
HRBP: Hardware-friendly Regrouping towards
Block-based Pruning for Sparse CNN Training

Haoyu Ma1∗, Chengming Zhang2*, Lizhi Xiang3*, Xiaolong Ma4,
Geng Yuan5, Wenkai Zhang1, Shiwei Liu6,7,8, Tianlong Chen9,10,11,
Dingwen Tao2, Yanzhi Wang12, Zhangyang Wang6, Xiaohui Xie1

1University of California, Irvine, 2Indiana University Bloomington, 3University of Utah,
4Clemson University, 5University of Georgia, 6University of Texas at Austin,

7Eindhoven University of Technology, 8University of Oxford, 9MIT, 10Harvard University,
11The University of North Carolina at Chapel Hill, 12Northeastern University

{haoyum3,wenkaiz1,xhx}@uci.edu, {czh5,ditao}@iu.edu, lxiang@cs.utah.edu,
xiaolom@clemson.edu, geng.yuan@uga.edu, s.liu3@tue.nl, tianlong@mit.edu,

yanz.wang@northeastern.edu, atlaswang@utexas.edu

Pruning at initialization and training a sparse network from scratch (sparse train-
ing) become increasingly popular. However, most sparse training literature ad-
dresses only the unstructured sparsity, which in practice brings little benefit to the
training acceleration on GPU due to the irregularity of non-zero weights. In this
paper, we work on sparse training with fine-grained structured sparsity, by extract-
ing a few dense blocks from unstructured sparse weights. For Convolutional Neu-
ral networks (CNN), however, the extracted dense blocks will be broken in back-
propagation due to the shape transformation of convolution filters implemented by
GEMM. Thus, previous block-wise pruning methods can only be used to acceler-
ate the forward pass of sparse CNN training. To this end, we propose Hardware-
friendly Regrouping towards Block-based Pruning (HRBP), where the grouping is
conducted on the kernel-wise mask. With HRBP, extracted dense blocks are pre-
served in backpropagation. Extensive experiments on CIFAR-10, CIFAR-100, and
ImageNet demonstrate that HRBP can almost match the accuracy of unstructured
sparse training methods while achieving a huge acceleration on hardware. Code is
available at https://github.com/HowieMa/HRBP-pruning.

1. Introduction
Convolutional Neural Networks (CNN) have accomplished enormous progress onmany computer
vision tasks, such as classification, detection, and segmentation. However, most successful models
are overparameterized and computationally extensive. The excessive computation usually requires
tedious training and makes it difficult to deploy into real applications. Network pruning [1–4],
which removes unnecessaryweights from the heavy densemodel, stands as one of themost effective
methods to compress a heavy model into a lightweight counterpart while maintaining its accuracy.
Conventional network pruning usually starts from pre-training a dense DNN model, and then uti-
lizes specific heuristics to prune the model parameters to obtain a sparse DNNmodel [2–4]. How-
ever, this paradigm is still inefficient as it needs to train the dense model first. The recent Lottery
Ticket Hypothesis (LTH) [5] suggests that a sparse network can be trained from scratch (sparse
training) to the same accuracy as its original dense model. Consequently, the tedious dense train-
ing is unnecessary. During the training process, The sparse structure (sparse mask) can either be
static [6–8] or dynamic [9–11]. Most sparse training methods [6–11] explore unstructured sparsity
only, where zero weights distribute irregularly. Although unstructured sparsity can maintain accu-
racy at a high sparsity ratio[8], it brings little training time reduction on modern hardware because
the irregular mask leads to poor data locality and low parallelism [12–14]. An alternative approach,

∗These authors contributed equally

First Conference on Parsimony and Learning (CPAL 2024).

structured sparsity [12, 15], where the entire filter or channel is pruned, is more hardware-friendly
and computationally efficient for sparse training [16, 17]. However, structured sparsity usually suf-
fers a notable accuracy drop when the pruning rate increases.
Recently, there has been a surge in popularity for fine-grained structured sparsity, which includes
pattern-based [18–20] and block-based [21] approaches, due to its ability to retain the benefits of
unstructured and structured sparsity. A few works have explored sparse training with fine-grained
structured sparsity based on the N: M sparsity [20, 22, 23], in which only N weights are non-zero
for every continuous M weight. The N: M transposable mask [24] further ensures that both the
weight matrix and its transpose follow the same sparsity pattern, which help accelerate both for-
ward and backward passes and the recent Bi-Mask [23] involves two different masks during the
sparse training. However, these methods require specialized hardware, i.e., the sparse tensor cores
[25]. Besides, the transposable mask cannot be directly applied to arbitrary CNN training. As
shown in Fig. 1, the general matrix multiplication (GEMM) implementation of CNN [26] on hard-
ware calculates the input gradient by first rotating each kernel and then performing a kernel-wise
transpose, instead of a straightforward transpose operation (See Sec. 3.1 for more detail). As a
result, it is possible that the transposable masks may not yield the expected speed-up during the
backward pass of the CNN. Meanwhile, the regrouping method [21, 27] extracts dense blocks by
grouping unstructured sparse weights. This approach has been shown to be effective in acceler-
ating computations on modern hardware. However, as shown in Fig. 2, the dense blocks that are
extracted during the forward pass of CNN are typically not preserved in the backward pass, which
limits the ability to accelerate backpropagation.
In this paper, we aim to accelerate the sparse training of CNNs using fine-grained structured spar-
sity through regrouping during both the forward and backward passes. Specifically, we propose
Hardware-friendly Regrouping towards Block-wise Pruning (HRBP), which performs the regroup-
ing algorithm on the kernel-wise mask. Thus, it has the ability to maintain the same dense blocks
at both forward and backward passes of CNN. Besides, HRBP extracts exclusive sparse pattern for
each group to achieve a more fine-grained sparsity. Additionally, all of the blocks extracted by
HRBP are of the same shape, which can help alleviate issues related to unbalanced workloads on
many-core GPUs [28]. We show that that static sparse training using HRBP can achieve nearly the
same accuracy as unstructured sparse training methods, while offering significant training acceler-
ation. Moreover, we propose a block-wise updating algorithm to facilitate the application of HRBP
in dynamic sparse training. Our main contributions are summarized as follows:

• Our analysis of CNN’s forward and backward pass using GEMM reveals that current fine-
grained structured pruning methods do not ensure accelerated backward propagation.

• We propose a novel Hardware-friendly Regrouping Block-wise Pruning (HRBP), which
accelerates both the forward and backward passes of CNN training by extracting dense
blocks from non-zero weights while preserving spatial regularity.

• Extensive experiments on CIFAR and ImageNet demonstrate that HRBP enables better ac-
curacy and hardware acceleration trade-offs in both static and dynamic sparse training.

2. Related work
2.1. Network Pruning
Pruning aims to compress overparameterized networks into lightweight ones. Based on the dis-
tribution of zero weights, it can be divided into three types: 1) Unstructured sparsity, where zero
weights are distributed at arbitrary locations based on the importance score of each weight. The
score can be obtained from magnitude [1–3, 29, 30], gradient [31, 32] or Hessian [1]. Unstructured
pruning can achieve high sparsity ratios while maintaining accuracy, but it is difficult to speed up
on hardware due to its irregularity. 2) Structured sparsity, where the weights of entire channels
are pruned. Earlier works [4, 12, 14, 15, 17] adopt mathematics-oriented regularization-based al-
gorithms to generate sparsity. Other works such as HRank [33], SCOP [34], and DMCP [35] use
complicated rules to generate the sparsity distribution in the channel level. As the sparse model

2

preserves the spatial regularity, the pruned convolution layers can be transformed to a full matrix
multiplication with reduced matrix size and accelerate computation on the hardware level. How-
ever, structured pruning suffers from significant accuracy loss as one entire activation map can be
zero. 3) Fine-grained structured sparsity, which includes pattern-based pruning[18–20] and block-
based pruning [21]. In pattern-based pruning [18], theweights can only be pruned to one of several
pre-defined sparse patterns. Thus, it is limited to a few pruning options and pruning ratios. On the
contrary, the block-based pruning [21] is more flexible as it directly extracts dense blocks from any
sparse weights. Thus, one single tedious sparse matrix multiplication can be achieved by carrying
out multiple small dense matrix multiplications with GeMM.

2.2. Sparse Training
Sparse training aims to train a pruned sparse network from scratch. Based on the mask updating
schemes, it is usually divided into two categories: 1) Static sparse training (SST), where the sparse
mask is obtained at the early stage of training and is fixed during the course of training. Previous
works obtain the sparse mask by random pruning or utilizing some saliency criteria, such as the
gradients of the training loss [6], gradient flow in GraSP [7], synaptic strengths in SynFlow [8],
Fisher information [36], etc. 2) Dynamic sparse training (DST), which starts from a random sparse
network. After optimizing several iterations, it prunes a portion of weights based on the pruning
criterion and grows new connections according to the grow criterion. Then the new sparse network
is trained until the next update. Specifically, SET [9] updates sparse masks by pruning weights
that have the least magnitude and grow back the same amount of inactivated weights in a random
fashion. RigL [10] proposes to update sparse masks by magnitude-based pruning and grow back
inactivatedweights by their gradients. DSR [37] and STR [38] design a dynamic reparameterization
method that allows weights to be re-distributed across layers by providing a global sparsity alloca-
tion dynamics. DeepR [39] combines dynamic sparse parameterization with stochastic parameter
updates for training, but it primarily targets small and shallow fully-connected networks. However,
most works in this area focus on unstructured sparsity only.

3. Preliminaries
3.1. Convolution Operation and Its Implementation
A 2D convolutional layer’s weights are defined asK ∈ RCO×CI×Kh×Kw , where CO, CI ,Kh andKw

are the number of output channels, the number of input channels, kernel height, and kernel width,
respectively. During the convolution operation, each filter Kc slides over the input feature map
I ∈ RCI×HI×WI , computing a weighted sum of the input values, resulting in one activation map
Oc ∈ RHO×WO . The CO filters perform CO times of convolution operations, generating the output
map O ∈ RCO×HO×WO . See Appendix A for a summary of all notations in this paper.
Forward pass with GEMM. On hardware, convolution operations are usually implemented using
general matrix-matrix multiplication (GEMM) [26]. The tensor is laid out in memory in either the
NCHW or NHWC format (See Appendix for more details). We take the NCHW format as an example. As
shown in Fig. 1 (a), for the input I, the im2col(·) operation flattens each convolution window of
the input and stacks them as columns in a matrix. Thus, the 2D input feature map I is unrolled into
an input matrixX = im2col(I) ∈ R(CIKhKw)×(HOWO). Meanwhile,K is reshaped and stored in the
weights matrix W ∈ RCO×(CIKhKw). The forward pass is calculated by Y = WX ∈ RCo×(HOWO),
and the 2D output map O is obtained by reshaping Y.
Backward pass with GEMM. Given the gradients of the 2D output map dO ∈ RCO×HO×WO , the
backpropagation involves two matrix multiplications. 1) Calculate the gradients w.r.t. the filters
dK, which is implemented by dW = dY · XT following dK = reshape(dW). 2) Calculate the
gradients w.r.t the input dI, which can be obtained by a full convolution between the kernel K
and dO [40]. In detail, as in Fig.1 (b), we conduct padding and im2col() operation on dO, and
obtain dY = im2col(dO) ∈ R(COKhKw)×(HIWI). Meanwhile, we flip each kernel first vertically and
then horizontally (i.e., 180◦ rotation) and perform the kernel-wise transpose to get the new kernel
layout K′. Then we reshape K′ to matrix W′ ∈ RCI×(COKhKw). Thus, the gradient is calculated by
dX = W′dY and finally reshaped to obtain dI.

3

a3 a2 a1 a0 b3 b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

im2col

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

padding

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dO

Kernels K

a3 a2
a1 a0

a3 a2
a1 a0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

180°
rotation

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

dO[0, ...]

dO[1, ...]

kernel-
wise

transpose

dY=im2col(dO)

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8
I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8
I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

a0 a1
a2 a3

a0 a1
a2 a3

a0 a1
a2 a3

b0 b1
b2 b3

b0 b1
b2 b3

b0 b1
b2 b3

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3
b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

O0 O1 O2 O3

O0 O1 O2 O3

X[0, ...] X[1, ...] X[2, ...]

Input I
im2col

X=im2col (I)

K0

K1

W

Y = W Xreshape

Kernels K
dX = W' dY

W'

(a) Forward (b) Backward

a0 b0
a1 b1
a2 b2
a3 b3
a0 b0
a1 b1
a2 b2
a3 b3
a0 b0
a1 b1
a2 b2
a3 b3

(c) WT

W' ≠ WT

a3 a2
a1 a0

a3 a2
a1 a0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

reshape

reshape

O0 O1

O2 O3

O0 O1

O2 O3

dI0 dI1 dI2

dI3 dI4 dI5

dI6 dI7 dI8

dI0 dI1 dI2

dI3 dI4 dI5

dI6 dI7 dI8

dI0 dI1 dI2

dI3 dI4 dI5

dI6 dI7 dI8

a0 a1
a2 a3

a0 a1
a2 a3

a0 a1
a2 a3

b0 b1
b2 b3

b0 b1
b2 b3

b0 b1
b2 b3

reshape

dI

CO = 2,CI = 3,Kh = Kw = 2

Figure 1: Implementation of forward and backward pass of convolution operationwithGEMM in NCHW layout.
Different color represents different channels. In the forward pass, the kernelsK are reshaped to matrixW. In
the backward pass, each filter is rotated 180◦ firstly, then the kernel-wise transpose is conducted to obtain the
new kernel layoutK′. ThenK′ is reshaped to matrixW′, which is different from the transposeWT .

Discussion. Previous works [24] calculate the gradient w.r.t the input by dX = WTdY for sim-
plicity, where WT ∈ R(CIKhKw)×CO , which is applicable for linear layers. However, this formu-
lation cannot be generalized to CNN. As in Fig.1 (c), WT is different from W′ in CNN. The only
case where they are the same is when Kh = Kw = 1, which reduces the CNN to a linear layer.
Thus, the backward pass of CNN cannot be linearly simplified to dX = WTdY in general. Con-
sequently, sparse patterns based on WT [24] may not yield the expected acceleration in arbitrary
CNN backpropagation.

3.2. Weight Regrouping on Unstructured Sparsity
Given a CNN fθ(·)with weights θ, a sparse subnetwork is defined by fθ⊙m̃(·), where m̃ ∈ {0, 1}|θ| is
the binarymask and⊙ is the element-wise product. In unstructured pruning, the zeros are unevenly
distributed in m̃. Thus, the entire weight matrix still needs to be maintained as a dense network,
making it difficult to reduce the computation of unstructured sparse weights on hardware. Even
with the help of the dedicated sparse matrix representation technique such as CSR format [41], the
unstructured sparsity still expects to have over 85% sparsity ratio to acquire limited acceleration
since the irregular weight distribution causes significant computation overhead due to poor data
locality [27]. The recent weight regrouping (reorganization) [21] can accelerate the unstructured
sparse weights on hardware by extracting multiple smaller dense blocks in a large sparse matrix,
which can improve the throughput with GEMM.

1 2 3
4 5 6

7 8 9 10
11 12 13

14 15

, , CI = 2 CO = 5 Kh = Kw = 2

1 2 3
4 5

11 12

7 10
13

14 15

2 1 5 4 8 7 11 14
3 6 10 9 13 12 15

(a) a pruned convolutional layer

CO × Kh × Kw

CICO

CI × Kh × Kw

W
W'

(c) same mask in backward propagation cannot be grouped

6
8 9

(b) weight regrouping

K0

K1

K2

K3

K4

0 1 2 3 4 5 6 7
K0

K1

K3

K2

K3

K4

0 2 5

1 7

0

1

K0 K1 K2 K3 K40 1 2 3 4 5 6 7
K0

K1

K2

K3

K4

grouping

grouping

Figure 2: Example of weight regrouping on convolutional operation. Indexed cells are non-zeros. Different
color represents different block groups. The extracted dense blocks in forward pass (b) cannot be kept in the
backward pass (c).

Implementation. Denote the binary mask of the weights of a CNN layer as m ∈ {0, 1}|W|. The
regrouping algorithm [21] finds similar rows and columns from the sparse weights matrixW⊙m
and brings them together into several dense blocks. The process begins by clustering CO rows ofm

4

CI

CO

CI

CO

3 3 2 1
3 3 2 1
1 3 3 2
1 3 3 2
3 1 2 3
3 1 2 3

CI

CO

CO

Kh ⋅ Kw

Backward

CO × (Kh ⋅ Kw)

CI

Forward

CO

sparse pattern finding
(block density)s

5 4 5 2

CO

Kh ⋅ Kw

unstructured mask m (density)r

count non-zero
kernel cells

kernel-wise mask m'

apply

refill
&

discard

keep

kernels

r
s

CICO grouping
2 5 4 5 6 0 6 4

Figure 3: Illustration of HRBP. White cell means zero weights. Given the unstructured mask (matrix with
yellow cell) with density r, HRBP first counts the number of non-zero cells of each kernel and extracts the
kernel-wise mask m′ (matrix with lavender cell) with density r

s
. The kernel-wise mask is then grouped into

dense blocks with equal shapes, with t = 3 groups being marked with blue, orange, and green. Furthermore,
exclusive sparse patterns of each block are extracted and applied to all kernels within the group.

into several groups based on the Jaccard similarity among non-zero columns. Each group is then
further processed by selecting columns with the most non-zero weights from all CIKhKw columns,
resulting in a single dense block for each group. For instance, in Fig. 2(a), filters K0, K1, and K3

can be grouped together, and columns with at least two non-zero weights (i.e., 0th, 2th, and 5th

columns) can be selected to form a dense block with an orange color, as illustrated in Fig. 2(b). The
remaining sparse weights, shown in green, are usually discarded [16].
Limitations. However, the regrouping algorithmcannot be applied to the training ofCNNdirectly.
Firstly, the extracted dense blocks are fragmentary in backward pass due to the transformation from
W toW′, making the backward acceleration unfeasible. An illustration is shown in Fig. 2(c), where
the cells of the dense block with orange color in W ⊙ m are scattered irregularly in W′. Besides,
the shapes of different dense blocks are arbitrary, which introduces imbalancedmemory access and
data locality. Thus, it makes the GPU suffer a great workload imbalance. Hence, a novel regrouping
methodology is needed to expedite the sparse training of CNN in forward and backward passes.

4. Methodology
4.1. Hardware-friendly Regrouping for Block-wise Pruning (HRBP)
Motivation. The issue of fragmentary blocks inCNNemerges from the independent consideration
of allCIKhKw columns, allowing a dense block to select arbitrary locations on the kernel across var-
ious different input channels. Ideally, the grouping algorithm should locate identical elements for
different input channels within one block. Naturally, whenKh = Kw = 1, the issue of fragmentary
blocks can be solved as the CNN reduces to a linear layer. Inspired by this property, we propose the
HRBP, which extracts dense blocks that can be kept in CNN backpropagation. HRBP upholds two
key properties: it conducts regrouping based on a kernel-wise mask and extracts exclusive sparse
patterns within each dense block.
Kernel-wise mask grouping. HRBP performs regrouping on the kernel-wise mask m′ ∈
{0, 1}CO×CI , instead of the unstructured mask m ∈ {0, 1}CO×(CIKhKw) as utilized in [21]. Specifi-
cally, given mask m with density ratio r, we first count the number of non-zero cells in each kernel
based on m. For example, the top-left kernel contains 3 non-zero cells. We subsequently derive a
kernel-wise mask denoted asm′ by retaining r

s kernels with the highest non-zero cell counts. Here,
s is the block-wise density (with s ≥ r and s ∈ {i/(Kh ∗ Kw)}Kh∗Kw

i=1), and a detailed illustration
will be presented later. Next, we cluster the CO rows of m′ into t groups of equal size based on the
Jaccard similarity [21]. For each group, we choose r

s · CI columns with the highest non-zero cell
counts. For instance, rows 1 and 2 are clustered together as a group, depicted in blue, and the initial
three columns from the left are kept. Finally, we extend the groupings obtained from m′ onto the
original element-wise mask m, resulting in the creation of dense blocks. As shown in Fig. 3, the

5

same dense blocks are maintained during backpropagation with the kernel-wise mask, enabling
the use of block-based sparse training in both forward and backward passes.
Exclusive block sparse pattern. Although the kernel-wisemask solves the backpropagation issue,
it either retains or discards all cells within a single kernel. This may produce a large number of
zero kernels, which can cause a significant reduction in accuracy [8]. Thus, we introduce the block
sparsity to achieve more fine-grained and diverse level of sparsity within each kernel and reduce
the number of zero kernels. Specifically, for each group, we count the number of non-zero weights
across all kernels within the group, and choose sKhKw cells with the highest number of non-zero
weights as an exclusive sparse pattern for the dense block. For instance, in Fig. 3, the blue group
contains six kernels, and each kernel has four cells. The number of non-zero weights for each cell is
5, 4, 5, and 2, respectively. Thus, we select the 1st, 2nd, and 3rd cell as a sparse pattern and apply it
to all kernels in the blue group, while select the 2nd, 3rd, and 4st cell for the orange group. In this
way, we obtain t dense blocks with an identical shape of Co

t × (rCIKhKw). See Appendix D for a
detailed pseudocode and Appendix E for hardware implementation.

Block-wise Grow Block-wise HRBP
x x

x x
x x

x x x
x x x

x

Block-wise Prune

Pruned weights Grown weights

3 3 3 1
3 2 3 0

kernel-wise mask

Figure 4: Block-wise updating for Dynamic Sparse Training. Take the block with blue color as an example, for
each row, we prune 2weights (crossed cells) based onmagnitude and grow back 2 inactivatedweights (darker
cells) based on gradients. We then rerun HRBP to identify a new dense block for each group by generating
kernel-wise masks to determine the kept kernels and applying pattern findings within each group.

4.2. Sparse Training with HRBP
Static Sparse Training with HRBP. Using HRBP, we are able to extract dense blocks from any
form of sparse weights, resulting in a practical acceleration of both forward and backward passes
during sparse training. In static sparse training, the sparse maskm is generated before training. To
simplify the process, we by default apply HRBP to a random unstructured mask to obtain dense
blocks. This is equivalent to randomly dividing the CO rows into t equal groups and keeping rCI

channels random for each group since the initial mask is random. We name this special random
sparse pattern as HRBP-based Random Mask. The Erdős–Rényi-Kernel (ERK) approach [10] is used
to determine the sparse ratio of each layer, which allocates higher sparsity to larger layers compared
to smaller ones within a network.
Dynamic Sparse Training with HRBP. In SST, HRBP identifies exclusive sparse patterns within
each group using initial randommasks, which may not result in optimal connections. Thus, we can
leverage DST to further enhance connectivity during the training time. We follow the widely-used
update mechanism from RigL [10], which prunes weights based on their magnitude and grows
weights based on their gradients. However, one drawback of the RigL approach is that it updates
connections at arbitrary locations, which could potentially destroy the extracted dense blocks in
HRBP. To address this issue, we propose block-wise updating, which preserves the groups of rows
(filters) and only updates the column-wise masks within each group. Specifically, as illustrated
in Fig. 4, we first prune d% weights based on their magnitude and subsequently grow back new
weights by d% based on their gradient for each row. Then, for each group, we rerun the HRBP on
the updated weights to extract one dense block.
5. Experiments
5.1. Experimental Setups
Dataset & Networks. We follow the settings in [7, 27] and conduct experiments on CIFAR-10,
CIFAR-100 and ImageNet-1K [42]. By default, we apply the WideResNet-32-2, WideResNet-56-2,
and VGG-19 [43] for CIFAR-10/100 and ResNet-50 [44] for ImageNet.

6

Training. For CIFAR-10/100, we use a batch size of 128 and train networks with SGD optimizer
for 160 epochs. The learning rate is set to 0.1 initially and is decayed by a factor of 0.1 at the 80th
and 120th. Moreover, we run each experiment 3 times and report the mean value and standard
derivation. For ImageNet, we adopt the Pytorch official implementation and train the networks for
100 epoch as [7]. The learning rate is 0.1 initially and is decayed at 30-th, 60-th, and 90-th epoch
with factor 0.1. For sparse training, we set the number of dense blocks t to 8 [21] and the block
density s to 4

9 for all 3× 3 kernels. The minimum size of a block B1 is set to 8 [21].
Hardware. We evaluate our method on NVIDIA Ampere A100 (108 SMs, 40GB). The versions of
CUDA and cuDNN are 11.0.0 and 8.0.4, respectively. We adopt the GEMM-based convolution, i.e.,
CUDNN_CONVOLUTION_FWD_ALGO_GEMM [26] as the baseline implementations of sparse convolution
operations. We report the overall training time acceleration rate, which is determined by comparing
the end-to-end training time in practice of sparse networks with that of the dense models. This
encompasses both the forward and backward computations on the hardware.

50 60 70 80 90
Sparsity /%

86

88

90

92

94

96

A
cc

ur
ac

y
/%

Dense
Random Unsructured Pruning
Random Structured Pruning
HRBP

(a) VGG-19

50 60 70 80 90
Sparsity /%

86

88

90

92

94

96
A

cc
ur

ac
y

/%

Dense
Random Unsructured Pruning
Random Structured Pruning
HRBP

(b) ResNet-32

50 60 70 80 90
Sparsity /%

86

88

90

92

94

96

A
cc

ur
ac

y
/%

Dense
Random Unsructured Pruning
Random Structured Pruning
HRBP

(c) ResNet-56

Figure 5: The trade-off between sparsity and accuracy. All models are evaluated on CIFAR-10. Each line on
the graph represents the mean value of three experimental runs, while the shaded area around it represents
the variance among those three experiments.

5.2. Static Sparse Training with HRBP
Table 1: Comparison of static sparse training methods on CIFAR-10 and CIFAR-100. The number in brackets
is the relative end-to-end training time speedup compared to a dense model.
Network ResNet-32 VGG-19
Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Dense 94.80 74.64 94.23 74.16
Sparsity 90% 95% 90% 95% 90% 95% 90% 95%
RU 92.81±0.19 (1.0x) 91.38 ±0.04 69.48±0.21 (1.0x) 67.03±0.66 (1.0x) 92.91±0.10 (1.0x) 91.91±0.13 (1.0x) 70.39±0.43 (1.0x) 68.63±0.40 (1.0x)
LTH [5] 92.31 (1.0x) 91.06 (1.0x) 68.99 (1.0x) 65.02 (1.0x) 93.51 (1.0x) 92.92 (1.0x) 72.78 (1.0x) 71.44 (1.0x)
SNIP [6] 92.59 (1.0x) 91.01 (1.0x) 68.89 (1.0x) 65.22 (1.0x) 93.63 (1.0x) 93.43 (1.0x) 72.84 (1.0x) 71.83 (1.0x)
GraSP [7] 92.38 (1.0x) 91.39 (1.0x) 69.24 (1.0x) 66.50 (1.0x) 93.30 (1.0x) 93.04 (1.0x) 71.95 (1.0x) 71.23 (1.0x)
RC 90.27±0.24 (1.5x) 87.19±0.48 (1.6x) 62.71±0.22 (1.5x) 56.33 ±0.37 (1.6x) 90.84±0.38 (1.7x) 87.12±0.18 (1.8x) 59.61±0.52 (1.7x) 49.31±1.17 (1.8x)
Grouping [21] 91.63±0.11 (1.1x) 90.77±0.07 (1.2x) 66.97±0.18 (1.1x) 64.35±0.45 (1.2x) 92.81±0.25 (1.2x) 91.86±0.24 (1.2x) 70.52±0.36 (1.2x) 68.60±0.08 (1.2x)
HRBP 92.30±0.20 (1.4x) 90.84±0.41 (1.6x) 69.22±0.50 (1.4x) 65.94±0.25 (1.6x) 92.88±0.12 (1.4x) 91.66±0.14 (1.9x) 70.25±0.29 (1.4x) 67.89±0.49 (1.9x)

Accuracy. Aswe by default extract dense blocks withHRBP from randomunstructuredmasks, our
HRBP-based random mask belongs to the random pruning family. Consequently, we can make a
fair comparison of our methodwith random unstructured pruning (RU) [45] and random channel-
wise (structured) pruning (RC) with an ERK layer-wise ratio. We vary the sparsity ratio 1 − r
from 50% to 95% to explore the trade-off between sparsity and the accuracy of different methods.
Fig. 5 demonstrates that, across all sparsity levels, HRBP achieves comparable performance to ran-
dom unstructured pruning techniques and significantly outperforms random channel-wise prun-
ing. Moreover, we compare HRBP on static sparse training against several unstructured pruning
techniques with well-defined criteria including SNIP [6] and GraSP [7] and LTH [5]. We also eval-
uate the vanilla regrouping method [21] as a baseline, even if it fails to accelerate the backpropaga-
tion. We are super interested in the accuracy at large sparsity ratios and thus we follow [7] and set
the sparsity ratio to 90% and 95%. The results are summarized in Table 1. HRBP can still achieve
similar performance as these carefully designed unstructured pruning approaches. For example,
on CIFAR-10 with ResNet-32, HRBP achieves an accuracy of 90.84% at 95% sparsity, which is 3.65%
higher than RC and just 0.17% negligible drop to SNIP [6]. Besides, HRBP usually outperforms

7

50 60 70 80 90
Sparsity /%

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A
cc

el
er

at
io

n
ra

te
 /

tim
es

ResNet-32
HRBP
Structured pruning
Unstructured pruning
Regrouping

50 60 70 80 90
Sparsity /%

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A
cc

el
er

at
io

n
ra

te
 /

tim
es

VGG-19
HRBP
Structured pruning
Unstructured pruning
Regrouping

Figure 6: End-to-end training acceleration rate v.s.
sparsity ratio of different sparsity schemes.

Overall
(90%)

C2
32%

C3
49%

C4
66%

C5
74%

C6
83%

C7
83%

C8
83%

C9
87%

C10
91%

C11
91%

C12
91%

C13
91%

C14
91%

C15
91%

C16
91%

0

1

2

3

4

5

6

7

8

A
cc

el
er

at
io

n
R

at
e

Channel-wise
HRBP

Figure 7: The layer-wise speedup of VGG-19 at
inference time. The number in brackets is the cor-
responding sparsity.

the vanilla grouping method [21], despite its additional constraints on the shape of dense blocks.
Overall, sparse training with HRBP can still match the accuracy of unstructured pruning methods
at almost all sparsity levels.
Acceleration Rate. We then evaluate the end-to-end training acceleration rate, which includes
both forward and backward execution time, and show results in Fig. 6. We observe that HRBP out-
performs the vanilla regrouping [21], as the latter only accelerates the forward pass. Remarkably,
at large sparsity ratios, HRBP can nearly match the acceleration rate of channel-wise pruning with
the benefit of our optimized convolution implementation. In contrast, structured pruning is more
effective at lower sparsity ratios, as it directly reduces the weight matrix size. We also investigate
the acceleration of each convolutional layer during inference to gain amore detailed understanding.
Results are presented in Fig. 7 for VGG-19with 90% sparsity as an illustration. Similarly, we observe
that channel-wise pruning results in slightly better acceleration at shallow layers with small spar-
sity ratios. However, at deeper layers with larger sparsity ratios, HRBP achieves comparable or even
superior results. This finding is consistent with the conclusion of [21] that block-based pruning is
more effective for large kernels and high sparsity ratios. Noticeably, cuDNN is only optimized for
kernel matrices with a multiple of 32 rows [26]. Hence, structured pruning with an arbitrary num-
ber of channels does not guarantee better acceleration [21]. In summary, HRBP technique yields
comparable accuracy to unstructured pruning while simultaneously accelerating training time on
hardware. As a result, our approach presents a superior balance between accuracy and hardware
acceleration, especially for high sparsity ratios.
Results on ImageNet. To investigate the scalability of our method, we assess SST with HRBP on
ImageNet. Following [6, 7], we set the sparse ratio to 60% and 80%. As shown in Table 2, HRBP can
also achieve similar performance as unstructured pruning methods with well-defined criteria. It
provides 1.26× end-to-end training acceleration on hardware when the pruning ratio is 80%. Thus,
HRBP continues to be efficient for intricate real-world tasks.

Table 2: SST on ImageNet. The dense ResNet-50 has 75.70% top-1 accuracy.
Sparsity 60% 80%
Accuracy top-1 top-5 top-1 top-5
SNIP [6] 73.95 (1.0×) 91.97 69.67 (1.0×) 89.24
GraSP [7] 74.02 (1.0×) 91.86 72.06 (1.0×) 90.82
HRBP 74.84 (1.17×) 92.35 70.90 (1.26×) 89.93

5.3. Dynamic Sparse Training with HRBP
We further explore DSTwithHRBP,which allowsmask updating during training time. We compare
DST with HRBP to several unstructured DST methods, including DeepR [39], DSR [37], SET [9],
and RigL [10]. We follow all sparse training hyperparameters in [10]. As the speedup is similar to

8

SST, we only show the accuracy comparison in Table 3 for simplicity. Noticeably, HRBP with block-
wise updating can still match the accuracy of several unstructured DST methods. One potential
reason is that the mask updating mechanism of HRBP has a smaller mask diversity [24] than the
unstructured pruning.

Table 3: Comparison of DST methods on CIFAR-10/100.

Network ResNet-32 VGG-19
Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Sparsity 90% 95% 90% 95% 90% 95% 90% 95%
Deep-R [39] 91.62 89.84 66.78 63.90 90.81 89.59 66.83 63.46
DSR [37] 92.97 91.61 69.63 68.20 93.75 93.86 72.31 71.98
SET [9] 92.30 90.76 69.66 67.41 92.46 91.73 72.36 69.81
RigL [10] 92.84±0.13 92.02±0.29 70.98±0.30 68.50±0.15 93.15±0.09 92.30±0.43 71.63±0.28 69.13±0.46

HRBP 92.72±0.23 91.25±0.12 69.51±0.52 66.41±0.30 93.07±0.12 91.79±0.18 70.49±0.19 68.04±0.37

5.4. Ablation Studies
Block density ratio s. ResNet-32 on CIFAR-10 is used as an example to investigate the impact
of the block sparse ratio s in HRBP. Typically, a smaller s introduces more non-zero kernels but
inevitably reduces the number of non-zero weights within each kernel. Since most kernels have a
shape of 3 × 3, we explore s from 1

9 to 9
9 . As shown in Fig. 8, a smaller s usually leads to slightly

better accuracy, particularly for networks with high sparsity, since smaller values of s can retain
more non-zero kernels.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Block Density Ratio s

89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

A
cc

ur
ac

y

Sparsity: 90%
Sparsity: 95%

Figure 8: Ablation on kernel dense ratio s.

50 60 70 80 90
Sparsity

90

92

94

A
cc

ur
ac

y

Dense
HRBP with SNIP mask
HRBP with uniform random mask
HRBP with GraSP mask
HRBP with ERK random mask (default)

Figure 9: Ablation on mask initialization.

Mask initialization methods. We by default apply our method to random unstructured sparse
mask with ERK sparse ratio distribution. To investigate the impact of various sparse mask initial-
izations, we apply HRBP to three alternative unstructured masks: 1) random mask with uniform
sparse ratio, 2)mask from SNIP [6], and 3)mask fromGraSP [7]. The results with different sparsity
levels are shown in Fig. 9. Noticeably, with SNIP and GraSP masks, HRBP can also achieve compa-
rable accuracy at the same sparsity level. With uniform sparsity, the accuracy is slightly lower. This
is consistent with the conclusion in [10] that ERK sparsity is beneficial. In general, HRBP exhibits
robustness to different types of mask initialization.

6. Conclusion
This paper reveals that existing regrouping techniques in sparse CNN training are incapable of
ensuring backward acceleration. To this end, we propose the HRBP, aiming to accelerate the sparse
CNN training at both forward and backward passes. Experimental results suggest that our method
can achieve comparable accuracy with unstructured pruning methods at large sparse ratios and
brings significant training acceleration on hardware.
Acknowledgement
This work is partly supported by the National Science Foundation CCF-2312616.

9

References
[1] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural

information processing systems (NeurIPS), pages 598–605, 1990.
[2] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[3] Song Han, Jeff Pool, John Tran, andWilliam Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems (NeurIPS), pages
1135–1143, 2015.

[4] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[5] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations (ICLR), 2019.

[6] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations (ICLR),
2019.

[7] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

[8] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural net-
works without any data by iteratively conserving synaptic flow. Advances in Neural Information
Processing Systems (NeurIPS), 33:6377–6389, 2020.

[9] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science. Nature communications, 9(1):1–12, 2018.

[10] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the
lottery: Making all tickets winners. In International Conference onMachine Learning, pages 2943–
2952. PMLR, 2020.

[11] Shiwei Liu, LuYin, Decebal ConstantinMocanu, andMykola Pechenizkiy. Dowe actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pages 6989–7000. PMLR, 2021.

[12] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 1389–
1397, 2017.

[13] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally. Ex-
ploring the regularity of sparse structure in convolutional neural networks. arXiv preprint
arXiv:1705.08922, 2017.

[14] WeiWen, ChunpengWu, YandanWang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. In Advances in neural information processing systems (NeurIPS), pages
2074–2082, 2016.

[15] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE international conference on computer vision, pages 2736–2744, 2017.

[16] Tianlong Chen, Xuxi Chen, Xiaolong Ma, Yanzhi Wang, and Zhangyang Wang. Coarsening
the granularity: Towards structurally sparse lottery tickets. ICML, 2022.

10

[17] Yanwei Fu, Chen Liu, Donghao Li, Xinwei Sun, Jinshan Zeng, and Yuan Yao. Dessilbi: Ex-
ploring structural sparsity of deep networks via differential inclusion paths. In International
Conference on Machine Learning, pages 3315–3326. PMLR, 2020.

[18] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma, Bin Ren, and Yanzhi
Wang. Pconv: Themissing but desirable sparsity in dnnweight pruning for real-time execution
on mobile devices. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 5117–5124, 2020.

[19] Wei Niu, Xiaolong Ma, Sheng Lin, ShihaoWang, Xuehai Qian, Xue Lin, Yanzhi Wang, and Bin
Ren. Patdnn: Achieving real-time dnn execution onmobile devices with pattern-based weight
pruning. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 907–922, 2020.

[20] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In
International Conference on Learning Representations (ICLR), 2021.

[21] Masuma Akter Rumi, Xiaolong Ma, Yanzhi Wang, and Peng Jiang. Accelerating sparse cnn
inference on gpus with performance-aware weight pruning. In Proceedings of the ACM Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages 267–278, 2020.

[22] Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nelson, Henk Corporaal,
et al. Dominosearch: Find layer-wise fine-grained n: M sparse schemes from dense neural
networks. Advances in Neural Information Processing Systems (NeurIPS), 34:20721–20732, 2021.

[23] Yuxin Zhang, Yiting Luo, Mingbao Lin, Yunshan Zhong, Jingjing Xie, Fei Chao, and Rongrong
Ji. Bi-directional masks for efficient n: M sparse training. ICML, 2023.

[24] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Ac-
celerated sparse neural training: A provable and efficient method to find n: m transposable
masks. Advances in Neural Information Processing Systems (NeurIPS), 34:21099–21111, 2021.

[25] Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. Sparse tensor core: Algorithm and hard-
ware co-design for vector-wise sparse neural networks on modern gpus. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 359–371, 2019.

[26] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

[27] Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong,
Zheng Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse
training framework on the edge. Advances in Neural Information Processing Systems (NeurIPS),
34, 2021.

[28] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. Dynamic load balancing
on single-andmulti-gpu systems. In 2010 IEEE International Symposium on Parallel &Distributed
Processing (IPDPS), pages 1–12. IEEE, 2010.

[29] Dongkuan Xu, Ian EH Yen, Jinxi Zhao, and Zhibin Xiao. Rethinking network pruning–under
the pre-train and fine-tune paradigm. NAACL, 2021.

[30] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878, 2017.

[31] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep
neural networks. In International Conference onMachine Learning, pages 2498–2507. PMLR, 2017.

11

[32] Pavlo Molchanov, ArunMallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estima-
tion for neural network pruning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 11264–11272, 2019.

[33] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and
Ling Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1529–1538, 2020.

[34] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu.
Scop: Scientific control for reliable neural network pruning. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[35] ShaopengGuo, YujieWang, Quanquan Li, and Junjie Yan. DMCP:DifferentiableMarkov chan-
nel pruning for neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1539–1547, 2020.

[36] Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[37] Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural
networks by dynamic sparse reparameterization. In Proceedings of the International Conference
on Machine Learning (ICML), pages 4646–4655, 2019.

[38] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
Proceedings of the International Conference on Machine Learning (ICML), pages 5544–5555, 2020.

[39] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring:
Training very sparse deep net-works. In International Conference on Learning Representations
(ICLR), 2018.

[40] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recogni-
tion. Neural computation, 1(4):541–551, 1989.

[41] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leiserson. Paral-
lel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks. In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and archi-
tectures, pages 233–244, 2009.

[42] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

[43] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[44] KaimingHe, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
tion. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[45] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang
Wang, and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return
of the most naive baseline for sparse training. In International Conference on Learning Represen-
tations (ICLR), 2022.

[46] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

12

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems (NeurIPS), 30, 2017.

[48] Hugo Touvron, Matthieu Cord, Matthijs Douze, FranciscoMassa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
ICML, pages 10347–10357, 2021.

13

A. Notations

In this section, we summarize all mathematical notations in this paper to help understand the mo-
tivation and the operation clearly.

Table 4: Summary of notations in this paper.

Notation Range Definition
CI N+ Number of input channels
CO N+ Number of output channels
Kh N+ Kernel height
Kw N+ Kernel width
HI N+ Height of input 2D feature map
WI N+ Width of input 2D feature map
HO N+ Height of output 2D feature map
WO N+ Width of output 2D feature map
C′

I N+ Number of input channels in simplicity form
K RCO×CI×Kh×Kw

Kc RCI×Kh×Kw One filter
K′ RCI×CO×Kw×Kh 2D convolutional weights in backward pass
I RCI×HI×WI 2D input feature map
O RCO×HO×WO 2D output feature map
dI RCI×HI×WI Gradients w.r.t. the 2D input feature map
dO RCO×HO×WO Gradients w.r.t. the 2D output feature map
dK RCO×CI×Kh×Kw Gradients w.r.t. the kernels
W RCO×(CIKhKw) Convolutional weights in GeMM (weights matrix)
WT R(CIKhKw)×CO Transpose of weights matrix
W′ RCI×(COKhKw) Convolutional weights of backward pass in GeMM
X R(CIKhKw)×(HOWO) Input feature map in GeMM
Y RCO×(HOWO) Output feature map in GeMM
dY R(COKhKw)×(HIWI) Gradients w.r.t. the output feature map in GeMM
dW RCO×HO×WO Gradients w.r.t. the Convolutional weights in GeMM
dX RCI×(HIWI) Gradients w.r.t. the input feature map in GeMM
m RCO×(CIKhKw) the binary mask of weights matrix W
m′ RCO×CI kernel-wise mask
r [0, 1] dense ratio of one convolutional kernels
t N+ number of groups (dense blocks)
s [r, 1] ∩ {i/(KhKw)}KhKw

i=1 dense ratio of each kernel with sizeKhKw

B. Applicability to depth-wise CNNs.

Besides the regular convolutional network, we further evaluate ourmethod onMobileNetV2 (dense
accuracy 90.56%) to verify its effectiveness on depth-wise CNN, which can be viewed as multiple
convolutions with an input channel of CI = 1. In Tab. 5, HRBP still achieves comparable accuracy
as SNIP.

Table 5: Static sparse training on MobileNetV2

Sparsity 80% 90% 95%
SNIP 90.20% 88.54% 83.36%
HRBP 90.54% 88.20% 83.50%

14

C. Results on transformers
Recently, the ViT [46] shows that transformers [47] also play an important role in computer vi-
sion tasks. The transformer encoder contains a self-attention module and an MLP layer. Given
an input sequence X̃, the self-attention applies three linear transformations to obtain the query
Q̃ = W̃qX̃, the key K̃ = W̃kX̃, and the value Ṽ = W̃vX̃, respectively. Then the output is obtained

by Ỹ = Softmax(Q̃K̃T

√
d

)Ṽ, where d is the embedding dimension. Thus, all calculations of trans-
formers with learnable weights are linear projections. To this end, the general form dX = WTdY
for the gradient w.r.t. the input is suitable for transformers in the backward pass and we can keep
the same dense blocks at both forward and backward pass for sparse training of transformers.
Although the transformer does not encoder the shape transformation issues like CNN, we further
apply our method on DeiT-Tiny [46, 48] to show that the dense-block-based method is also effec-
tive in the training of transformers. The dense model of DeiT-Tiny can achieve 72.2% accuracy on
ImageNet. With HRBP, we can achieve 72.7% accuracy with 60% sparsity.

D. Algorithm summary of HRBP
In this section, we summarize the detailed implementation of HRBP in Algorithm 1.

Algorithm 1 HRBP
Input: unstructured maskm, density ratio of mask r, number of clusters t, density ratio of kernel
s, number of input channelCI , the number of output channelCO, the width of the kernelKw, the
height of the kernel Kh, and the minimum number of rows of each group B1

Output: Dense groups
Obtain kernel-wise mask m′ based on the number of non-zero cells within each kernel of m;
Divide the rows in m′ into t equal-shape groups {g1, g2, ..., gt} with hypergraph partitioning;
for gi ∈ {g1, g2, ..., gt} do
if gi has no less than B1 rows then

Sort columns of gi from high to low based on the number of non-zero cells of each column;
Select the r

sCI columns with the most number of non-zero;
Extract the corresponding kernels K based on selected columns in gi;
Count the non-zero weights of each cell based on all kernels in K;
Select sKhKw cells with the most number of non-zero weights as the pattern P ;
Apply pattern P to all kernels K and output them as a dense group;

end if
end for

E. HRBP Hardware Implementation
We implement our method with CUDA and measure the acceleration rate on GPU. In detail, we
rewrite the nn.Conv2d module of Pytorch with CUDA to run CNN with sparse weights. In CUDA
programming, threads serve as the basic programmable unit and allowGPU programmers to lever-
age massive numbers of CUDA cores. These threads are grouped at different levels such as warp,
block, and grid. HRBP decomposes the original convolution computation into several computations
corresponding to dense blocks, and these computations will be performed in parallel by threads.
As the extracted dense blocks fromHRBP have the same shape, in our kernel design, a thread block
only processes the output channels of the same group, which enables us to have better reuse of
the input data (e.g., the input data can be loaded to shared memory which can be accessed by all
the threads inside a thread block). Inside a thread block, each thread is responsible for one por-
tion of the output on (X,Y) dimension which further helps us to achieve good data reuse of the
kernel weight (kernel weight can also be put into shared memory). We also applied tiling across
both height and width dimension of the input channel to increase the number of launched thread
blocks, which further increases the parallelism level. The tiling size plays a significant role of the

15

performance. A small tiling size can increase the parallelism level, while a big tiling size will pro-
vide better reuse of the weight data. Thus, finding a good tile size for a given problem is non-trivial.
A simple but powerful method is brute force search, it guarantees to find out the best tiling size for
specific hardware. In our design, input data are put into shared memory and can be accessed by
all thread block to improve the data reuse. In the meantime, the cost by using brute force search is
very low because most of the undesired tiling size candidates are discarded in order to satisfy the
usage requirement of the shared memory.

I0 I1 I2
I3 I4 I5
I6 I7 I8

a0 a1
a2 a3

Input X Kernels K

O0 O1

O2 O3

Output O

dO0 dO1

dO2 dO3
a3 a2
a1 a0

dI0 dI1 dI2

dI3 dI4 dI5

dI6 dI7 dI8

dO0 dO1

dO2 dO3

Kernels K'
(rotation)180o

Gradient w.r.t output

a3 a2

a1 a0

Gradient w.r.t. input

dO0 dO1

dO2 dO3

a3 a2

a1 a0

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

a3 a2

a1 a0

padding

Figure 10: Illustration of the full convolution between the rotated kernels K′. For simplicity, we use dO to
represent ∂L

∂O
.

F. Mathematical Analysis of CNN backward propagation
In this section, we give a detailed mathematical analysis of the CNN backward pass to show the
reason for the transformation in the calculation of gradient w.r.t. the input. For simplicity, we as-
sume that the number of input channels CI is 1, the number of output channels CO is 1, the stride
is 1, and there is no padding operation in the forward pass. Thus, given the inputX ∈ RHI×WI and
the filter K ∈ RKh×Kw , in the forward pass of CNN, the output O ∈ RHO×WO is calculated by:

Oi,j =

Kh∑
m=1

Kw∑
n=1

Km,nXi+m,j+n, (1)

where 1 ≤ i ≤ HO and 1 ≤ j ≤ WO. As there is no padding operation and the stride is 1, we have
HO = HI −Kh+1 andWO = WI −Kw+1. In the backward pass, given the gradients of the output
∂L

∂O
, based on the chain rule, the gradient w.r.t. each input pixel is calculated by:

∂L

∂Xa,b
=

HO∑
i=1

WO∑
j=1

∂L

∂Oi,j

∂Oi,j

∂Xa,b
, (2)

where 1 ≤ a ≤ HI and 1 ≤ b ≤ WI , and
∂Oi,j

∂Xa,b
can be obtained by taking the difference on both sides

of Equation 1. Thus, when input pixel Xa,b contributes to the output pixel Oi,j ,
∂L

∂Oi,j
contributes

to the gradient of ∂L

∂Xa,b
. In practice, Equation 2 can be represented as a full convolution between a

180-degree rotated filter K′ and the gradient on the output.
Considering a specific example where the input has shape HI = WI = 3, and the kernel has size
Kh = Kw = 2, as shown in Figure 10. For simplicity, we set CI = CO = 1. In the forward, based on
Equation 1, we have:

O0 = I0 ∗ a0 + I1 ∗ a1 + I3 ∗ a2 + I4 ∗ a3

16

O1 = I1 ∗ a0 + I2 ∗ a1 + I4 ∗ a2 + I5 ∗ a3
O2 = I3 ∗ a0 + I4 ∗ a1 + I6 ∗ a2 + I7 ∗ a3
O3 = I4 ∗ a0 + I5 ∗ a1 + I7 ∗ a2 + I8 ∗ a3

TakeO0 as an example, the gradient w.r.t. I0, I1, I3, and I4 are
∂O0

∂I0
= a0,

∂O0

∂I1
= a1,

∂O0

∂I3
= a2, and

∂O0

∂I3
= a3 respectively. Based on Equation 2, we can obtain the gradient of each input pixel:

∂L

∂I0
=

∂L

∂O0
∗ a0

∂L

∂I1
=

∂L

∂O0
∗ a1 +

∂L

∂O1
∗ a0

∂L

∂I2
=

∂L

∂O1
∗ a1

∂L

∂I3
=

∂L

∂O0
∗ a2 +

∂L

∂O2
∗ a0

∂L

∂I4
=

∂L

∂O0
∗ a3 +

∂L

∂O1
∗ a2 +

∂L

∂O2
∗ a1 +

∂L

∂O3
∗ a0

∂L

∂I5
=

∂L

∂O1
∗ a3 +

∂L

∂O3
∗ a1

∂L

∂I6
=

∂L

∂O2
∗ a2

∂L

∂I7
=

∂L

∂O2
∗ a3 +

∂L

∂O3
∗ a2

∂L

∂I8
=

∂L

∂O3
∗ a3

As in Figure 10, we can perform a convolution operation between the 180-degree rotated kernels and
the gradient w.r.t output ∂L

∂O
with zero padding. Note that, zero padding on the output is necessary

as we need to ensure the product of this full convolution has the same shape as the input.

G. Forward and Backward pass in NCHW and NHWC layout
NCHW and NHWC data layout formats are two common types of cuDNN tensors arrangement in mem-
ory [26]. These two layouts produce the same shape matrix and the same outputs. The only differ-
ence is the order of element in the flattened tensor, as shown below:
NCHW layout As shown in Fig. 11(a), in forward pass, the flattened tensor W begins with the
first input channel (green color), the elements are arranged contiguously in row-major order (i.e.,
a0, a1, a2, a3with green color for the kernelK in forward). Then, it continues with second (orange
color) and subsequent channels until the elements of all the channels are laid out.
NHWC layout As shown in Fig. 11(c), in the forward pass, the flattened tensor W begins with the
first element of the first input channel (i.e., a0 with green color for K), then proceed to the first
element of the second input channel (i.e., a0 with orange color for K), and so on, until the first
elements of all theC channels are laid out. Next, select the second element of the first input channel
(i.e., a1 with green color for K), then proceed to the second element of the second input channel
(i.e., a1with orange color forK), and so on, until the second element of all the channels is laid out.

17

a3 a2 a1 a0 b3 b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0

im2col
dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

Kernels K'
(after rotation
& transpose)

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

dO[0, ...] dO[1, ...]

dY=im2col(dO)

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8
I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8
I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

a0 a1
a2 a3

a0 a1
a2 a3

a0 a1
a2 a3

b0 b1
b2 b3

b0 b1
b2 b3

b0 b1
b2 b3

O0 O1 O2 O3

O0 O1 O2 O3

X[0, ...] X[1, ...] X[2, ...]

Input I
im2col

X=im2col (I)

K0

K1

W Y = W Xreshape

Kernels K

dX = W' dY

W'

(a) Forward pass with NCHW layout

a3 a2
a1 a0

a3 a2
a1 a0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

dO

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I3 I4
I0 I1 I3 I4
I0 I1 I3 I4
I1 I2 I4 I5
I1 I2 I4 I5
I1 I2 I4 I5
I3 I4 I6 I7
I3 I4 I6 I7
I3 I4 I6 I7
I4 I5 I7 I8
I4 I5 I7 I8
I4 I5 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

a0 a1
a2 a3

a0 a1
a2 a3

a0 a1
a2 a3

b0 b1
b2 b3

b0 b1
b2 b3

b0 b1
b2 b3

O0 O1 O2 O3

O0 O1 O2 O3

X[0, ...] X[1, ...] X[2, ...]

Input I
im2col

X=im2col (I)

K0

K1

Y = W Xreshape

Kernels K

a0 a0 a0 a1 a1 a1 a2 a2 a2 a3 a3 a3
b0 b0 b0 b1 b1 b1 b2 b2 b2 b3 b3 b3

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3
b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

reshape

a3 b3 a2 b2 a1 b1 a0 b0
a3 b3 a2 b2 a1 b1 a0 b0
a3 b3 a2 b2 a1 b1 a0 b0

im2col
dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dX = W' dY

W'

reshape

Kernels K'
(after rotation
& transpose)

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

dO[0, ...] dO[1, ...]

a3 a2
a1 a0

a3 a2
a1 a0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

dO

W

(b) Backward pass with NCHW layout

(c) Forward pass with NHWC layout (d) Backward pass with NHWC layout

Figure 11: Illustration of GeMMwith NCHW and NHWC format. Different colors represent different channels.

H. N:M Transposable Mask in the Backward of CNN
As suggested in [20], the N:M sparsity The N:M transposable mask [24] guarantees that both the
weights matrix W and its transpose WT follow the same sparsity pattern. This design works well
for linear layers, whose forward pass is calculated with Y = WX and backward pass is calculated
with dX = WT dY . However, the implementation of CNN with GEMM is different. Specifically,
we haveW ∈ RCO×(CIKhKw) for the weights matrix of CNN. In the backward pass, CNN flips each
kernel first vertically and then horizontally and performs the kernel-wise transpose. Thus, WT ∈
R(CIKhKw)×CO is different from the matrix W′ ∈ RCI×(COKhKw) in the backward pass of CNN in
most cases. Nevertheless, this N:M transposable mask can still accelerate the CNN backward under
some conditions.
Layout. The first requirement is the layout of the weights in the memory. For example, suppose
N = 2, M = 4, the size of the input channel is CI = 4 and the size of the output channel is CO = 4.
Thus, we can divide the kernel matrix W ∈ R4×(4×3×3) into several 4 × 4 blocks. As shown in
Fig. 12(a)(b), when we store kernels with NHWC format, we collect a0 with green color, a0 with

18

A

B

C

D

A B C D

reshape

a0 a1 a2
a3 a4 a5
a6 a7 a8

Rotation &
kernel-wise transpose

reshape

, , CI = 4 CO = 4 Kh = Kw = 3

K'

b0 b1 b2
b3 b4 b5
b6 b7 b8

c0 c1 c2
c3 c4 c5
c6 c7 c8

d0 d1 d2
d3 d4 d5
d6 d7 d8

a0 a1 a2
a3 a4 a5
a6 a7 a8

b0 b1 b2
b3 b4 b5
b6 b7 b8

c0 c1 c2
c3 c4 c5
c6 c7 c8

d0 d1 d2
d3 d4 d5
d6 d7 d8

a0 a1 a2
a3 a4 a5
a6 a7 a8

b0 b1 b2
b3 b4 b5
b6 b7 b8

c0 c1 c2
c3 c4 c5
c6 c7 c8

d0 d1 d2
d3 d4 d5
d6 d7 d8

a0 a1 a2
a3 a4 a5
a6 a7 a8

b0 b1 b2
b3 b4 b5
b6 b7 b8

c0 c1 c2
c3 c4 c5
c6 c7 c8

d0 d1 d2
d3 d4 d5
d6 d7 d8

a8 a7 a6
a5 a4 a3
a2 a1 a0

b8 b7 b6
b5 b4 b3
b2 b2 b0

c8 c7 c6
c5 c4 c3
c2 c2 c0

d8 d7 d6
d5 d4 d3
d2 d1 d0

a8 a7 a6
a5 a4 a3
a2 a1 a0

b8 b7 b6
b5 b4 b3
b2 b2 b0

c8 c7 c6
c5 c4 c3
c2 c2 c0

d8 d7 d6
d5 d4 d3
d2 d1 d0

a8 a7 a6
a5 a4 a3
a2 a1 a0

b8 b7 b6
b5 b4 b3
b2 b2 b0

c8 c7 c6
c5 c4 c3
c2 c2 c0

d8 d7 d6
d5 d4 d3
d2 d1 d0

a8 a7 a6
a5 a4 a3
a2 a1 a0

b8 b7 b6
b5 b4 b3
b2 b2 b0

c8 c7 c6
c5 c4 c3
c2 c2 c0

d8 d7 d6
d5 d4 d3
d2 d1 d0

a0 a0 a0 a0 a1 a1 a1 a1 a8 a8 a8 a8
b0 b0 b0 b0 b1 b1 b1 b1 b8 b8 b8 b8
c0 c0 c0 c0 c1 c1 c1 c1 c8 c8 c8 c8
d0 d0 d0 d0 d1 d1 d1 d1 d8 d8 d8 d8

(a) NHWC layout forward

A
B
C
D

a8
8

b8 c8 d8 a1 b1 c1 d1 a0 b0 c0 d0
a8 b8 c8 d8 a1 b1 c1 d1 a0 b0 c0 d0
a8 b8 c8 d8 a1 b1 c1 d1 a0 b0 c0 d0
a8 b8 c8 d8 a1 b1 c1 d1 a0 b0 c0 d0

A B C D A B C D A B C D A B C D

A
B
C
D

a0 a1 a2 a3
b

a4 a5 a6 a7 a8 a0 ... a8 a0 ... a8 a0 ... a8
b0 b1 b2 b3 b4 b5 b6 b7 b8 b0 ... b8 b0 ... b8 b0 ... b8
c0 c1 c2 c3 c4 c5 c6 c7 c8 c0 ... c8 c0 ... c8 c0 ... c8
d0 d1 d2 d3 d4 d5 d6 d7 d8 d0 ... d8 d0 ... d8 d0 ... d8

a8 a7 a6 a5 a4 a3 a2 a1 a0 b8 ... b0 c8 ... c0 d8 ... d0
a8 a7 a6 a5 a4 a3 a2 a1 a0 b8 ... b0 c8 ... c0 d8 ... d0
a8 a7 a6 a5 a4 a3 a2 a1 a0 b8 ... b0 c8 ... c0 d8 ... d0
a8 a7 a6 a5 a4 a3 a2 a1 a0 b8 ... b0 c8 ... c0 d8 ... d0

CI CO

A B C D

KhKwKhKw

CO CI

CICO

K

(b) NHWC layout backward

(c) NCHW layout forward (d) NCHW layout backward

Figure 12: Comparison of NHWC and NCHW layouts of N:M mask in both forward and backward pass.

orange color, a0 with blue color, and a0 with red color into a row of a block (i.e., the blue box) for
the forward pass, and this rowmeets the N:M constraint. Based on the N:M transposable mask, the
column of a0, b0, c0, and d0with green color also satisfies the N:M constraint. In the backward pass,
this blue block can still be kept. Meanwhile, a0, b0, c0, and d0with green color is collected as a row.
Thus, the same sparse pattern can be maintained in the backward with N:M transposable design.
When the weights is stored with NCHW format, as shown in Fig. 12(c)(d), the green cell a0, a1, a2,
and a3 form a row of the blue block. Again, the column of a0, b0, c0, and d0 with green color also
satisfies the N:M constraint. However, in the backward pass, the same block cannot be kept. Thus,
the sparse pattern may not meet the N:M constraint. For example, in forward pass, green cells a2
and a3 are kept, and the green cells a4 and a7 are kept. In the backward, the green cell a1, a2, a3, and
a4 form a new vector with the size M = 4, but this vector has three cells a2, a3, and a4 with mask
"1". To this end, additional operations such as re-indexing and regrouping are required to make the
weight matrix in the backward meet the N:M constraint. In summary, the N:M transposable mask
can accelerate the CNN backward pass with NHWC layout GEMM implementation, but it cannot be
directly applied to the NCHW layout.

Shape. Moreover, even if the weights are arranged in NHWC layout, we show some cases that the
N:M transposable mask may not bring the acceleration on backward as well. Considering the ex-
ample with CO = 3 and M = 2, as shown in Fig. 13, we collect a0 with green color, a0 with orange
color into a row of a 2×2 block (i.e., the blue box) for the forward pass, and this rowmeets the N:M
constraint. Based on the N:M transposable mask, the column of a0, b0with green color also satisfies
the N:M constraint. However, in the backward, the a0 is grouped with c1, and the b0 is grouped

19

a0 a0 a0 a0 a1 a1 a1 a1 a2 a2 a2 a2 a3 a3 a3 a3
b0 b0 b0 b0 b1 b1 b1 b1 b2 b2 b2 b2 b3 b3 b3 b3
c0 c0 c0 c0 c1 c1 c1 c1 c2 c2 c2 c2 c3 c3 c3 c3

a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0
a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0
a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0
a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0

A

B

C

a3 a2
a1 a0

b3 b2
b1 b0

c3 c2
c1 c0

A B C

reshape

W'

a0 a1
a2 a3

b0 b1
b2 b3

c0 c1
c2 c3

a0 a1
a2 a3

b0 b1
b2 b3

c0 c1
c2 c3

a0 a1
a2 a3

b0 b1
b2 b3

c0 c1
c2 c3

a0 a1
a2 a3

b0 b1
b2 b3

c0 c1
c2 c3

a3 a2
a1 a0

b3 b2
b1 b0

c3 c2
c1 c0

a3 a2
a1 a0

b3 b2
b1 b0

c3 c2
c1 c0

a3 a2
a1 a0

b3 b2
b1 b0

c3 c2
c1 c0

A
B
C

Rotation &
kernel-wise transpose

A B C

reshape

, , CI = 4 CO = 3 Kh = Kw = 2

W

K
K'

A B C A B C A B C

(a) NHWC layout forward (b) NHWC layout backward

Figure 13: Example of N:M transposable mask when CO mod M ̸= 0.

with c0. Thus, the same sparsity pattern cannot be guaranteed. To this end, the output channel CO

should be divisible by M , i.e., CO mod M = 0.

20

