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In order to better understand feature learning in neural networks, we propose and
study linear models in tangent feature space where the features are allowed to be
transformed during training. We consider linear feature transformations, resulting
in a joint optimization over parameters and transformations with a bilinear inter-
polation constraint. We show that this relaxed optimization problem has an equiv-
alent linearly constrained optimization with structured regularization that encour-
ages approximately low rank solutions. Specializing to structures arising in neu-
ral networks, we gain insights into how the features and thus the kernel function
change, providing additional nuance to the phenomenon of kernel alignmentwhen
the target function is poorly represented by tangent features. In addition to veri-
fying our theoretical observations in real neural networks on a simple regression
problem, we empirically show that an adaptive feature implementation of tangent
feature classification has an order of magnitude lower sample complexity than the
fixed tangent feature model on MNIST and CIFAR-10.

1. Introduction
Tremendous research effort has been expended in developing and understanding neural net-
works [1–4]. In terms of development, this effort has been met with commensurate tremendous
practical success, dominating the state of the art [5–7] and establishing a new normal of replacing
intricately engineered solutions with the conceptually simpler approach of learning from data [8].
Paradoxically, this simple principle of learning has not made the theoretical understanding of the
success of neural networks easier [3, 9]. Neural networks stand in stark contrast to the engineered
solutions that they have replaced—instead of leveraging vast amounts of human expertise about a
particular problem, for which theoretical guarantees can be specifically tailored, neural networks
appear to be universal learning machines, adapting easily to a wide range of tasks given enough
data. The tall task of the theoretician is to prove that neural networks efficiently learn essentially
any function of interest, while being trained through an opaque non-convex learning process on
data with often unknown and mathematically uncharacterizable structure.
One promising theoretical direction for understanding neural networks has been through lineariz-
ing networks using the neural tangent kernel (NTK) framework [10, 11]. Given an appropriate
initialization, infinitely wide neural networks can be shown to have constant gradients throughout
training, such that the function agrees with its first-order Taylor approximation and is therefore a
linear model, where the (tangent) features are the gradients of the network at initialization. The
NTK framework reduces the complexity of neural networks down to linear (kernel) regression,
which is significantly better theoretically understood [9, 12–14]. However, real neural networks still
outperform their NTK approximants [15], and the fundamental assumption of the NTK—that the
gradients do not change during training—is typically not satisfied in theory or practice [16, 17].
In this work, we take a step towards understanding the effects of the change of the gradients and
how these changes allow the features to adapt to data. Rather than considering neural networks
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directly, we consider a relaxation of the problem in which the tangent features are allowed to adapt
to the problem alongside the regression coefficients. We ask and answer the following questions:
If allowed independent choice of features and coefficients near initialization, what solution is preferred?
And can we explain observed feature alignment phenomena in neural networks by this mechanism?

Our specific contributions are as follows.

• We introduce a framework of linear feature adaptivity enabling two complementary views
of the same optimization problem: as regression using adaptive features, and equivalently
as structured regression using fixed features.

• We show how restricting the adaptivity imposes specific regularizing structure on the solu-
tion, resulting in a group approximate low rank penalty on a neural network based model.

• We consider the resulting adapted kernel and provide new insights on the phenomenon of
NTK alignment [18–21], specifically when the target function is poorly represented using
the initial tangent features.

• We empirically evaluate our adaptive feature model in neural networks on MNIST and
CIFAR-10, which provides an order of magnitude better sample complexity compared to
fixed tangent features.

Our work is quite far from an exact characterization of real neural networks, and our empirical
results indicate that adaptivity as we propose cannot fully explain the performance of real neural
networks. Nevertheless, our framework extends the class of phenomena can be explained by lin-
ear models built on tangent features, and so we believe it to be a valuable contribution towards
understanding neural networks.
Related work. The neural tangent kernel has been proposed and studied extensively in the fixed
tangent feature regime [10, 11, 15, 22]. Recent works have studied the alignment of the tangent
kernelwith the target function: Baratin et al. [18] empirically demonstrate tangent kernel alignment,
andAtanasov et al. [19] show that linear network tangent kernels alignwith the target function early
during training. Seleznova and Kutyniok [20] demonstrate alignment under certain initialization
scalings, and characterize kernel alignment and neural collapse under a block structure assumption
on the NTK [21]. In contrast, by characterizing the adaptive feature learning problem instead of
neural networks specifically, we are able to gain more nuanced insights about kernel alignment.
More similarly to our work, Radhakrishnan et al. [23, 24] show that the weight matrices in neural
networks align with the average outer product of gradients.
The idea of simultaneously learning features and fitting regression models has appeared in the
literature in tuning kernel parameters [25], multiple kernel learning [26], and automatic rele-
vance determination (ARD) [27], which has been shown to correspond to a sparsifying iteratively
reweighted ℓ1 optimization [28]. Other areas in which joint factorized optimization results in struc-
tured models include matrix factorization [29] and adaptive dropout [30], which are equivalent to
iteratively reweighted ℓ2 optimization. Our work provides generic results on optimization of matrix
products with rotationally invariant penalties, which complements the existing literature.
All proofs can be found in Appendix B.

2. An adaptive feature framework
We first formalize our adaptive feature framework, which enables us to jointly consider feature
learning and regression. Our formulation is motivated by highly complex overparameterized mod-
els such as neural networks with rich tangent feature spaces.
Notation. Given a vector vx ∈ RP parameterized by another vector x ∈ RQ, we use the “denom-
inator” layout of the derivative such that ∇xvx = ∂vx/∂x ∈ RP×Q, and given a scalar vX ∈ R
parameterized by a matrix X ∈ RP×Q, we orient ∇XvX ∈ RQ×P . The vectorization of a matrix
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X = [x1 . . . xQ] ∈ RP×Q is the stacking of columns such that vec(X)T =
[
xT
1 . . . xT

Q

]
∈ RPQ.

Forx ∈ Rmin{P,Q}, we denote by diagP×Q(x) ∈ RP×Q the (possibly non-square)matrixwithx along
the main diagonal, and we omit the subscript P ×Qwhen P = Q. We denote the set {1, . . . , N} by
[N ]. Given a vector x ∈ RP , we denote by [x]j for j ∈ [P ] the j-th coordinate of x. Given a matrix
X ∈ RP×Q, we let σi(X) denote its i-th largest singular value and [X]:j for j ∈ [Q] its j-th column.
The characteristic function χA of a set A satisfies χA(x) = 0 for x ∈ A and χA(x) = ∞ for x /∈ A.

2.1. First-order expansion with average gradients
Consider a differentiably parameterized function fθ : RD → RC with parameters θ ∈ RP , such as a
neural network. Our goal is to fit this function to data (x1,y1), . . . , (xN ,yN ) ∈ RD×C by solving

minimize
θ∈RP

N∑
i=1

ℓ(yi, fθ(xi)),

where ℓ : RC × RC → R is some loss function. In order characterize the solution, we need to un-
derstand how fθ changes with θ. One way that we can understand fθ is through the fundamental
theorem of calculus for line integrals. Letting θ0 be some reference parameters, such as random
initialization or pretrained parameters,

fθ(x)− fθ0
(x) =

∫ θ

θ0

∇θ′fθ′(x)dθ′ =
(∫ 1

0

∇θ′fθ′(x)
∣∣
θ′=(1−t)θ0+tθ

dt
)

︸ ︷︷ ︸
≜∇fθ(x)

(θ − θ0).

That is, any such model is a linear predictor using the average tangent features ∇fθ(x) and coef-
ficients θ − θ0. When θ ≈ θ0, we should expect that ∇fθ(x) ≈ ∇θ0

fθ0
(x), which are the tangent

features at initialization. In fact, this has been shown to hold for very wide neural networks in
the “lazy training” regime even for θ at the end of training, in which case the problem can be un-
derstood as kernel regression using the neural tangent kernel [10, 11]. However, outside of those
special circumstances, it is likely that ∇fθ(x) will change with θ. In general, it is difficult to say
anything further about how fθ should change with θ, or what properties the optimal θ and∇fθ(x)
for a prediction problem should have, and so we instead consider a related relaxation.

2.2. Relaxation: Interpolation with factorized features
Since overparameterized models typically admit infinitely many solutions, we first need to specify
which solution we with to study. Due to the growing literature on interpolating predictors [9, 31–
34] including neural networks, which are universal function approximators given enough parame-
ters [35], we consider the popular minimum ℓ2 deviation interpolating solution:

minimize
θ∈RP

∥θ − θ0∥2 s.t. fθ(xi) = ŷi ≜ argmin
ỹ∈RC

ℓ(yi, ỹ) ∀ i ∈ [N ].

This choice aligns with the common practice of training by gradient descent until training error
is equal to zero. In classification problems, the minimizers are typically infinite valued and never
realized unless there is label noise, in which case we should let ŷi ≜ argminỹ∈RC

∑
j : xj=xi

ℓ(yj , ỹ).
We now relax the problem to enable tractable analysis of feature adaptivity.
Consider a particular value of θ. If P > N and the tangent feature space at initialization is very rich,
then the range of the tensor formed by stacking all of the ∇θ0

fθ0
(xi) is likely to span RC×N . As a

result, there exists a matrix Mθ ∈ RP×P such that for all xi, ∇fθ(xi) = ∇θ0fθ0(xi)Mθ. Going one
step further, if N is sufficiently large and the gradients change sufficiently slowly in x, we would
expectMθ to exist such that the linear equality holds even for test points x not in the training data.
This matrix Mθ of course depends complexly and intricately on the parameterization of fθ and its
initial parameters θ0, and is no simpler to understand than the average tangent features.
Our key insight is that in complex nonlinear models such as deep neural networks, there may be
many degrees of freedom in the parameters θ that can change the tangent featureswithout changing
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the dimensions of θ that interact with those features. In this way, we speculate that such complex
models are able to optimize both the features and coefficients jointly to serve the prediction goal.
Based on this insight, we relax Mθ to be independent of θ, instead now a new variable M ∈ RP×P

to be optimized. Since we have applied an ℓ2 deviation penalty on θ, we need to also require thatM
should also not deviate much from its initial value of M = IP . Hence finally, for some appropriate
regularizer Ω: RP×P → R, we have our relaxed optimization problem
M̂, θ̂ ≜ argmin

M∈RP×P , θ∈RP

Ω(M) + ∥θ − θ0∥22 s.t. ŷi − fθ0(xi) = ∇θ0fθ0(xi)M(θ − θ0) ∀ i ∈ [N ]. (1)

3. Adaptive feature learning
The learning problem in eq. (1) is very similar to regularized linear interpolation, except that it has
a bilinear interpolation constraint (linear individually in eachM and θ) rather than a simple linear
constraint. This joint optimization can be characterized instead by an effective penalty Ω̃ : RP → R
applied to β = Mθ, or an equivalent learning problem

β̂ = argmin
β∈RP

Ω̃(β) s.t. ŷi − fθ0
(xi) = ∇θ0

fθ0
(xi)β ∀ i ∈ [N ]. (2)

The resulting model can then be written as fθ̂(x) = fθ0
(x) +∇θ0

fθ0
(x)β̂, simply a linear model in

the tangent features. BymappingΩ to Ω̃, we can understand the effect of joint feature and coefficient
learning on the use of the initial tangent features in the final model. Unfortunately, Ω̃ does not have
an interpretable form in general.
However, a very natural restriction to the choice of Ω results in Ω̃ that is straightforward to describe
and interpret. A priori, we have no knowledge of which directions in feature space are most impor-
tant, so we can encourage search in all directions equally by choosing Ω to be rotationally invariant.
We consider regularizers built from the following class of spectral regularizers for a strictly quasi-
convex function ω : R → R having minimum value ω(1) = 0:

Ωω(M) =

P∑
j=1

ω(σj(M)).

This penalty applies only to the singular values σj , so the singular vectors ofM are free to be rotated
arbitrarily. Note that this choice ensures a tendency towards the initial value of Mθ0

= IP , and it
also means that we can consider symmetric positive semidefinite M without loss of generality.1 A
simple example of a choice for ω is ω(v) = |v − 1|p for p > 0.
Some feature transformations might be particularly unnatural, especially when there is structure in
the parameterization of the function, such as weight matrices at different layers of a neural network.
We can encode this structure by applying a penaltyΩ to sub-blocks ofM independently. Aswe shall
see, the presence of such structure has a significant impact on the resulting effective optimization.
When considering solutions, we are also interested in the kernel corresponding to the learned fea-
tures. Specifically, for x,x′ ∈ RD we define the adapted kernel as the feature inner products

K(x,x′) ≜ ∇fθ̂(x)∇fθ̂(x
′)T = ∇θ0fθ0(x)M̂

2∇θ0fθ0(x
′)T ∈ RC×C .

We correspondingly define the initial kernel K0(x,x
′) = ∇θ0

fθ0
(x)∇θ0

fθ0
(x′)T for M = IP , which

is equal to the standard neural tangent kernel in neural networks.

3.1. Structureless feature learning
It is instructive to first consider the effect of unrestricted optimization of M; that is, if the features
were allowed to change without any structural constraints on how features and parameters must
interact. In this case, we simply solve eq. (1) directly, using Ω = Ωω applied to the full M.

1LetUSVT be the SVD of anyM. We can always consider insteadM′ = USUT and θ′ = UVTθ such that
the penalty value remains the same, and β = M′θ′ = Mθ and thus the linear constraints to not change.
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Theorem 1. There is a solution to eq. (1) with Ω = Ωω satisfying

M̂ = IP + (s− 1)∥β̂∥−2
2 β̂β̂T and θ̂ = θ0 + s−1β̂.

where s = argminz≥1 ω(z) +
∥β̂∥2

2

z2 and β̂ is given by eq. (2) with Ω̃ = ∥ · ∥2. Furthermore, the adapted
kernel for this solution is given by

K(x,x′) = K0(x,x
′) + (s2 − 1)∥β̂∥−2

2 (fθ̂(x)− fθ0(x))(fθ̂(x
′)− fθ0(x

′))T︸ ︷︷ ︸
≜Kŷ(x,x′)

.

Proof sketch. By a straightforward argument, the leading singular vector ofMmust be aligned with
θ − θ0 to minimize ∥θ − θ0∥22 given the singular values of M. For the leading singular value s,
the equivalent solution must satisfy ∥β∥2 = s∥θ∥2. We can obtain s given ∥β∥2 by performing the
minimization of the penalty ω(s)+∥θ∥22 = ω(s)+

∥β∥2
2

s2 , which is an increasing function of ∥β∥2.

Surprisingly, since Ω̃ = ∥ · ∥2, the equivalent solution in β̂ is exactly that of ridgeless regression
[32] using the initial tangent kernel features ∇θ0

fθ0
(x)—therefore, when no structure is imposed

on the adaptive features, the resulting predictions are simply the same as in NTK regression. How-
ever, even though the predictions are no different, we already can see a qualitative difference in
the description of the system from NTK analysis. Specifically, this adaptive feature perspective re-
veals how the adapted kernel itself changes: it is a low rank perturbation to the original kernel that
directly captures the model output as the label kernel Kŷ. This kernel alignment effect has been
empirically observed in real neural networks that depart from the lazy-training regime [18–20].
Moreover, the strength of the kernel alignment is directly related to the difficulty of the regression
task as measured by the norm of β̂. Note that s takes minimum value at ∥β̂∥2 = 0 and is increasing
otherwise, which means that if the initial tangent features ∇θ0

fθ0
(x) are sufficient to fit ŷi with a

small β̂, then s ≈ 1 and K(x,x′) ≈ K0(x,x
′).2 It is only when the task is difficult and a larger β̂ is

required that s2 − 1 ≫ 0 and we observe kernel alignment with the label kernel Kŷ. We illustrate
this in an experiment with real neural networks on an MNIST regression task in Figure 1.
In order to go beyond ridgeless regression with feature learning, it is necessary to further constrain
the structure of M. By restricting M to operate independently on separate subspaces, the result is
an effective group sparse penalty over the subspaces. As an extreme example that we detail in Ap-
pendix B.1, ifM is constrained to be diagonal, operating independently on P orthogonal subspaces
of dimension 1, then the result is that Ω̃ is a conventional sparsity-inducing penalty. Concretely, we
have Ω̃ = ∥ · ∥1 in the special case of Ω(M) = ∥M∥2F with a diagonal constraint.

3.2. Neural network structure
We now wish to specialize to structures that arise in neural networks. The developments in this
section will be built around parameterization of the network by matrices, but these results could be
extended straightforwardly to higher order tensors (such as filter kernels in convolutional neural
networks). Generically, the parameters of a neural network are θ = concat(vec(W1), . . . , vec(WL)),
where Wℓ ∈ RPℓ×Qℓ are parameter matrices such that P =

∑L
ℓ=1 PℓQℓ. These matrices comprise

addition and multiplication operations in a directed acyclic graph along with other operations such
as nonlinearities and batch or layer normalizations, which do not have parameters and thus do not
contribute to the number of tangent features.
We first state our neural network model, and then we explain the motivation of each component.
Model A. The neural network model has the following properties:

1. The parameter vector θ − θ0 ∈ RP consists of L matrices W1 ∈ RP1×Q1 , . . . ,WL ∈ RPL×QL .
2While there is a ∥β̂∥−2

2 factor as well, this is always canceled by the implicit ∥β̂∥22 in Kŷ, such that the
overall scale ofKŷ is determined entirely by the factor (s2 − 1).

5



K0

sim=0.17

K, ŷi = yi Kŷ

sim=0.40

K, ŷi = sign(yi) Kŷ

0

Figure 1: Amore difficult task yield higher label kernel alignment. We perform regression using
a multi-layer perceptron on 500 MNIST digits from classes 2 and 3. We construct target labels yi
as the best linear fit of binary ±1 labels using random neural network features. Then we train two
networks, one (left) trained to predict yi, and one (right) trained to predict sign(yi). We present
the adapted kernel and label kernel matrices for data points ordered according to yi and report the
cosine similarity of the adapted kernel and the label kernel. The harder task of regression with
binarized labels has a higher label kernel alignment. Further details are given in Appendix C.1.

2. The feature transformation operator M ∈ RP×P is parameterized by M
(1)
ℓ ∈ RPℓ×Pℓ and

M
(2)
ℓ ∈ RQℓ×Qℓ for each ℓ ∈ [L] such that application of M to θ results in the mapping (Wℓ)

L
ℓ=1

7→ (M
(1)
ℓ WℓM

(2)
ℓ )Lℓ=1.

3. For strictly quasi-convex functions ω(1)
ℓ and ω

(2)
ℓ for each ℓ ∈ [L] minimized at ω(1)

ℓ (1) = 0 and
ω
(2)
ℓ (1) = 0, the regularizer is given by Ω(M) =

∑L
ℓ=1 Ωω

(1)
ℓ

(M
(1)
ℓ ) + Ω

ω
(2)
ℓ

(M
(2)
ℓ ).

4. The final matrix WL has QL = C and a fixed transformation of M(2)
L = IC (corresponding to

ω
(2)
L = χ{1}), and there is a mapping z : RD → RPℓ such that ∇vec(WL)fθ0

(x) = IC ⊗ z(x)T.

The first component is simply a reparameterization of Wℓ as the difference from initialization, to
simplify notation. The other components are motivated as follows.

Feature transformations. Consider a single weight matrix Wℓ and the gradient of the k-th output
f
(k)
θ (x). The matrix structure ofWℓ limits the way in which the gradient tends to change. As such,
rather than considering a PℓQℓ × PℓQℓ matrix Mℓ such that ∇vec(W)ℓfθ(x) = ∇vec(Wℓ)fθ0

(x)Mℓ, it
is more natural to consider a Kronecker factorization Mℓ = M

(2)T
ℓ ⊗M

(1)
ℓ such that

∇Wℓ
fθ

(k)(x) = M
(2)
ℓ ∇Wℓ

f
(k)
θ0

(x)M
(1)
ℓ ,

which corresponds to the mapping Wℓ 7→ M
(1)
ℓ WℓM

(2)
ℓ .

Independent optimization. We assume that the feature transformations M(1)
ℓ and M

(2)
ℓ are inde-

pendently optimized from each other and from the feature transformations corresponding to other
weights ℓ′ ̸= ℓ. The motivation for this assumption comes from the fact that at initialization in wide
fully connected neural networks, the gradients at each layer are known to be uncorrelated [36].
Because of independence within each layer, we also need to define the joint penalty for v ≥ 1 as

(ω1 ⊕ ω2)(v) ≜ min
1≤z≤v

ω1(z) + ω2(
v
z ).

It is straightforward to verify that if ω1 and ω2 are strictly quasi-convex such that ω1(1) = ω2(1) = 0,
then ω1⊕ω2 has the same properties; see Appendix B.2. We also take this opportunity to define the
scalar effective penalty and its induced effective penalty, which will simplify notation:

ω̃(v) ≜ min
z≥1

ω(z) +
v2

z2
and Ω̃ω(M) ≜ Ωω̃(M).
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Final weight matrix. The final operation in most neural networks is linear matrix multiplication by
the final weight matrix WL ∈ RPL×C , such that if zθ(x) ∈ RPL are the penultimate layer features,
then the output is a vector fθ(x) = WT

Lzθ(x) ∈ RC . Noting that zθ(x) = M
(1)
L zθ0

(x), we have the
Kronecker formulation

fθ(x) = (IC ⊗ (zθ0(x)
TM

(1)
L ))︸ ︷︷ ︸

∇vec(WL)fθ(x)

vec(WL).

With the above neural network model in hand, this brings us to our main result on the solution to
the adaptive feature learning problem.
Theorem 2. There is a solution to eq. (1) under Model A such that for each ℓ ∈ [L],

M̂
(1)
ℓ = UℓS

(1)
ℓ UT

ℓ , Ŵℓ = UℓΣℓV
T
ℓ , M̂

(2)
ℓ = VℓS

(2)
ℓ VT

ℓ ,

where Uℓ ∈ RPℓ×Pℓ , Vℓ ∈ RQℓ×Qℓ are orthogonal matrices and S
(1)
ℓ = diag(s

(1)
ℓ ), Σℓ = diagPℓ×Qℓ

(σℓ),
S
(2)
ℓ = diag(s

(2)
ℓ ) are given by minimizers

[s
(1)
ℓ ]j , [σℓ]j , [s

(2)
ℓ ]j = argmin

s1,s2≥1,σ≥0
ω
(1)
ℓ (s1) + ω

(2)
ℓ (s2) + σ2 s.t. s1σs2 = [dℓ]j for j ≤ min{Pℓ, Qℓ}

and [s
(1)
ℓ ]j = 1, [s(2)ℓ ]j = 1 for j > min{Pℓ, Qℓ}, such that B̂ℓ = UℓdiagPℓ×Qℓ

(dℓ)V
T
ℓ satisfy

(B̂ℓ)
L
ℓ=1 ∈ argmin

Bℓ∈RPℓ×Qℓ

L∑
ℓ=1

Ω̃
ω

(1)
ℓ ⊕ω

(2)
ℓ

(Bℓ) s.t. ŷi − fθ0
(xi) =

L∑
ℓ=1

∇vec(Wℓ)fθ0
(xi)vec(Bℓ) ∀ i ∈ [N ].

Furthermore, the adapted kernel for this solution is given by

K(x,x′) = K0(x,x
′) +

L∑
ℓ=1

min{Pℓ,Qℓ}∑
j=1

([s
(1)
ℓ ]2j [s

(2)
ℓ ]2j − 1)∇vec(Wℓ)fθ0

(x)vec([Uℓ]:j [Vℓ]
T
:j)

· vec([Uℓ]:j [Vℓ]
T
:j)

T∇vec(Wℓ)fθ0
(x′)T.

The proof approach is similar to Theorem 1. In other words, we have reduced the bilinearly con-
strained optimization over M and θ to a linearly constrained optimization over (Bℓ)

L
ℓ=1, just as we

did in the unstructured case. However, this time, due to the matrix stucture ofWℓ and correspond-
ing structure in M

(1)
ℓ and M

(2)
ℓ , the new equivalent optimization is much richer than simple mini-

mum ℓ2 norm interpolation using tangent features. To better understand the regularization in this
new problem, we have the following result about the scalar effective penalty.
Proposition 3. Let ω be a continuous strictly quasi-convex function minimized at ω(1) = 0. Then v2 7→
w̃(v) is an increasing concave function, and ω̃(v) = v2 + o(v2) as v → 0.

That is, no matter the original penalties ω(1)
ℓ and ω

(2)
ℓ , the resulting Ω̃

ω
(1)
ℓ ⊕ω

(2)
ℓ

will always be a spec-
tral penalty with 1) sub-quadratic tail behavior, and 2) quadratic behavior for small values. We
illustrate this for a few examples in Figure 2. For one example, when ω(v) = (v − 1)2, the effec-
tive penalty ω̃(v) behaves like |v| for large v, making Ω̃ω(B) like the nuclear norm for large singular
values and like the Frobenius norm for small singular values. In general, ω̃ has slower tails than
ω. This behavior is highly related of the equivalence of the nuclear norm as the sum of Frobenius
norms of two factors [29], which coincides with the case ω(v) = v2; however, since we constrain
the M to be near IP , we retain Frobenius norm behavior near 0. The sub-quadratic nature of ω̃ is a
straightforward consequence of Legendre–Fenchel conjugacy.
The result of this effective regularization is a model that is able to leverage structures through the
group approximate low-rank penalty while also being robust to noise and model misspecification
through the Frobenius norm penalty for small singular values. From this perspective, we can con-
ceptually consider a decomposition of thematricesBℓ ≈ BLO

ℓ +BNTK
ℓ , whereBLO

ℓ are low rank and
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Figure 2: Effective penalties
are sub-quadrataic. We plot
effective penalties for ω1(v) =
(v − 1)2, ω2(v) = |v − 1|, and
ω3 = ω1 ⊕ ω2. All are sub-
quadratic, yet all behave like
v2 near v = 0.
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Figure 3: Adapted kernel reveals difficult structure. For the
neural network from Figure 1 trained on binarized labels sign(yi)
(left), the target function (green, solid) is difficult while the
function x 7→ y (black, dotted) is easily predicted using tangent
features. The network must learn (right) to fit the residual (red,
dashed), which results in the kernel (orange,×) being highly in-
fluenced by difficult training points (near y = 0).

capture the structure learned from the data that is predictive of the training labels, whileBNTK
ℓ form

the component that fits the residual (after regression using BLO
ℓ ) via standard NTK interpolation

with Frobenius norm minimization. In this way, the adaptiveness of the neural network is able to
get the benefits of both strategies.
To illustrate how we can translate the insights from this model to real neural networks, we revisit
the experiment from Figure 1. In this experiment we fit a neural network to predict two different
sets of target values: first, we construct yi = z(xi)

Tb∗, where b∗ is chosen to provide the best linear
fit of binary ±1 labels distinguishing between two classes of digits from the MNIST dataset using
an independently initialized network of the same architecture. Therefore, yi are well represented
by the initial tangent features, and by the final layer features z(x) in particular. Second, we use the
binarized labels sign(yi) (illustrated in Figure 3 (left)), which are not representable using only z(x)
and therefore requires using the tangent features available at prior layers.
For the linear targets yi, since only final layer features are required, the solution should have large
values only in the final layer weights B̂L, which for this problem are simply a vector β̂L. Thus, we
should expect only the final layer to contribute to the change in the adapted kernel:

K(x,x′) ≈ K0(x,x
′) + ([s

(1)
L ]21 − 1)∥β̂L∥−2

2 (z(x)Tβ̂L)(z(x
′)Tβ̂L).

This final layer contribution should be very close toKŷ(x,x
′), the label kernel. We can see that our

theoretical adaptive featuremodel reflects real neural networks in Figure 1 (left), where the adapted
kernel very closely resembles a linear combination of the initial NTK and the label kernel.
For the binarized targets sign(yi), which are poorly represented by the initial NTK features, the
solution should require larger values of B̂ℓ, which will result in more change to the adapted kernel.
To understand where these large values will be allocated, consider that the linear targets yi are
essentially the best linear fit of the binarized labels sign(yi), so the final layer contribution to the
prediction should be proportional to yi. Thus, the remainder of the weights only fit the residual
sign(yi)−αyi, which is largest for data points with yi near 0. The solution should allocate principal
components that alignwith the tangent features at earlier layers of these data points, which function
as “support vectors” of the solution, and the components should be larger as yi are nearer to 0.
Indeed, this is exactly what we see in the real neural network in Figures 1 and 3 (right): the adapted
kernel reflects the initial NTK, the label kernel for linear targets, and the label kernel for binary
targets, but it is also very large for data points having yi near 0, where features aligning with points
with large residuals must be amplified.
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Figure 4: Adaptive feature learning improves low-sample performance. We perform 10-class clas-
sification onMNIST (left) and CIFAR-10 (right) using three different models: a linear model using
fixed tangent features (blue, solid), the adaptive feature optimization in eq. (1) under Model A
(orange, dashed), and standard neural networks (green, dash–dot). The adaptive feature model
achieves the same performance as the non-adaptive tangent feature model with an order of magni-
tude fewer samples. Further details are given in Appendix C.2.

4. Discussion
In this work, we have proposed a framework of adaptive feature learning using tangent features that
sheds light on some phenomena observed in real neural networks. Themost important question one
should ask, however, is the degree towhich real neural networks actually fit thismodel, andwhether
there still remains a gap in our understanding.
In terms of practical performance, we have found that the adaptive feature learning model offers
significant sample complexity advantages over fixed neural tangent kernel features. In Figure 4,
we compare the two models and real neural networks on MNIST and CIFAR-10. For the same test
error, the adaptive feature model requires an order of magnitude fewer samples. However, given
enough samples, both the adaptive and fixed feature models appear to converge to the same error
floor, while the real neural networks significantly outperform both models and appear to have a
faster convergence rate in the case of CNNs on CIFAR-10. This suggests that there are fundamen-
tal limitations of the tangent kernel feature space that even adaptive feature learning cannot avoid,
although adaptivity does close a non-negligible part of the gap in the low-sample regime. An inter-
esting direction for futurework is to analyze the convergence rate of adaptive feature learning under
Model A and determine under what conditions there might be improved rates over fixed tangent
features.
Though a gap still exists between our model and real neural networks, it has nevertheless provided
valuable insight into feature learning in neural networks. In addition to the previous dive into the
effects on the adapted kernel, we provide additional discussion in Appendix A where we consider
the difference between average tangent features and final tangent features, the connection between
approximate low rank optimization and optimal benign interpolation in sparse settings, justification
for the recently successful low rank adaptation (LoRA) method [37], and the effects of architecture
on adaptive feature learning.
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A. Additional Discussion
Here we collection additional discussion points not included in the main paper.
Average features vs. final features. In our analysis we considered the average features over a linear
path in parameter space, but this is difficult to work with in practice, compared to for example the
features at the end of training. Of course, we can equivalently write the average features as an
average transformation by Mθ′ such that ∇θ′fθ′(x) = ∇θ0fθ0(x)Mθ′ along the path from θ0 to θ:

∇fθ(x) = ∇θ0
fθ0

(x)M = ∇θ0
fθ0

(x)
(
IP +

∫ 1

0

(Mθ′ − IP )
∣∣
θ′=(1−t)θ0+tθ

dt
)
.

In general, an integral of matrices, even if individually low rank, should not be a low rank matrix.
However, the average M is often a low-rank perturbation to IP , which is a remarkable coincidence
unless allMθ′ along this path have the same principal subspace asM butwith different eigenvalues.
We thus expect the average features and final features to be similar, but not necessarily the same
(in general, due to the averaging effect, the final tangent features will be larger for example). This
difference can be important in downstream analysis—for example, in transfer learning, wewould let
θ0 be the solution to a previous optimization problem, and the initial tangent features would be the
final tangent features of that optimization, rather than the average tangent features. Thus another
direction for further study is the extent to which average features and final features coincide. In our
limited (unpublished) observations, the final feature kernel closely resembles a re-scaled version of
the average feature kernel, which coincides with recent results for linear networks [19].
Benign overfitting. Neural networks have shown remarkable resilience to noisy labels, sparking
the recent theoretical research area of studying models that interpolate noisy labels yet still gener-
alize well [3, 9, 13, 31]. Much research in this area has been concerned with finding fixed feature
regimes in which this “benign overfitting” can occur in ridge(less) regression settings, but Don-
hauser et al. [34] have shown that when the ground truth function is sparsely represented by the
features, remarkably, the optimal ℓp penalty is not p ∈ {1, 2}, but rather in between, since some
resemblance to sparsity-inducing p = 1 encourages learning structure, but something like p = 2
is necessary to absorb noise without harming prediction (for more discussion regarding the latter
point, see [31]). Our results reflect these desired optimal properties precisely, since the effective
penalties always have sub-quadratic tail behavior (promoting structure) and quadratic behavior
near zero (absorbing noise). This raises another future research question, regarding the optimality
of these effective penalties compared to ℓp, p ∈ (1, 2) penalties.
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Low rank optimization. Our framework sheds interesting insight on the success of low rank de-
viation optimizations in neural networks, which have been used to characterize task difficulty and
compress networks [40] and recently to efficiently fine-tune pretrained large language models in
the low rank adaptation (LoRA) method [37]. In LoRA, for example, each weight matrix is pa-
rameterized as Wℓ = UℓV

T
ℓ for Uℓ ∈ RPℓ×Rℓ and Vℓ ∈ RQℓ×Rℓ , where Rℓ ≪ Pℓ, Qℓ. Due to the

sub-quadratic spectral regularization of the adaptive feature optimization, if the target task is suf-
ficiently related to the source task, such that the target function is well represented by the tangent
features at θ0 of the pretrained model, then according to Theorem 2, the model is inclined to learn
an approximately low-rank deviation from the initial parameters even if theWℓ were not explicitly
constrained to be low rank. By constraining the weights to be low rank by design, LoRA can es-
sentially recover the same solution, if not an even more aggressively structured one, at a fraction of
the computational time and memory cost. An interesting question for future work is how close the
solution using LoRA’s hard low rank constraint is to the solution under the soft low-rank constraint
of adaptive feature learning, and which of these solutions yields a better predictor.
Effect of depth. We speculate that the value of depth in a network is in providing a very rich set of
late layer features from which a few meaningful principal components can be extracted in feature
learning. The richer these features are, the easier it will be to fit a parsimonious model using only a
few low rank components.

B. Theoretical technical details

B.1. DiagonalM example
In the case that M is diagonal, the problem immediately separates into P scalar optimizations of
ω(mj) + θ2j = ω(mj) +

β2
j

m2
j
. Thus the effective penalty is a sum over these P scalars:

Ω̃(β) =

P∑
j=1

ω̃(βj).

Since ω̃ is subquadratic, this is roughly a conventional sparsity inducing penalty, except since the
behavior is quadratic near 0, it does not promote exact sparsity. If, however, ω(m) = m2 (which does
not meet the requirements that we use elsewhere in this work, as it is not minimized at ω(1) = 0),
then the minimizer of each penalty is given by m2

j = |βj |, resulting in an effective penalty of

Ω̃(β) =

P∑
j=1

2|βj | = 2∥β∥1.

B.2. Penalty function results
B.2.1. Joint penalty quasi-convexity

Proposition 4. If ω1 and ω2 are strictly quasi-convex functions minimized at ω1(1) = 0 and ω2(1) = 0,
then ω1 ⊕ ω2 is a strictly increasing function defined on [1,∞) such that (ω1 ⊕ ω2)(1) = 0.

Proof. Since we only evaluate ω1 and ω2 on [1,∞), the only important property is that they are both
strictly increasing. It is clear that (ω1 ⊕ ω2)(1) = ω1(1) + ω2(1) = 0. We need only show that the
function is increasing.
First, we argue that the function z 7→ ω1(z) + ω2(

v
z ) defined on (0,∞) for v ≥ 1 always takes

minimum value for z ∈ [1, v]. It can never be minimized for z < 1, since in that case ω1(z) > ω1(1)
and ω2(

v
z ) > ω2(v). By symmetry, it can also not be minimized for z > v. Now let 1 ≤ v1 < v2. Then
(ω1 ⊕ ω2)(v2) > min

1≤z≤v2
ω1(z) + ω2(

v1
z ) = min

1≤z≤v1
ω1(z) + ω2(

v1
z ) = (ω1 ⊕ ω2)(v1),

and therefore ω1 ⊕ ω2 is strictly increasing on [1,∞).
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B.2.2. Proof of Proposition 3

Proof. To see that v2 7→ ω̃(v) is concave, note that v2 7→ −ω̃(v) is the Legendre–Fenchel conjugate of
the function z2 7→ ω( 1

z2 ), which is therefore convex. The proof that ω̃ is increasing is similar to the
proof of Proposition 4: the optimal z∗ cannot be less than 1, and note that for all z ≥ 1, if v1 < v2,
then v2

1

z2 <
v2
2

z2 , and therefore ω̃(v1) < ω̃(v2), since the minimizer must be finite. Lastly, we obtain the
second-order Taylor series expansion about v = 0. Note that at v = 0, z∗ = 1. Then

∂ω(z∗)− 2 v2

z∗3 ∋ 0 =⇒ ∂ω̃(v)

∂v

∣∣∣
v=0

= 2
v

z∗2

∣∣∣
v=0

= 0

and =⇒ ∂2ω̃(v)

∂v2

∣∣∣
v=0

= 2
1

z∗2
− 4

v

z∗3
∂z∗

∂v

∣∣∣
v=0

= 2.

To justify the latter, consider two cases: if ω is non-differentiable at z = 1, then for sufficiently small
v, z∗ = 1must be constant as 2v2 ∈ ∂ω(z∗); otherwise, for some p ≥ 2, ω(z) = |z − 1|p + o(|z − 1|p).
In the second case, for small v, this means that p|z∗ − 1|p−1 ≈ 2v2 and this approximation becomes
exact as v → 0+, so taking the limit of the derivative and plugging in p|z∗ − 1|p−1 = 2v2,

p(p− 1)|z∗ − 1|p−2 ∂z
∗

∂v
= 4v =⇒ ∂z∗

∂v
= Cpv

1− 2(p−2)
p−1 .

This implies that v ∂z∗

∂v = Cpv
2

p−1 → 0 as v → 0+. As a result, we have the Taylor expansion
ω̃(v) = 0 + (0)v + (2)

2 v2 + o(v2), as stated.

B.3. Proof of main results
To prove the main theorems, we first prove the following lemma.
Lemma 5. Given strictly quasi-convex ω1 and ω2 minimized at ω1(1) = 0 and ω2(1) = 0 and a constraint
set B ⊆ RP×Q, there is a solution

M̂1, M̂2,Ŵ ∈ argmin
M1∈RP×P ,

M2∈RQ×Q,

W∈RP×Q

Ωω1
(M1) + Ωω2

(M2) + ∥W∥2F s.t. M1WM2 ∈ B

having the form M̂1 = US1U
T, M̂2 = VS2V

T, Ŵ = UΣVT, where S1 = diag(s1), S2 = diag(s2),
Σ = diagP×Q(σ), and D = diagP×Q(d) such that for j ≤ min{P,Q}

[s1]j , [s2]j , [σ]j = argmin
s1,s2≥1,σ≥0

ω1(s1) + ω2(s2) + σ2 s.t. s1s2σ = [d]j (3)

and [s1]j = 1, [s2]j = 1 for j > min{P,Q}, and
B̂ = UDVT ∈ argmin

B∈B
Ω̃ω1⊕ω2

(B).

Proof. First we show that the singular vectors are shared. Fix a matrix in the constraint set B ∈ B.
Define the singular value decompositions M1 = US1U

T and M2 = VS2V
T, and let Σ = UTWV.

Then we have the linear constraint UTBV = S1ΣS2, or equivalently Σ = S−1
1 UTBVS−1

2 . Thus
∥W∥F = ∥Σ∥F is minimized whenU andV are chosen to align the smallest values of S−1

1 and S−2
1

with the largest singular values ofB—in otherwords,U andV are the left and right singular vectors
of B, respectively. We thus have the singular value decompositions W = UΣVT and B = UDVT

whereD = S1ΣS2.
It is now clear that the optimization is a sum over aligned eigenvalues and so is equivalent to eq. (3).
Any values of s1 or s2 not part of this optimization (j > min{P,Q}) must be 1. Now observe that

minimize
s1,s2≥0

ω1(s1) + ω2(s2) s.t. s1s2 = a

is equivalent to solving
minimize
s1,s2≥0

ω1(s1) + ω2(
a
s1
)

and taking s2 = a
s1
, but this is simply the definition of ω1 ⊕ ω2. By Proposition 4, we must have

s1, s2 ≥ 1, and then by the definition of the effective penalty, we obtain the optimization overB.
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B.3.1. Proof of Theorem 1

Proof. We apply Lemma 5 with Q = 1, W = θ − θ0, B equal to the linear constraint set, ω1 = ω,
and ω2 = χ{1}, forcing M2 = 1, so we have only M1 = M. Now ω1 ⊕ ω2 = ω1 = ω. M̂ must have
all but one eigenvalues equal to 1, and the other eigenvalue smust have corresponding eigenvector
aligned with B̂ = β̂. Note that the singular value of W is simply σ = ∥θ̂ − θ∥2, similarly for B the
singular value is d = ∥β̂∥2. We must have sσ = d, which gives the form of the stated results.
For the adapted kernel, we simply evaluate
∇θ0fθ0(x)M̂

2∇θ0fθ0(x
′)T = ∇θ0fθ0(x)∇θ0fθ0(x

′)T + (s2 − 1)∇θ0fθ0(x)∥β̂∥−2
2 β̂β̂T∇θ0fθ0(x

′)T,

which is equal to the stated adapted kernel.

B.3.2. Proof of Theorem 2

Proof. We apply Lemma 5 for each ℓ. The only care needed is in defining the constraint set B. Pro-
ceeding in ℓ and fixing choices of the previous (Bℓ′)

ℓ−1
ℓ′=1, we can always define B in terms of the

remaining Bℓ that can satisfy the linear constraint. For all such paths, the resulting equivalent op-
timization has the same form, and so we have the stated equivalent optimization for the linear con-
straint involving all (Bℓ)

L
ℓ=1.

C. Experimental details
Code is available at https://github.com/dlej/adaptive-feature-perspective.

C.1. MNIST regression experiment
In this experiment we use a 3 layer multi-layer perceptron (MLP) with 128 units at each layer and
ReLU activation implemented in PyTorch [38] and with no bias. The network had a single output
for regression. We used N = 500 training points from digits 2 and 3 from MNIST. We vectorized
each image and normalized it to have zero mean and unit variance. For constructing target labels
yi, we froze the first two layers of a random Gaussain initialization of the network and only trained
the last layer on predicting ±1 labels corresponding to classes 2 and 3 with a best linear fit. The
resulting yi had 95.2% accuracy when thresholded at 0 in predicting the original classes. Then we
trained two networks newly initialized networks, one to predict yi, and the other to predict sign(yi).
For training we used stochastic gradient descent (SGD) with initial learning rate of 0.1 and a cosine
annealing schedule, and 0.9 momentum.
To plot the kernels, we compute the average tangent features evaluated at 50 points along the linear
path from θ0 to θ. We order the points according to increasing value of yi. We use different color
scales for each kernel: forK0, we use a maximum value of 4, forK, we use a maximum value of 10,
and for Kŷ , we use a maximum value of 2.

C.2. MNIST and CIFAR-10 classification experiment
We report average test error with standard deviation error bars over 10 trials. Our models are a
5-layer multi-layer perceptron (MLP) with 128 units at each layer and ReLU activation before the
final 10 outputs, implemented in JAX [39]. For layer biases, when applying M̂

(2)
ℓ , we also map

bℓ 7→ M̂
(2)T
ℓ bℓ. For the feature models, we do not impose any explicit regularization other than

random initialization. For the adaptive feature model, we initializeM(1)
ℓ = IPℓ

andM
(2)
ℓ = IQℓ

. For
each trial, we select N ∈ {125, 250, 500, 1000, 2000, 4000, 8000, 16000, 32000, 60000} training points
at random and train using SGD with 0.01 learning rate and 0.9 momentum.
For CIFAR-10, we proceed similarly to MNIST, but instead we use a convolutional neural network
(CNN) with 4 3 × 3 convolutional layers with 2× stride and average pooling after ReLU activa-
tion, doubling the number of channels each layer after first mapping from 3 to 16. We then flatten
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and pass through 2 dense layers with 128 units before the final 10 outputs. For convolutional ker-
nels we use three M

(k)
ℓ transformations, one for the flattened 3 × 3 convolutional kernels, one for

the input channels, and one for the output channels, which we also apply to the biases. We select
N ∈ {125, 250, 500, 1000, 2000, 4000, 8000, 16000, 32000, 50000} training points at random with no
data augmentation and train using the Adam optimizer [41] with 0.001 learning rate.
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