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Deep clustering aims at learning clustering and data representation jointly to de-
liver clustering-friendly representation. In spite of their significant improvements
in clustering accuracy, existing approaches are far from meeting the requirements
from other perspectives, such as universality, interpretability and efficiency, which
become increasingly importantwith the emerging demand for diverse applications.
We introduce a new framework named Profound Clustering via slow eXemplars
(PC-X), which fulfils the above four basic requirements simultaneously. In partic-
ular, PC-X encodes datawithin the auto-encoder (AE) network to reduce its depen-
dence on data modality (universality). Further, inspired by exemplar-based cluster-
ing, we design a Centroid-Integration Unit (CI-Unit), which not only facilitate the
suppression of sample-specific details for better representation learning (accuracy),
but also prompt clustering centroids to become legible exemplars (interpretability).
Further, these exemplars are calibrated stably with mini-batch data following our
tailor-designed optimization scheme and converges in linear (efficiency). Empiri-
cal results on benchmark datasets demonstrate the superiority of PC-X in terms of
universality, interpretability and efficiency, in addition to clustering accuracy. The
code of this work is available at https://github.com/Yuangang-Pan/PC-X/.

1. Introduction
Clustering is one of the most important techniques for exploring data structures in an unsupervised
manner. The objective of clustering is to partition samples into groups such that samples in the same
group aremore similar than that fromdifferent groups. Naively attempting to cluster samples using
raw features [1–3] may not produce pleasing partitions as semantically similar samples are not
necessarily close in the high dimensional feature space [4–6] the sample resides in.
Representation learning in deep learning has paved the way for obtaining a good data representa-
tion, usually of low dimensionality [7, 8]. Inspired by this, deep clustering suggests joint learning of
representation and clustering within a single framework, typically via introducing a clustering loss
over latent representations delivered by pre-trained models [9] or auto-encoders [10–12]. Benefit-
ing from better data representations, these algorithms have reported significant performance gains
on various benchmark datasets. Next, researchers in self-supervised learning (SSL) community
take over the task and constantly refresh the state-of-the-art (SOTA) clustering records on various
image datasets [5, 13–15].
Althoughdeep learning based clustering approaches greatly facilitate the development of clustering
analysis, such improvement is mainly limited to the aspect of clustering accuracy. Meanwhile, the
development of clustering approaches in other aspects, e.g., universality, interpretability and effi-
ciency, has remained stagnant or been degenerate over the past few years. Particularly, despite keep-
ing the best records on many images datasets, clustering approaches based on SSL highly depend
on the choice of invariant transformations and degenerate significantly if effective transformations
are not available, like text data [5, 14]. Furthermore, jointly optimizing representation learning and
clustering may incur efficiency concerns, since a large/full batch data is usually required to update
the clustering structure for sake of stability [16–18]. Last but not least, most deep clustering algo-
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rithms are deemed as black-box with less interpretability, as their criteria for clustering is unknown,
whichmay not be consistent with samples’ semantics, and even beyond human understanding [19].
In this paper, we design a new end-to-end framework called Profound Clustering via slow eXem-
plars (PC-X), which is inherent interpretable and universally applicable to various types of large-
scale datasets. To be specific, instead of adding the clustering module on top of latent representa-
tion, PC-X incorporates it within the AE network via the proposed Centroid-Integration Unit (CI-
Unit), which suppresses (clustering nonrelevant) sample-specific details and facilitates clustering
centroids to become a set of exemplars through decoding. Regarding the inference, we decompose
the optimization of representation learning and clustering into two sub-tasks by introducing an aux-
iliary variable. Given the representation learning, the exemplars, i.e., clustering centroids, can be
calibrated slowlywith exponentialmoving average; while given the exemplars, the representation of
each sample gradually gathers around its respective clustering centroid through stochastic gradient
optimization. In summary, the main contributions of this paper are summarized as follows:

• We introduce a new clustering framework (PC-X), which is inherent interpretable and uni-
versally applicable to various types of datasets. Extensive experiments on seven benchmark
datasets demonstrates that PC-X outperforms existing clustering methods from four aspects,
including clustering accuracy, universality, interpretability and efficiency.

• We introduce a new module call Centroid-Integration Unit, which not only helps to suppress
(clustering nonrelevant) sample-specific details in the latent embedding, but also facilitates
clustering centroids to become legible exemplars through decoding.

• We design an efficient optimization algorithm for PC-X, which updates all parameters in PC-X
stably with mini-batch data, and enjoys superior convergence as well as algorithm complexity.

2. Problem statement and literature review
In this section, we first introduce the problem setting of clustering. Then, we summarize classical
clustering as well as deep clustering methods, and discuss their deficiencies accordingly.

2.1. Cluster analysis

Let X = {xn}Nn=1 be a set of N samples in RD, drawn from heterogeneous populations. Assume
the cluster number of is known to be K(≪ N). The goal of clustering is to partition X into K
non-overlap groups S = (S1, S2, . . . , SK)with low intra-class variance but high inter-class variance.
The following four challenges should be reckonedwhen designing the clustering algorithm, namely

• Accuracy is the primary target. The designed algorithm is expected to partition samples accord-
ing to the intrinsic semantic differences within the data. A good clustering algorithm should
achieve consistent superior performances in terms of various clustering measures.

• Universality requires the clustering method is generally applicable to various types of data,
e.g., image or text. While adapting the network architectures is necessary for different modali-
ties, “universality” lies in the way that the method accommodates these architectures and can
be effectively adapted to specific modalities based on a minimum knowledge of target data.

• Interpretability pertains to whether the criteria followed by clustering are easily interpretable
for users. We argue thatAE/DGM-based clusteringmethods inherently possess interpretability
for their clustering results. Through the decoder, the clustering centroids can be mapped to the
data space, allowing for the visualization of the clustering semantics (Fig. 2).

• Efficiency means that the algorithms have low memory space and low computational costs.
Typically, updating deep clustering models stably requires large batch data, which is memory-
inefficient for large-scale applications. Further, those methods also suffer from slow conver-
gence due to a lack of proper joint optimization schemes.
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Table 1: Comparison of various clustering paradigms in terms of clustering properties.
Challenges Classical

clustering
Deep clustering

Pre-trained model AE/DGM Self-supervised learning PC-X
Accuracy % % % ! !

Universality % ! ! % !

Interpretability ! % ! % !

Efficiency ! % % % !

2.2. Comparison of existing clustering paradigms

Existing clusteringmethods can be roughly categorized into classical clustering and deep clustering;
while deep clustering can be further divided into three branches in terms of the ways how they
combine clustering and representation learning. See Table 1 for a summary of comparisons.
Classical clustering generally refers to the algorithms that group samples in the raw feature space.
This kind of approaches are easy to interpretable and efficient. However, they are applied to limited
types of data with well-defined features. In terms of complex data (e.g., image), it fails to achieve
good results since semantically similar samples are not necessarily close in the raw feature space.
Deep clustering based on pre-trained model generalizes classical clustering for complex data
through executing clustering modules over latent representations delivered by pre-trained CNNs
or AEs. In spite of its simplicity, it is highly dependent on the original latent embedding due to
the lack of joint training of representation and clustering. As a consequence, differential clustering
losses are derived in DEC [16] and Deepcluster [9] to fine-tune the pre-trained model.
Deep clustering based on auto-encoder (AE) / deep generativemodel (DGM) propose to jointly
train clustering modules with extra tasks, such as self-reconstruction or distribution matching [18–
22]. It is shown to exhibit robustness to poor initial latent embedding since they can keep the
diversity in latent space via reconstructing/generating the input samples. Prominent works are
JULE [17], IDEC [20], VaDE [23] and DEPICT [18]. Nevertheless, the reconstruction loss tends to
overestimate sample-specific details (e.g. textures and background) which are unrelated to seman-
tics [24], degrading clustering performance. Meanwhile, it is memory inefficient for large-scale
applications, since multiple iterations over the whole dataset are required for joint updating the
clustering structure and network parameters reliably [17, 18, 20].
Deep clustering based on self-supervised learning (SSL), e.g., TCC [25] and DivClust [26],
achieve SOTA clustering results on various image datasets. As semantics pairs are constructed for
each sample through a collection of predefined semantics-invariant transformations, the perfor-
mance of SSL-based clustering methods highly depends on the choice of invariant transformations,
which requires rich domain knowledge and varies from dataset to dataset [27–34]. If no effective
invariant transformations are available, their performance would degenerate significantly. Mean-
while, lack of informative gradient, SSL-based approaches usually suffer from slow convergence [5].
Last but not least, despite significant performance gains based on representation learning, the clus-
tering process of deep clustering is less interpretable as the criteria used for clustering are unknown,
which may not be consistent with samples’ semantics, and even out of human understanding.

3. Profound Clustering via Slow Exemplars
Taking into consideration the weakness of existing clustering approaches, we are committed to in-
troducing a profound clustering framework that can achieve superior performance in terms of four
challenges stated in Section 2 simultaneously.

3.1. Deep auto-encoder as the backbone

Universality. According to Table 1, we choose deep AE as the backbone to reduce the dependence
on the data modality. Let fθ and gϕ denote the encoder and decoder, respectively. We adopt soft
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k-means to perform clustering in the latent space for the sake of efficiency. The objective of PC-X is
summarized as follows:

LPC-X(∆,µ) = LAE(∆)+η1Lcluster(µ) =
1

N

N∑
n=1

D(xn∥gϕ(zn))︸ ︷︷ ︸
Reconstruction loss

+η1
1

N

N∑
n=1

K∑
k=1

δnk∥zn − µk∥22︸ ︷︷ ︸
Clustering loss

, (1)

where zn = fθ(xn) denotes the latent embedding. D(.∥.) is the reconstruction loss. ∆ = {θ, ϕ}
stands for network parameters. η1 is the balance factor. The intermediate variable δnk ∈ {0, 1}
denotes the group assignment, assigning each latent code zn to its closest clustering centroid, i.e.,

λnk =
exp (

−τ∥zn − µk∥22
)∑K

i=1 exp (−τ∥zn − µi∥22)
, δnk =

{
1 k = argmaxj λnj
0 otherwise , (2)

where k = 1, 2, . . . ,K and n = 1, 2, . . . , N . It was claimed that encouraging the diversity among
clustering centroids contributes to a stable clustering process [35, 36]. We therefore add an extra
minimum entropy (ME) regularization term in Eq. (1), i.e., LME(∆) = − 1

N

∑N
n=1

∑K
k=1 λnk log λnk

to promote clustering stability. Note LME is optimized only for the network parameters (∆)which
will not cause extra optimization difficulty. A burn-in period (#epoch ≤ 250) is introduced for the
ME regularization since the estimation is less informative initially. See Fig. 4 for its effects on PC-X.

3.2. Interpreting clustering centroids as exemplars via reconstruction

In AE/DGM-based clustering, the latent representations zn inevitably contain sample-specific
details due to self-reconstruction, which is detrimental to clustering [24]. We argue that this
is lack of the insight of clustering centroids since the clustering centroids have never been
fully utilized during the reconstruction. Specifically, we introduce the Centroid-Integration
Unit (CI-Unit) (shown in Fig. 1) to incorporate the centroids into the training of AE/DGM.

Clustering: 

fusion 

Centroid-Integration:

Figure 1: Centroid-Integration Unit

z̃n =

K∑
k=1

δnkµk = µ{argmaxjλnj}, ẑn = hψ(zn, z̃n). (3)

The CI-Unit constructs a new latent representation ẑn
that incorporates not only the original latent embedding
zn but also its closest clustering centroid z̃n. For sim-
plicity, we implement hψ by simple concatenation along
with one extra fully connection layer.
Accuracy. Our CI-Unit unifies both goals of clustering and reconstruction. This is because the
variable µ should be the group-shared features if it can be incorporated to latent representation of
each sample assigned to the same cluster for good reconstruction. As a result, the subsequently self-
reconstruction using the centroid-enhanced representation ẑn facilitates the suppression of sample-
specific details in zn, bringing a mutually reinforcing effect between accurate clustering centroid
estimation and better self reconstruction. See A.6 for a comprehensive demonstration.
Interpretability. PC-X with CI-Unit possesses similar merits as exemplar-based clustering which
minimizes a similar k-means objective, i.e., L(µ) = 1

N

∑N
n=1

∑K
k=1 δnkD(xn∥µk), but restricts clus-

ter centers (aka exemplars) to be chosen from training data (i.e., µ ⊆ X), and thus owns inherent
interpretability [37]. Similarly, the reconstruction of our clustering centroids gϕ(hψ(µ, µ)) would
be enhanced to be legible exemplars since (1) each centroid-enhanced representation hψ(fθ(x), µ)

1

is legitimately decoded to its respectively input x during the whole training process (the recon-
struction loss), i.e., gϕ(hψ(fθ(x), µ)) → x; and (2) each latent representation is pushed close to its
corresponding clustering centroid, i.e., fθ(x) → µ (the clustering loss).

1µ refers to the closest clustering centroid of x, we omit the downscripts here for simplicity.
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3.3. Stable and efficient clustering brought by slow exemplars
Efficiency. In Eq. (1), two types of parameters, i.e., network parameters ∆ and clustering param-
eters µ, are coupled together which hinders them from jointly optimizing. Different from network
parameters∆, the update of centroids µ is unstable when optimized with stochastic gradient. This
is because the centroids estimated on different mini-batchesmay differ markedly. In addition, when
the centroids are estimated through standard full-batch iterations, it would lead to significant com-
putational cost and storage overhead, especially for large-scale applications. Therefore, we propose
to slowly calibrate the reserved centroids (i.e., exemplars) using mini-batch data instead of replac-
ing them with the new estimations, which thus enjoys both stability and efficiency.

3.3.1. Decomposing the model parameters for stochastic optimization

In this section, we propose a decomposition-coordination optimization method following the prin-
ciple of alternating direction method of multipliers [38]. To be specific, we decompose the opti-
mization regarding two types of parameters through introducing an auxiliary variable c. Namely,

L(∆, c,µ) = LPC-X(∆, c) + ρ
K∑
k=1

∥ck − µk∥22, (4)

where the penalty parameter ρ denotes the level of model robustness against themini-batch update.
Accordingly, our decomposition-coordination optimization method consists of the three iterations:
∆t+1 = argmin

∆
L
(
∆, ct,µt

)
, ct+1 = argmin

c
L
(
∆t+1, c,µt

)
, µt+1 = argmin

µ
L
(
∆t+1, ct+1,µ

)
.

where t is the index of epoch.
We then derive efficient update solutions for each subproblem, enabling stochastic update.
In terms of ∆, the reduced subproblem is a three objective optimization problem LPC-X(∆, ct)
(set µ to ct in Eq. (1)). Since no closed-form solution exists, we optimize it with gradient descent,

∆t+1 = ∆t − γ
∂L (∆, ct,µt)

∂∆

∣∣∣∣
∆=∆t

, (5)

where γ is the step size. Eq. (5) can be implemented with advanced gradient descent approaches.
In terms of c, the subproblem is a two-objective optimization problem. By setting the gradient of
the objective to zeros, we can get an analytic solution.

∂L
(
∆t+1, c,µt

)
∂ck

= 0 =⇒ ck =
ρµtk +

η1
N

∑N
n=1 δnkzn

ρ+ η1
N

∑N
n=1 δnk

, k = 1, 2, . . . ,K. (6)

Let κ = ρ

ρ+
η1
N

∑N
n=1 δnk

and µ̄tk =
∑N

n=1 δnkzn∑N
n=1 δnk

, we have ct+1
k = κµtk+(1−κ)µ̄tk, k = 1, 2, . . . ,K, where

the auxiliary variable c pursues a balance between the exiting centroid µt and the re-estimated
one µ̄t. Eq. (6) actually is equivalent to the well-known exponential moving average (EMA).
In terms of µ, the reduced subproblem consists of the second item in Eq. (4). By setting the gra-
dient of the objective to zeros, we can get an analytic solution, i.e.,

∂L
(
∆t+1, ct+1,µ

)
∂µk

= 0 =⇒ µt+1
k = ct+1

k , k = 1, 2, . . . ,K. (7)

Although all the update solutions are formulated in terms of full batch update, it can be easily
extended to stochastic update usingmini-batch data. To be specific, the update solution (Eq. (5)) of
the network parameters∆ naturally acceptsmini-batch update for stochastic gradient optimization.
Meanwhile, c are gradually updated following EMA. Previous literature demonstrates that EMA
possesses good stability and efficiency in the scenario of the mini-batch update [39]. Therefore, our
PC-X can deal with large-scale clustering problems.
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3.3.2. Convergence analysis

Our decomposition-coordination optimization method falls into the scope of the batch block opti-
mization framework [40]. In the following, we give the definition of Lipschitz smoothness, strong
convexity and bounded gradients, which are standard for convex stochastic optimization [41, 42].

Definition 1 (L-Lipschitz smooth) A differentiable function f : Rn → R is said to be L-smooth if
∀x, y ∈ Rn, we have ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Definition 2 (u-Strong convexity) A function f : Rn → R is said to be is u-strongly convex for some
u > 0, which means that ∀x, y ∈ Rn, we have f(x) ≥ f(y) + ⟨∇f(y), y − x⟩+ u

2 ∥y − x∥2.

Definition 3 (Bounded gradients) If the gradients ∇f(x) of the objective function f(x) are upper
bounded by G, it means that ∥∇f(x)∥2 ≤ G, ∀x ∈ Rn.

Lemma 1 (Quadratic upper bounds [43]) If the differentiable objective function L(∆, c,µ) in Eq. (4)
is partial L-Lipschitz smooth to the network parameters ∆, i.e., ∀∆1,∆2 ∈ R|∆|,

∥∥∥∂L(∆,c,µ)
∂∆

∣∣
∆=∆1

−
∂L(∆,c,µ)

∂∆

∣∣
∆=∆2

∥∥∥ ≤ L ∥∆1 −∆2∥. Then, we can derive the following quadratic upper bounds:

L (∆1, c,µ) ≤ L (∆2, c,µ) +
〈
∂L(∆,c,µ)

∂∆

∣∣
∆=∆2

,∆1 −∆2

〉
+ L

2 ∥∆1 −∆2∥2.

Lemma 2 (Convexity upper bounds) If the objective function L(∆, c,µ) in Eq. (4) satisfies the par-
tiallyu-strongly convexw.r.t. the network parameter∆ for someu > 0, i.e., ∀∆1,∆2 ∈ R|∆|,L(∆2, c,µ) ≥

L(∆1, c,µ)+
〈
∂L(∆,c,µ)

∂∆

∣∣
∆=∆1

,∆1−∆2

〉
+ u

2

∥∥∥∆1−∆2

∥∥∥2. Then, we have: L(∆1, c,µ)−L(∆2, c,µ) ≤

1
2u

∥∥∥∂L(∆,c,µ)
∂∆

∣∣
∆=∆1

∥∥∥2, which simply applies the optimal value of the quadratic function.

It is too strong to assume the objective function of a deep neural network is Lipschitz continuity
and strongly convex w.r.t. the network parameter∆, while it is reasonable to assume it is Lipschitz
continuity and strongly convex around a neighborhood of a local optima. Meanwhile, the two sup-
problems w.r.t. c,µ are global convex with closed form solutions (See Eq. (6) and Eq. (7)).

Theorem 1 (Linear Convergence) Assume the objective L(∆, c,µ) in Eq. (4) satisfies the assump-
tions of partial Lipschitz smooth, u-strong convexity and bounded gradients w.r.t. the network parame-
ter ∆ around a neighborhood of (∆∗, c∗,µ∗), which is a local optimal solution of the objective function
L(∆, c,µ) in expectation. Our algorithm converges linearly to optimal value (∆∗, c∗,µ∗)with a step-size γ,
i.e., E [L(∆t, ct,µt)− L(∆∗, c∗,µ∗)] ≤ (1 − 2uγ)tE

[
L(∆0, c0,µ0)− L(∆∗, c∗,µ∗)

]
+ γLG

4u , where
(∆t, ct,µt) is the solution at t-th iteration. The expectation is taken w.r.t. the stochastic mini-batch data.

According to our analysis in Theorem 1, as long as we set an appropriate learning rate γ where
0 < γ < 1

2u , the objective function Eq. (4) will converge linearly.

3.3.3. Complexity analysis

Table 2: Algorithm complexity of the clustering module
Baseline VaDE[23] IDEC[20] DEPICT[18] PC-X
Time O(MNKd2) O(MNKd) O(MNKd) O(MNKd)
Space O((B + 2K)d+K) O((N +K)d) O((N +K)d) O((B +K)d)

We analyze the time and space
complexity of our PC-X and pop-
ular AE/DGM-based deep clus-
tering methods, i.e., VaDE, IDEC
and DEPICT, in Table 2. Let M ,
N , B,K and d denote the number of epochs, the whole sample size, the mini-batch size, the cluster
number and latent feature dimension, respectively. Assuming all of them adopt the same AE net-
work architecture, we only analyze the extra time and space cost incurred by the clustering module.
From Table 2, we can find that: (1) since IDEC, DEPICT and our PC-X perform k-means clustering,
they have the same extra time complexity. (2) Both IDEC and DEPICT are based on DEC [16] but
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differ in their AE structure. Therefore, their clustering modules incur the same algorithm complex-
ity. Compared to our PC-X using mini-batch (B) samples, IDEC and DEPICT are not memory effi-
cient, since both of them need to repeatedly update the target probability with full batch (N ≫ B)
samples. (3) VaDE performs GaussianMixtureModels (GMM) clustering with a diagonal variance
matrix, resulting in a larger time complexity than our PC-X. It also updates the clustering module
with mini-batch samples, but has an additional space cost O(Kd + K) for the diagonal variance
matrix and the prior probability.

4. Empirical experiment
Table 3: The statistics of datasets

Dataset Type #sample #cluster #dim major minor
MNIST [44] Image 70, 000 10 28× 28 11.3% 9%
Fashion [45] Image 70, 000 10 28× 28 10% 10%
YTF [46] Image 10, 000 41 3× 55× 55 6.9% 0.3%
CIFAR-10 [47] Image 60, 000 10 3× 32× 32 10% 10%
ImageNet-10 [48] Image 13, 000 10 3× 24× 24 10% 10%
Reuters10K [16] Text 10, 000 4 2, 000 40.2% 9.0%
HAR [49] Signal 10, 299 6 561 18.9% 13.7%

In this section, we conduct ex-
periments on seven benchmark
datasets to demonstrate the su-
periority of our PC-X in terms
of clustering accuracy, universal-
ity, efficiency, and interpretabil-
ity, respectively. The statistics of
datasets are introduced in Table 3.
For the imbalanced datasets YTF and Reteurs10K, we apply a re-weighted clustering loss (See A.3).
We compare our PC-X2 with i) two classical clustering approaches: k-means [50] andGMM[51]; ii)
two pretrained model based deep clustering methods: AE [10] and DEC [16]; iii) three AE/DGM
based deep clustering methods: VaDE [23], IDEC [20] and DEPICT [18]; iv) six SSL-based deep
clusteringmethods: IIC [5], PICA [14], CC [34], SPICE3 [15], TCC [25] andDivClust [26]. Inspired
by SSL-based clustering methods [15, 31], we use MoCo [52] to extract features for CIFAR-10 and
ImageNet-10 considering their complexity, and evaluated all non-SSL-based baselines (including
our PC-X) on the extracted features. Like SSL-based baselines, these feature extractors do not uti-
lize any supervision regarding the datasets. For all methods, we set the number of clusters to the
ground truth categories and evaluate performance with three clustering metrics: Accuracy (ACC),
Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI).

4.1. Comparison in terms of clustering performance and universality

Table 4: Comparisons of PC-X with standard clustering, pretrained model based deep clustering
and AE/DGM-based deep clustering methods. Best marked in bold, second best underlined.

Baselines MNIST Fashion YTF CIFAR-10 ImageNet-10 Reuters10K HAR
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

k-means 53.5 50.0 36.6 47.6 51.2 34.9 58.3 76.9 53.8 33.5 41.0 9.8 88.3 79.1 76.6 51.7 31.1 20.8 60.0 58.9 40.1
GMM 43.4 37.1 23.7 49.8 53.3 34.9 59.4 77.9 55.1 78.5 74.4 68.2 88.5 79.2 76.9 73.6 48.5 46.5 59.7 59.4 47.1
AE 86.2 77.4 77.4 54.1 56.1 39.5 58.1 76.5 53.7 83.4 74.6 69.0 84.7 75.1 71.7 79.1 53.9 60.0 68.9 70.4 62.0
DEC 88.2 80.9 78.4 57.1 58.8 43.5 59.9 80.3 59.3 85.1 76.6 72.5 87.1 78.7 75.8 73.0 47.3 49.4 66.8 67.0 59.1
IDEC 89.8 84.3 81.7 52.9 56.8 42.9 65.1 78.2 55.7 84.8 76.5 72.4 87.2 78.7 76.0 72.9 47.2 49.0 68.7 74.0 64.2
VaDE 94.5 87.6 88.2 45.1 55.4 36.6 31.0 50.6 24.1 N.A. N.A. N.A. N.A. N.A. N.A. 79.9 51.2 58.0 84.3 75.3 69.9
DEPICT 95.3 90.4 90.1 55.7 57.9 42.0 61.1 79.2 57.6 84.0 75.3 70.2 85.5 76.2 73.1 80.0 56.1 62.0 69.1 70.8 62.3
PC-X 97.5 93.5 94.7 64.1 67.0 51.6 66.7 82.8 62.8 87.9 79.8 77.0 92.3 83.4 84.0 82.2 57.0 63.1 87.1 80.1 75.1

Wedemonstrate the superiority of PC-X on datasetswith various data types. As SSL-basedmethods
were proposed for complex image datasets, we applied them only on ImageNet-10 and CIFAR-10.
Table 4 shows that: (1) PC-X consistently achieves superiority clustering accuracy than AE/DGM-
based baselines on various datasets, this is because our CI-Unit can suppress sample-specific details,

2For all baselines, results were retrieved from the literature or computed by us when not found. Algorithms
with missing values are because the original paper did not report and it was difficult to get a satisfying score.

3SPICE is a three-stage algorithm, we only compare with SPICE at the second stage, as the last fine-tuning
stage is generally applicable to all deep clustering methods.
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(a) t-SNE of PC-X (b) centroids of PC-X (c) t-SNE of IDEC (d) centroids of IDEC
Figure 2: t-SNE for latent embedding (1st row) and centroids reconstruction (2nd row) on MNIST.
thereby contributing to better clustering-friendly representation. (2) AE/DGM-based deep cluster-
ing methods behave differently on various types of datasets, comparable or even inferior to AE

Table 5: Comparisons of PC-X with SSL-
based deep clustering methods. Best
marked in bold, second best underlined.
Method CIFAR-10 ImageNet-10

ACC NMI ARI ACC NMI ARI
IIC 61.7 51.3 41.1 24.7 15.4 10.0
PICA 64.5 56.1 46.7 85.0 78.2 73.3
CC 79.0 70.5 63.7 89.3 85.9 82.2
SPICEs 83.8 73.4 70.5 92.1 82.8 83.6
TCC 90.6 79.0 73.3 89.7 84.8 82.5
DivClust 81.9 72.4 68.1 91.8 87.9 85.1
PC-X 87.9 79.8 77.0 92.4 83.4 84.0

on Fashion and Reuters10K, due to their failure to recon-
cile both goals of self-reconstruction and clustering.
Table 5 shows that PC-X can achieve higher or compa-
rable clustering accuracy over SSL-based deep cluster-
ing methods on complex image datasets through a bet-
ter feature extractor. It ascribes the success of SOTA
SSL-based deep clustering methods to a better feature
extractor instead of their respectively complex but less
interpretable clustering modules. Back to universality,
our PC-X is more advantageous than SSL-based cluster-
ing baselines due to its ability in handling non-image
datasets, e.g., Reuters10K (text) and HAR (signal).

4.2. Visualization analyses for the interpretability
We visualize the latent embedding and the corresponding centroids on MNIST to showcase the
interpretability of PC-X in Fig. 2. Additionally, we compare our visual results with IDEC, whose
model is almost the same as our PC-X but lacks the CI-Unit.
It is notable that the centroids reconstruction of our PC-X are exactly the realistic images (Fig. 2b),
which indicates PC-X captures legible exemplars and performs semantic clustering in the latent
space. Regarding IDEC (Fig. 2c, 2d), the embedding of some categories are mixed, causing redun-
dancy centroid reconstructions, i.e., digit 9, and incomplete identified categories, i.e., digit 4. This
is because its self-reconstruction loss, which doesn’t take clustering centroids into account, contains
too many sample-specific details. The clustering results are distracted by similar digits, i.e., 4 and 9.
This observation also emphasizes the importance of interpretability. Well-separated embedding in
the latent space (Fig. 2c) does not guarantee semantically meaningful clustering results (Fig. 2d).

4.3. Efficiency: fast and stable convergence with stochastic optimization
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Figure 3: Clustering with fast and stable convergence.

In Fig. 3, we collect the cluster-
ing accuracy of PC-X on mini-batch
(PC-X-mini)/ full-batch (PC-X) of
MNIST/Fashion as well as the clus-
tering accuracy of other popular clus-
tering methods [53], e.g., k-means,
GMMandhierarchical agglomerative
clustering (AGG) [54], respectively.
Fig. 3 verifies that: (1) PC-X con-
verges fast (epoch < 100) on both
two datasets and continue to improve
gradually later, which benefits from our efficient joint optimization scheme. (2) The clustering ac-
curacy of PC-X on mini-batch (PC-X-mini) keeps align with that of full-batch (PC-X) and k-means
during the whole clustering process, which demonstrates the superiority of our slow exemplars cal-
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ibration strategy. (3) PC-X delivers clustering-friendly (i.e., well-separated) feature representations
since PC-X achieves a similar clustering accuracy as classical shallow clustering methods, especially
hierarchical clustering method AGG. Meanwhile, it justifies our choice that simple k-means is suf-
ficient for clustering in a clustering-friendly latent space we deliver.
To further demonstrate the efficiency of our PC-X on the large-scale dataset, we evaluate it on the
entire ImageNet dataset with 1,000 clusters and 1,281,167 samples. Similarly, we apply MoCo [52]
to extract features for ImageNet before performing PC-X. The clustering results are ACC: 38.4, NMI:
68.8, ARI: 31.7. These are the first results on ImageNet reported for deep AE-based clustering.

4.4. Ablation study on network components

Table 6: Ablation study on network components
using MNIST and Fashion datasets. Clustering
performance (ACC&NMI) of PC-X and its variants
using the model output or k-means, respectively.
Best results marked in bold.

Ablation PC-X PC-X-no CI PC-X-Fix IDEC AE

MNIST ACC 97.5 94.1 57.6 89.8 86.2
NMI 93.5 87.8 76.8 84.3 77.4

Fashion ACC 66.7 57.4 50.7 52.9 54.1
NMI 64.3 62.0 61.7 56.8 56.1

We compare different variants of PC-X with
most related baselines, i.e., IDEC and AE, to
analyze the efficacy of different components in
PC-X.Different strategies for updating the cen-
troids are studied. “PC-X-no CI” denotes PC-
X without the CI-Unit; “PC-X-Fix” denotes the
centroids are fixed after initialization.
Table. 6 summarizes the clustering accuracy
(i.e., ACC and NMI) of PC-X and its variants.
It shows that (1) PC-X with all components
can achieves the best results over other base-
lines, which demonstrates the efficacy of our CI-Unit and joint optimization strategy. (2) Without a
proper strategy, two variants of PC-X, i.e., “PC-X-no CI” and “PC-X-Fix”, drops significantly, since
they fail to reconcile the conflicts between the goal of self-reconstruction and clustering, or the op-
timization between the network parameters and the clustering centroids, respectively.

4.5. Effectiveness of various losses
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Figure 4: Effectiveness of various losses.

Fig. 4 visualizes the reconstruction loss, the clustering
loss and the average group assignment 1

N

∑
nmaxk λnk.

It shows that: (1) the average group assignment gradu-
ally decreases after initialization in pursuit of a good fea-
ture representation. (2) After a burn-in period (#epoch
≤ 250), both two losses remain stable, and the average
group assignment levels off. (3) After we activate ME
regularization, the average group assignment keeps ris-
ing to nearly one; while the reconstruction loss remains
stable and the clustering loss slightly increases. It means the ME regularization helps to distill a
well-separate latent structure and improve the clustering stability.

5. Conclusion
This paper presents profound clustering via slow exemplar (PC-X), which casts an interpretable
clustering framework for large-scale applications. It fosters a set of legible exemplars for clustering
in the latent space without accessing the full-batch data concurrently. Since PC-X conducts cluster-
ing based on the similarity in the latent space, the clustering performance is affected by the choice
of the AE network. Extra constraints [55, 56] can be introduced to facilitate a semantics-consistent
latent embedding, so as to reduce reliance on network structure. Meanwhile, PC-X’s reliance on
non-convex k-means may impact its performance. Investigating the integration of other differential
clustering losses could yield amore robust clusteringmethodology. Further, our PC-X paradigm in-
spires a stable and efficientway of Bayesian inference to stitch deep networkswith complex Bayesian
models. In the future, we will extend PC-X for non-parametric Bayes and hierarchical models.
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A. Appendix

A.1. Network structure of our profound Clustering (PC-X)
Fig. 5 shows the whole structure of our Profound Clustering (PC-X), which encodes the clustering
module into the auto-encoder network, which is an inherently interpretable clustering framework
and universally applicable for complex data.

A.2. PC-X-Div for diversity promotion
It was claimed that adding diversification constraints to encourage the diversity among clustering
centroids, which was found to yield better clustering performance (e.g., [35, 36]). However, such
repulsive regularization terms are inherently highly non-convex, adding them into the objective
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Figure 5: Profound Clustering (PC-X): encoding clustering into deep auto-encoder network

function would cause additional optimization difficulty [57]. Inspired by these, we add aminimum
entropy (ME) regularization over the soft group assignment λnk as follows:

LME(∆) = − 1

N

N∑
n=1

K∑
k=1

λnk log λnk, (8)

where {λnk}N,Mn=1,k=1 is the intermediate variable calculated via Eq. (2). Note Eq. (8) is optimized
only for the network parameters to avoid instability which will not cause extra optimization diffi-
culty.
Ideally, when Eq. (8) achieves optima, the soft assignment should be nearly the same as the corre-
sponding hard assignment, i.e., λnk → δnk. It means that the distance of a sample to its closest cen-
troid should bemuch smaller than other centroids, denoting the latent embedding is well-separated
as desired. This method shares a similar spirit with the sharpening technique [58] used in DEC [16]
and its derivatives [18, 20], but minimum entropy is calculated at the sample level which is superior
in large-scale applications using mini-batch update.
Therefore, we summarize the objective of our PC-X with skip-connection as follows:

LPC-X-Div(∆,µ) =
1

N

N∑
n=1

D(xn∥gϕ(hψ(zn, z̃n))︸ ︷︷ ︸
Reconstruction loss

+η1
1

N

N∑
n=1

K∑
k=1

δnk∥zn − µk∥22︸ ︷︷ ︸
Clustering loss

+η2

(
− 1

N

N∑
n=1

K∑
k=1

λnk log λnk

)
︸ ︷︷ ︸

Minimum Entropy

,

(9)

where zn = fθ(xn). z̃n denotes the closest clustering centroid µ{argmaxjλnj} of the latent embedding
zn according to Eq. (3). ∆ = {θ, φ, ϕ} stands for network parameters for both auto-encoder and
skip-connection. η1, η2 are the trade-off parameters.
It is noted that all three losses are calculated per sample, implying that PC-X-Div supports stochastic
optimization using mini-batch data as well.

A.3. PC-X-IMBA for imbalanced data clustering

Vanilla clustering loss does not take into consideration the scenario of imbalanced clustering. Thus,
it would suffer from inferior clustering performance when clustering size is imbalanced. Because
the major clustering will dominate the clustering loss, causing the minor cluster to be less explored.
Let α = [α1, α2, . . . , αK ] denote the clustering size, and we define

ωk =
αkK∑K
j=1 αj

=
αk
ᾱ

, k = 1, 2, . . . ,K, (10)

where ᾱ denotes the average clustering size.
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Then, we rearrange the clustering loss as follows,

Lcluster(µ) =
1

N

N∑
n=1

K∑
k=1

δnk∥zn − µk∥22
1
=

K∑
k=1

[
1

N

N∑
n=1

δnk∥zn − µk∥22

]
2
=

K∑
k=1

[
1

N

∑
x∈Sk

∥fθ(x)− µk∥22

]
3
=

1

K

K∑
k=1

Kαk
N

[
1

αk

∑
x∈Sk

∥fθ(x)− µk∥22

]
4
=

1

K

K∑
k=1

ωk

[
1

αk

∑
x∈Sk

∥fθ(x)− µk∥22

]
︸ ︷︷ ︸

Inter-cluster V ariance

, (11)

where 1 is valid by swapping the order of the two summarization operators. 2 is because the
existence of the hard assignment δnk ∈ {0, 1} where the summarization is actually taken over the
samples assigned the cluster Sk. 3 is because 1

N = 1
K × Kαk

N × 1
αk

. 4 is according to Eq. (10).
The vanilla clustering loss (Eq. (11)) is actually a weighted summarization of inter-cluster variance,
which places a higher weight for a larger cluster, i.e., Kαk

N = αk

ᾱ > 1, and vice versa. ᾱ denotes the
average clustering size. We argue that this term can be removed, especially for clustering with
imbalanced data. Particularly, the new clustering loss will no longer bias towards major clusters
and ensure good clustering performance in imbalanced data clustering.
Reweighting with inverse clustering size. The cluster assignment is exactly what we target for,
which unfortunately is not available before training. Although it can be estimated during clustering,
it is never the optima before converging. Since it cannot be removed directly, we considerweakening
the effect of this term in the clustering loss. Compared with the (sample-level) cluster assignment,
the (cluster-level) clustering size can be estimated more reliable and accurate during the clustering
process, we therefore reweight the clustering loss with inverse clustering size to lend an ear to small
clusters. To be specific,

Lreweight-cluster(µ) =
1

N

N∑
n=1

1

ωk

K∑
k=1

δnk∥zn − µk∥22
1
=

1

K

K∑
k=1

[
1

αk

∑
x∈Sk

∥fθ(x)− µk∥22

]
︸ ︷︷ ︸

Inter-cluster V ariance

,

where 1 is derived following Eq. (11).
To sum up, we introduce the PC-X-IMBA tailor-designed for clustering imbalanced data based the
cluster-lever reweight in the following,

LPC-X-IMBA(∆,µ) = LAE(∆) + η1Lreweight-cluster(µ) + η2LME(λ). (12)
Compared with PC-X, PC-X-IMBA is superior for clustering imbalanceddata because

• In terms of balance data, i.e., α1 ≈ . . . ≈ αK ≈ ᾱ, we have ωk ≈ 1. PC-X-IMBA degenerates
to PC-X. Meanwhile, for an average cluster in the imbalanced dataset, i.e., αk ≈ ᾱ and ωk ≈ 1
which means no extra action required.

• In terms of a minority cluster αk < ᾱ in the imbalance dataset, we have 1
ωk

= ᾱ
αk

> 1 which
gives a higher weight to the sample assigned to a minority cluster.

• In terms of a major cluster αk > ᾱ in the imbalance dataset, we have 1
ωk

= ᾱ
αk

< 1 which gives
a lower weight to the sample assigned to a major cluster.

A.3.1. Estimating the clustering size via EMA

Inspired by the EMA estimation for the clustering centroids, we suggest estimating the cluster size
α = [α1, α2, . . . , αK ] on the fly as well. Similarly, α is online calibrated at each iteration as follow:

αt+1
k = καtk + (1− κ)

N∑
n=1

δnk, k = 1, 2, . . . ,K. (13)
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Algorithm 1 Decomposition-coordination optimization
1: Input: datasetX = {xn}Nn=1, AE network {fθ, gϕ, hψ}, #centroidsK, #iterationsM , batch sizeB.
2: Output: encoder fθ, centroids µ, group assignment S.
3: Initialize: network parameters∆ and centroids µ.
4: for iteration = 1, 2, . . . ,M do
5: for mini-batch = 1, 2, . . . , ⌈NB ⌉ do
6: sample a mini-batch from X ;
7: update group assignment {δnk} by Eq. (2);
8: update network parameters ∆ by Eq. (5);
9: update intermediate clustering status c by Eq. (6);
10: update clustering centroids µ by Eq. (7).
11: end for
12: end for

To ensure stability, we further adopt Laplace smoothing to smooth clustering size. Namely,

αk =
(αk + ϵ)(

∑K
j=1 αj)∑K

j=1 αj + ϵK
, k = 1, 2, . . . ,K, (14)

where the pseudo count ϵ > 0 is the smoothing parameter. In the real experiment, ϵ is set to a small
value (≈ 1× 10−5) for a balance clustering scenario and a large value (≈ 5) for an imbalanced data
clustering scenario.
A burn-in period is introduced for the minimum entropy regularization (Eq. (8)) and imbalanced
data clustering PC-X-IMBA (Eq. (12)) since the estimation is less informative initially. Namely,
during the initial period (#epoch ≤ 250) of the training epochs, η2 = 0 and ωk = 1 when the
clustering module is not properly learned.

A.4. Detailed derivation for Eq.(6)
By setting the gradient of the objective to zeros, we can get an analytic solution.

∂L
(
∆t+1, c,µt

)
∂ck

= 0, k = 1, 2, . . . ,K.

=⇒ 2η1
1

N

N∑
n=1

δnk(ck − zn) + 2ρ(ck − µtk) = 0

=⇒ (
η1
N

N∑
n=1

δnk + ρ)ck = ρµtk +
η1
N

N∑
n=1

δnkzn.

=⇒ ck =
ρµtk +

η1
N

∑N
n=1 δnkzn

ρ+ η1
N

∑N
n=1 δnk

,

(15)

where k = 1, 2, . . . ,K.
Therefore, we let

ct+1
k =

ρµtk +
η1
N

∑N
n=1 δnkzn

ρ+ η1
N

∑N
n=1 δnk

, k = 1, 2, . . . ,K. (16)

A.5. Proof for Theorem 1

Theorem 1 [Linear Convergence] Assume the objective functionL(∆, c,µ) in Eq. (4) satisfies the assump-
tions of partial Lipschitz smooth, u-strong convexity and bounded gradients w.r.t. the network parameter ∆
around a neighborhood of (∆∗, c∗,µ∗), which is a local optimal solution of the objective function L(∆, c,µ)
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in expectation. Our algorithm 1 converges linearly to optimal value (∆∗, c∗,µ∗) with a constant step-size γ,
as given below,

E
[
L(∆t, ct,µt)− L(∆∗, c∗,µ∗)

]
≤ (1− 2uγ)tE

[
L(∆0, c0,µ0)− L(∆∗, c∗,µ∗)

]
+

γLG

4u
,

where (∆t, ct,µt) is the solution at t-th iteration over mini-batch Bt. The expectation is taken with regard
to the stochastic mini-batch data.

Proof: Give a mini-batch dataset Bt, according to our decomposition-coordination optimization,
we have that

L(∆t+1, ct+1,µt+1)
1
≤ L(∆t+1, ct+1,µt)

2
≤ L(∆t+1, ct,µt), (17)

where 1 is valid according to the definition of subproblem in Eq. (7). 2 is because of the definition
of subproblem Eq. (6).

Meanwhile, since∆t+1 = ∆t − γ
∂L(∆,ct,µt)

∂∆

∣∣∣∣Bt

∆=∆t

4 according to Eq. (5), we have

L(∆t+1,ct,µt)− L(∆t, ct,µt)

1
≤

〈
L (∆, ct,µt)

∂∆

∣∣
∆=∆t ,∆

t+1 −∆t

〉
+

L

2
∥∆t+1 −∆t∥2

2
= −γ

〈
L (∆, ct,µt)

∂∆

∣∣
∆=∆t ,

∂L (∆, ct,µt)

∂∆

∣∣∣∣Bt

∆=∆t

〉
+

γ2L

2

∥∥∥∥∥∂L (∆, ct,µt)

∂∆

∣∣∣∣Bt

∆=∆t

∥∥∥∥∥
2

3
≤ −γ

〈
L (∆, ct,µt)

∂∆

∣∣
∆=∆t ,

∂L (∆, ct,µt)

∂∆

∣∣∣∣Bt

∆=∆t

〉
+

γ2LG

2

where 1 follows Lemma 1, 2 is valid because the substitution using the stochastic gradient update.
3 applies the bounded gradient.
Subtracting optimal objective value L(∆∗, c∗,µ∗) and then taking expectation on both sides w.r.t.
mini-batch Bt, we have,

E
[
L(∆t+1, ct,µt)− L(∆∗, c∗,µ∗)

]
− E

[
L(∆t, ct,µt)− L(∆∗, c∗,µ∗)

]
1
≤ −γ

〈
L (∆, ct,µt)

∂∆

∣∣
∆=∆t ,E

[
∂L (∆, ct,µt)

∂∆

∣∣∣∣Bt

∆=∆t

]〉
+

γ2LG

2

= −γE
∥∥∥∥∂L (∆, ct,µt)

∂∆

∣∣∣∣
∆=∆t

∥∥∥∥2 + γ2LG

2

2
≤ −2uγE

[
L(∆t, ct,µt)− L(∆∗, c∗,µ∗)

]
+

γ2LG

2

=⇒ E
[
L(∆t+1, ct,µt)− L(∆∗, c∗,µ∗)

]
≤ (1− 2uγ)E

[
L(∆t, ct,µt)− L(∆∗, c∗,µ∗)

]
+

γ2LG

2

3
=⇒ E

[
L(∆t+1, ct+1,µt+1)− L(∆∗, c∗,µ∗)

]
≤ (1− 2uγ)E

[
L(∆t, ct,µt)− L(∆∗, c∗,µ∗)

]
+

γ2LG

2

where 1 is valid under the assumption of bounded gradients. 2 is derived following Lemma 2
under the assumption of the u-strong convexity. 3 follows the inequality in Eq. (17).

4The superscript Bt denotes the stochastic gradient update over mini-batch Bt.

17



(a) t-SNE of z and ẑ (b) t-SNE of z (c) t-SNE of ẑ
Figure 6: t-SNE of the feature representation before (i.e., z) and after (i.e., ẑ) the fusion layer on
MNIST.

Applying this inequality recursively, we obtain

E
[
L(∆t, ct,µt)− L(∆∗, c∗,µ∗)

]
≤ (1− 2uγ)tE

[
L(∆0, c0,µ0)− L(∆∗, c∗,µ∗)

]
+

t∑
i=1

(1− 2uγ)(i−1) γ
2LG

2

1
≤ (1− 2uγ)tE

[
L(∆0, c0,µ0)− L(∆∗, c∗,µ∗)

]
+

1

2uγ
× γ2LG

2

= (1− 2uγ)tE
[
L(∆0, c0,µ0)− L(∆∗, c∗,µ∗)

]
+

γLG

4u
,

where 1 is valid because ∑t
i=0 r

i ≤
∑∞
i=0 r

i = 1
1−r , ∀0 < r < 1.

A.6. Functionality analysis of the “fully-connected layer” in CI-Unit
The fusion layer reconciles the goals of clustering and self-reconstruction, ensuring that the feature
representation before fusion is suitable for clustering, while that after fusion is suitable for recon-
struction. The following two experiments on MNIST verify the above claim:

1. We visualized the feature representation before (i.e., z as adopted in the experiment) and
after (i.e., ẑ) the fusion layer simultaneously in Fig. 6. It shows that each cluster of the former
is more compact compared to that of the latter (prefixed with ’f’), indicating that the fusion
layer reduces the proportion of clustering-related information in the feature representation.

2. For each cluster, we calculated the singular values and singular vectors of the feature repre-
sentation before and after the fusion layer. We found that the singular vector corresponding
to the largest singular value is highly correlated to its corresponding cluster centroid. How-
ever, the proportion of the largest singular value among all singular values decreases a lot
after the fusion step, as shown below. This indicates that the representation after fusion is
less compacted and contains more sample specific details.

Table 7: The collected proportion (%) of the largest singular value among all singular values regard-
ing each cluster using the feature representation before (i.e., z) and after (i.e., ẑ) the fusion layer
respectively. Larger results marked in bold.

Digit 0 1 2 3 4 5 6 7 8 9 Mean
Before Fusion 54.81 52.63 53.65 64.57 46.45 57.76 51.16 53.34 55.94 29.12 51.94
End Fusion 40.13 42.29 27.72 32.33 31.47 34.60 33.14 31.07 27.38 27.21 32.74
Difference 14.68 10.34 25.93 32.24 14.97 23.16 18.02 22.27 28.56 1.91 19.20

A.7. Experiment details
Experiment Settings: We implement PC-X with PyTorch [59].
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• In terms of MNIST, Reuters10K, HAR, CIFAR-10 and ImageNet-10 5, PC-X is built upon the AE
architecture described in [16]. The encoder is a fully connected multi-layer perceptron (MLP)
with dimensions D-500-500-2000-d. D is the dimension of input and d is the dimension of
centroids. All layers use ReLU activation [60] except the last.

• In terms of YTF and Fashion, we adopt a convolution neural network intro-
duced in [19]. Specifically, the encoder consists of four convolutional layers
conv(16, 3, 1, 1)-conv(32, 3, 2, 1)-conv(32, 3, 1, 1)-conv(16, 3, 2, 1) followed by a two-layer
MLP with dimensions D-256-d, where conv(16, 3, 1, 1) denotes a convolutional layer with
channel number 16, kernel size 3, stride length 1, and padding size 1. D is the dimension of
the flattened CNN output and d is the dimension of centroids. We apply batch normalization
after each convolutional layer, followed by the ReLU activation except the last.

The decoder is mirrored of the encoder. For all datasets, the dimension of centroids is fixed to 10.
The optimizer is Adam [61]. All neural network weight, as well as the clustering centroids, are
initialized using a uniform distribution following [62]. The learning rate is 5×10−4 and the training
epoch is 1, 000. The batch size is set to 256. τ (Eq.(2)) and κ (Eq. (6)) is set to 5 and 0.995.
Metric: we list the formulation of three clusteringmetrics, i.e., ACC, NMI andARI, in the following:

• Accuracy (ACC): For sample i, letRi denote its ground truth label and Ci be its label obtained
by clustering.

ACC =

∑N
n=1 δ(Rn, Cn)

N
× 100%,

where δ(x, y) equals one if x = y, and zero otherwise. N denotes the number of samples.
• Normalized mutual information (NMI): Let R denote the ground truth label and C be the

label obtained by clustering. The NMI is defined as follows:

NMI =
2MI(R,C)

H(R) +H(C)
,

where H(X) is the entropy of X , and MI(X,Y ) is the mutual information of X and Y .
• Adjusted rand index (NMI): LetD ∈ RK×K denote the contingency table between the ground

truth label R and the label C obtained by clustering. The ARI is defined as follows:

ARI =

∑
ij

(
Dij

2

)
−

[∑
i

(
Ai

2

)∑
j

(
Bj

2

)]
/
(
N
2

)
1
2

[∑
i

(
Ai

2

)
+

∑
j

(
Bj

2

)]
−

[∑
i

(
Ai

2

)∑
j

(
Bj

2

)]
/
(
N
2

) ,
whereN =

∑
ij Dij is the number of samples, A ∈ RK = D× IK is the number of samples per

cluster in R and B ∈ RK = DT × IK is the number of samples per cluster in C.

For all threemetrics, values range between 0 and 1, where higher value indicates better performance.

5we apply PC-X on the extracted features of CIFAR10 and ImageNet-10.
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