative to the dataset composed
of CLS tokens. This substitution is particularly valuable
when the data source lacks the computational capability
to extract CLS tokens via the encoder. Notably, both the
masked images dataset and the CLS tokens dataset prove
useful in bandwidth-constrained scenarios where send-
ing large amounts of data to themodel is impractical. This
could include limited network bandwidth or deviceswith
little processing power to handle extensive data transfers.
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3.1.2. Distributed
As observed in Section 3.1.1, the fixed masks scenario demonstrates the potential to yield results
similar to, or even surpass, those of the random masks counterpart. This observation underlies
our decision to exclusively simulate the fixed masks scenario in the subsequent distributed experi-
ments. This choice is driven not only by its capacity to deliver comparable outcomes but also by its
significantly reduced computational demands. As previouslymentioned, ISTwas employed to train
the MLP in the context of distributed training. This algorithm was chosen due to its pronounced
advantages, mainly when dealing with less-than-ideal distributed systems.
As demonstrated in Figure 7, we observe the successful application of IST to the MLP within our
system, facilitating the distribution of its training process. The outcomes showcased in this figure
hold significant promise despite the constrained training duration stemming from our limited com-
putational resources and the absence of comprehensive fine-tuning. Key takeaways from this study
underscore the immense potential inherent in end-to-end sparse systems of this nature. It is a foun-
dational example, demonstrating the viability of incorporating sparse inputs and models within a
distributed learning framework.
The gap between 2- and 4-worker cases, i.e., 50% and 25% of parameters, is often observed in the
entire input layer case. It is contributed to the bias introduced by IST [48]: splitting the model
across workers, weaker models are trained locally, leading to slightly different objective functions
per worker. At the same time, we note that the results presented here did not go through extensive
fine-tuning procedures, and we conjecture such gaps can be removed after proper hyperparameter
tuning.
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Figure 7: Distributed. 1-worker case: 100% of parameters, 2-worker case: 50% of parameters,
4-worker case: 25% of parameters.

4. Related Work
Vision Transformer (ViT) in Remote Sensing. Researchers have seamlessly integrated Transform-
ers into traditional remote sensing tasks. For instance, MSNet [53] leveraged remote sensing spa-
tiotemporal fusion to enhance original effects, while Bazi et al. [54] explored remote sensing scene
classification using ViT. Furthermore, Xu et al. [55] combined Swin Transformer [56] and UperNet
[57], achieving impressive results in remote sensing image segmentation. Finally, Gao et al. [58]
propose a self-supervised pre-training framework by applying the masked image modeling (MIM)
method to remote sensing image research to enhance its efficacy.
Masked Image Modeling. Masked image modeling (MIM) [59–62] draws similarities to masked
language modeling (MLM) [24] in the domain of NLP. The context encoder approach [62] intro-
duces the precursor to MIM by predicting masked portions of an original image. MIM methods
exhibit excellent performance using autoencoder structures. Autoencoders like PCA, k-means [63],
and denoising autoencoders (DAE) [64] have been widely used in various domains.
Distributed protocols. In the context of distributed training for neural networks over compute
clusters, there are cases where practitioners opt for distribution to reduce training time or utilize
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additional resources, such as memory or CPU/GPU cycles [13, 14, 65–67]. However, there are also
scenarios where distribution is mandatory due to fragmented datasets across multiple locations or
organizationswith privacymandates [68–72], or the training setmay be large, and stored across lots
of machines [73–78]. In such cases, the computing environment may not be ideal, and the hardware
may not be optimized for distributed training [79–81].
Sparsification techniques. Neural network pruning [82, 83] trims network elements to lower com-
putational demands while maintaining accuracy. Methods include connection importance assess-
ment, activation correlation utilization, and gradient-based criteria. Similarly, gradient sparsifica-
tion and quantization [84–87] tackle communication overhead in distributed learning, selecting sig-
nificant gradient components and compressing precision. These techniques enhance efficiency for
large models on distributed systems, enabling deployment on resource-constrained devices, and
they are considered orthogonal to this work (i.e., they can be combined with this paper).
The concept of neural network sparsification is expanded in IST, in which different sparse subnets
of the full model are allocated to different workers. IST presents a promising approach towards
(as much as possible) end-to-end sparse training, better communication efficiency, and improved
convergence speed in resource-constrained environments. Several adaptations of this methodol-
ogy exist in the literature, including FjORD [40], HeteroFL [41], LotteryFL [42], FedSelect [43],
FedRolex [44], Federated Dropout [45], PVT [46], as well as the IST variants [1, 11, 12, 47, 48].
To the best of our understanding, prior research has primarily focused on sparsification methods within neural
networks without exploring their integration with sparse inputs to achieve end-to-end sparse training.

5. Conclusions
To design a system that leverages sparsity across the input and intermediate layers, we aim to im-
prove neural network training efficiency and robustness in resource-constrained distributed com-
puting. A critical insight from our study is the substantial potential of end-to-end sparse systems: It
is shown empirically that fixedmasks can outperform randommasks, andmasked inputsmatch or even surpass
original inputs. Integral to our approach is transfer learning via a pre-trained ViT serving as a feature
extractor, combined with our sparse exploration for increased adaptability and efficacy. The IST al-
gorithm proves crucial in addressing challenges within suboptimal distributed systems. It adeptly
navigates limitations, facilitating MLP training with promising outcomes despite constraints.
Our central objective remains to showcase sparse systems’ potential through sparse input andmodel
integration, recognizing the value in resource-constrained scenarios. Our work advances sparsity’s
role in amplifying model efficiency, scalability, and resilience, especially in distributed settings. In-
sights gained reinforce systems’ adaptability and alignment with our original intentions.
Future work open questions include: i) theoretically understanding how the size of the input layer
affects convergence and convergence rate guarantees of training algorithms in simple neural net-
work architectures: i.e., current literature [88–100] connects the size of the dataset n with the over-
parameterization requirements for convergence, without connecting the input size with these guar-
antees; ii) study the effect of sparsity on ViTs to generate sparser feature extractors, leading to fur-
ther end-to-end sparsification; currently, due to resource constraints, we relied on off-the-shelf pre-
trained MAEs. Yet, extending IST into Transformer models could lead to sparse ViT training and,
further, sparser end-to-end implementation. Finally, iii) connect this work with recent efforts of
connecting IST with pruning techniques, as in [47]. Our contribution is the inclusion of sparsity in
the input layer; yet, how this choice affects [47] is an interesting and challenging open question.
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