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The disentanglement of StyleGAN latent space has paved the way for realistic and
controllable image editing, but does StyleGAN know anything about temporal mo-
tion, as it was only trained on static images? To study the motion features in the
latent space of StyleGAN, in this paper, we hypothesize and demonstrate that a
series of meaningful, natural, and versatile small, local movements (referred to
as “micromotion”, such as expression, head movement, and aging e�ect) can be
represented in low-rank spaces extracted from the latent space of a conventionally
pre-trained StyleGAN-v2 model for face generation, with the guidance of proper
“anchors” in the form of either short text or video clips. Starting from one target
face image, with the editing direction decoded from the low-rank space, its mi-
cromotion features can be represented as simple as an a�ne transformation over
its latent feature. Perhaps more surprisingly, such micromotion subspace, even
learned from just single target face, can be painlessly transferred to other unseen
face images, even those from vastly di�erent domains (such as oil painting, car-
toon, and sculpture faces). It demonstrates that the local feature geometry corre-
sponding to one type of micromotion is aligned across di�erent face subjects, and
hence that StyleGAN-v2 is indeed “secretly” aware of the subject-disentangled fea-
ture variations caused by that micromotion. As an application, we present vari-
ous successful examples of applying our low-dimensional micromotion subspace
technique to directly and e�ortlessly manipulate faces. Compared with previous
editing methods, our framework shows high robustness, low computational over-
head, and impressive domain transferability. Our code is publicly available at
https://github.com/wuqiuche/micromotion-StyleGAN.

1. Introduction
Recently, the StyleGAN and its variants [1–5] have shown strong performance in controllable image
synthesis. These high qualities and fine-grained controls are largely associated with the expressive
latent space of StyleGAN. Prior research has revealed that the latent space of StyleGAN is inter-
pretable [6–9], and by manipulating in the latent space, these GANs can generate many images
with desired changes [3, 4]. These findings have led to many applications such as face manipula-
tion [10, 11], style transfer [6, 12], image editing [13–15], and even video generation [16–19].
Given this phenomenal result, many try to understand the potential in the latent space of StyleGAN.
Particularly, rather than per-image editingmethods, peoplewonderwhether it is possible to directly
locate latent codes that correspond to sample-agnostic semanticallymeaningful attributes (e.g. smil-
ing, aging on human faces). These attempts can be categorized into supervised and unsupervised
methods. The supervised methods [20–22] typically sample a series of latent codes, labeling them
with pretrained attributes predictors, and learning classifiers for each desired attribute in the latent
space. On the other hand, the unsupervised methods [23, 24] explore the principal components of
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Figure 1: Representative examples created by the proposed method. The original images are
edited using a simple linear scaling with the discovered universal editing directions on various
transformations. These three rows correspond to eye-opening, aging, and head rotation.

the sampled latent codes and observe if these codes correspond to semantically meaningful edit-
ing directions. However, as will be shown later, the editing directions found by these methods are
still entangled with other attributes: When applying these discovered editing directions, the re-
sult images su�er from undesired changes in identity and irrelevant attributes. Therefore, we ask:
whether this sub-optimal entanglement is due to the intrinsic limits of the entangled latent space,
or it is because previous methods do not fully reveal the potentials of the StyleGAN?
To answer the question, we propose in-depth investigations on the StyleGAN-v2’s latent space
trained on face generations. In particular, we hypothesize that from the StyleGAN’s high dimen-
sional latent space, a low-rank feature space can be extracted where universal editing directions can
be reconstructed for various facial style transformations including changes in expressions/emotions,
head movements, and aging e�ects, which we refer to as a series of micromotions. Thanks to the
highly disentangled essence of the decoded editing directions, for any given input, linear scaling
along the same found direction will make the image change its style smoothly. Furthermore, to find
such a directional vector we leverage the guidance of proper “anchors” in the form of either short
texts or a reference video clip and show the directional vector can be e�ciently found via simple
subtractions using a robustly learned linear subspace projection. Surprisingly, such latent subspace
can be extracted using only a single query image, and then the resulting editing direction can be
used for any unseen face image, even for those from vastly di�erent domains including oil painting,
cartoon, sculpture, etc. Figure 1 shows the generated images for multiple style transformations and
face types. The contributions of our paper are three-fold:

• We show that in StyleGAN’s latent space, there exists low-rank subspaces where universal edit-
ing directions can be reconstructed for manymeaningful changes (denoted as “micromotions”).

• Leveraging a simple framework, we show that these low-dimensional micromotion subspace,
along with universal and highly disentangled editing directions, can be consistently discovered.

• As an application, we show that the low-dimensional subspace produces high-quality editing
direction, even from vastly di�erent domains (e.g., oil painting, cartoon, and sculpture faces).

2. Related Works

2.1. StyleGAN: Models and Characteristics
StyleGAN [2–4] is a style-based generator architecture targeting image synthesis tasks. Leveraging
amapping network and a�ne transformation to render abstract style information, StyleGAN is able
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to control the image synthesis in a scale-specific fashion. Particularly, by augmenting the learned
feature space and hierarchically feeding latent codes at each layer of the generator architecture, the
StyleGAN has demonstrated surprising image synthesis performance with controls from coarse
properties to fine-grained characteristics [3]. When trained on a high-resolution facial dataset (e.g.,
FFHQ [3]), the StyleGAN is able to generate high-quality human faces with good fidelity.

2.2. StyleGAN-based Editing

Leveraging the expressive latent space by StyleGAN, recent studies consider interpolating andmix-
ing the latent style codes to achieve specific attribute editingwithout impairing other attributes (e.g.
person identity). [8, 25–28] focus on searching latent space to find latent codes corresponding to
globalmeaningfulmanipulations, while [29] utilizes semantic segmentationmaps to locate andmix
certain positions of style codes to achieve editing goals.
To achieve zero-shot and open-vocabulary editing, recent works set their sights on using pretrained
multi-modality models as guidance. With the aligned image-text representation learned by CLIP, a
few works [10, 30] use text to extract the latent edit directions with textual defined semantic mean-
ings for separate input images. These works focus on extracting latent directions using contrastive
CLIP loss to conduct image manipulation tasks such as face editing [10, 30], cars editing [31]. Be-
sides, a few recent works manipulate the images with visual guidance [32, 33]. In these works,
image editing is done by inverting the referential images into corresponding latent codes, and in-
terpolating the latent codes to generate mixed-style images. However, these works focus on per-
example image editing. In other words, for each individual image input, they have to compute
corresponding manipulations in the latent space separately. With the help of disentangled latent
space, it is interesting to ask whether we can decode universal latent manipulations and conduct
sample-agnostic feature transformations.

2.3. Feature Disentanglement in Latent Space of StyleGAN

Feature disentanglement in StyleGAN latent space refers to decomposing latent vector components
corresponding to interpretable attributes. Previous studies on StyleGAN latent space disentangle-
ment can be roughly categorized into supervised and unsupervised methods. In supervised meth-
ods [20–22], they typically leverage auxiliary classifiers or assessors to find the editing directions.
To be more specific, they first sample a series of latent codes from the latent space and render corre-
sponding images. Then, they train an SVM to learn the mapping between sampled latent codes and
corresponding attributes, where the labeled attributes are supervised by the auxiliary classifiers. Fi-
nally, the normal direction of the hyperplane is the found editing direction. Besides, Goetschalckx
et al. [22] directly optimize the editing direction based on an auxiliary classifier. On the other hand,
the unsupervisedmethods [24] typically explore the principal components of sampled latent codes,
while they manually check if these components correspond to semantically meaningful attributes.
However, as will be shown later, the editing directions found by these methods are shown to be still
entangled with other attributes. In this work, leveraging a stronger low-rank latent space hypothe-
sis, we find highly-disentangled latent codes and show that sample-agnostic editing directions can
be consistently found in StyleGAN’s latent space.

3. Method

In this section, we begin by introducing the problem of decoding micromotion in StyleGAN latent
space, and we define the notations. Next, in Sec. 3.2, we propose the low-rank micromotion sub-
space hypothesis, suggesting that the micromotion subspace found from individual entities is con-
sistent across di�erent face subjects. Based on the hypothesis, we demonstrate a simple workflow to
decode micromotions and seamlessly apply them to various in-domain and out-domain identities
(painting, anime, etc.), incurring clear desired facial micromotions.
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Figure 2: A tensor illustration of our hypothesis. In the StyleGAN latent space, we hypothesize the
same type of micromotion, at di�erent quantitative levels but for the same identity, can be approximated
by a low-rank subspace. We further hypothesize that subspaces for the same type of micromotion found

at di�erent identities are extremely similar to each other, and can hence be transferred across identities.

3.1. Problem Setting
Micromotions are reflected as smooth transitions in continuous video frames. Given an input image
I0 and a desired micromotion (e.g. smile), the goal is to design an identity-agnostic workflow to
synthesize temporal frames {I1, I2, . . . , It}, constituting a consecutive video of the micromotion.
Synthesizing imageswith StyleGANrequires finding proper latent codes in its feature space. Weuse
G andE to denote the pre-trained StyleGAN synthesis network and StyleGAN encoder respectively.
Given a latent code V 2 W+, the pre-trained generator G maps it to the image space by I = G(V).
Inversely, the encoder maps the image I back to the latent space W+, or V̂ = E(I). Leveraging the
StyleGAN latent space, finding consecutive video frames turns out to be a task of finding a series of
latent codes {V1,V2, . . . ,Vt} corresponding to the micromotion.

3.2. Key Hypothesis: The Low-rank Micromotion Subspace
To generate semantically meaningful and correct micromotions using StyleGAN, the key objective
is to find proper latent code series in its feature space. We hypothesize that those latent codes can
be decoded by a low-rank micromotion subspace. Specifically, we articulate the key hypothesis in
this work, stated as: The versatile facial style micromotions can be represented as low-rank subspaces within

the StyleGAN latent space, and such subspaces are subject-agnostic.

To give a concrete illustration of the hypothesis, we plot a tensor-view illustration of a micromo-
tion subspace, smile, in Figure 2. The horizontal axis encodes the di�erent face identities, and each
perpendicular slice of the vertical plane represents all variations embedded in the StyleGAN latent
space for a specific identity. We use the vertical axis to indicate the quantitative strength for a mi-
cromotion (e.g., smile from mild to wild). Given a sampled set of images in which a subject face
changes from the beginning (e.g., neutral) to the terminal state of a micromotion, each image can
be synthesized using a latent code V. Aligning these latent codes for one single subject formulates
a micromotion matrix with dimension V ⇥M , where V is the dimension of the latent codes and M
is the total number of images. Eventually, di�erent subjects could all formulate their micromotion
matrices in the sameway, yielding amicromotion tensor, with dimension P ⇥V ⇥M assuming a total
of P identities. Our hypothesis is then stated in two folds:
• Each subject’s micromotion matrix can be approximated by a subspace and it is inherently low-

rank. The micromotion “strengths” can be reduced to linearly scaling along the subspace.
• The micromotion subspaces found at di�erent subjects are substantially similar and mutually

transferable. In other words, di�erent subjects (approximately) share the common micromo-
tion subspace. That implies the existence of universal edit direction regardless of identities.
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Figure 3: Our workflow illustration. In our workflow, we first extract a low-dimensional micromo-
tion subspace from one identity, and then transfer it to a novel identity “Mona-lisa”.

If the hypothesis can be proven true, it would be immediately appealing for sample-agnostic image
manipulations. First, micromotion can be represented in low-dimensional disentangled spaces, and
the dynamic edit direction can be reconstructed once the space is anchored. Second, when the space
is found, it can immediately be applied to multiple other identities with extremely low overhead,
and is highly controllable through interpolation and extrapolation by as simple as linear scaling.

3.3. Our Workflow
With this hypothesis, we design a workflow to extract the edit direction from decomposed low-
dimensional micromotion subspace, illustrated in Figure 3. Our complete workflow can be distilled
down to three simple steps: (a) collecting anchor latent codes from a single identity; (b) enforc-
ing robustness linear decomposition to obtain a noise-free low-dimensional space; (c) applying the
extracted edit direction from low-dimensional space to arbitrary input identities.

Step 1: Reference Anchoring. To find the edit direction of a micromotion, we first acquire a set of
latent codes corresponding to the desired action performed by the same person. Serving as anchors,
these latent codes help to disentangle desired micromotions in later steps. Here, we consider two
approaches, text-anchored and video-anchored methods, respectively.
Text-anchored Reference:We follow StyleCLIP [30] to acquire the anchoring latent codes for desired
micromotions. The main-idea is to optimize these latent codes by maximizing the embedding sim-
ilarity between the designed input texts (represent the micromotion) and the images rendered by
the codes. Here, onemajor question is how to design themost appropriate text template to guide the
optimization. To generate images with only variance in degrees of micromotions, a natural method
is to specify the degrees in the text. For example, for the micromotion “eyes closed”, we use both
percentages and adjectives to modify the micromotion by specifying “eyes greatly/slightly closed”
and “eyes 10%/30% closed”. We further study the other text prompts choice in Appendix C.
Video-anchored Reference: Previous method relies on text guidance to optimize the latent codes,
while for abstract and complicated motions (e.g., special head movements/ postures), only using
text might not be able to express the target micromotion. For this, we leverage a reference video
to anchor the subspace instead. Specifically, given a reference video, we invert several of its frames
with a pre-trained StyleGAN encoder to obtain the reference latent codes.
After applying either anchoringmethod, we obtain a set of t referential latent codes denoted as {V1,
V2, . . . , Vt}. We will use these codes to obtain a low-rank micromotion space in later steps.

Step 2: Robust space decomposition. Due to the randomness of the optimization and the com-
plexity of image contents (e.g., background distractors), the latent codes from the previous step are
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(a) Smiling

(b) Anger

(c) Opening Eyes

(d) Aging Face
Figure 4: Illustrations of versatile micromotions found by text-anchored method. We decode
the micromotions across di�erent identities, and apply them to in-domain identities. From Top to
Bottom: (a) Smiling (b) Anger (c) Opening Eyes (d) Aging Face. Best view when zoomed in.

only “noisy samples” from the underlying low-dimensional space. Therefore, we leverage further
decomposition methods to robustify the latent codes and their shared subspace.
The first simple decompositionmethodwe adopt is the principal component analysis (PCA), where
each anchoring latent code serves as the row vector of the data matrix. Unfortunately, merely using
PCA is insu�cient for a noise-free micromotion subspace, since the outliers in latent codes degrade
the quality of the extracted space. As such, we further turn to a classical technique called robust

PCA [34], which can recover the underlining low-rank space from the latent codeswith sparse gross
corruptions. It can be formulated as a convex minimization of a nuclear norm plus an `1 norm and
solved e�ciently with alternating directions optimization [35]. Through the principal component
of the subspace, we get a robust micromotion edit direction �V.

Step 3: Applying the subspace transformation. Once the edit direction is obtained, we could edit
any arbitrary input faces for the micromotion. The editing is conducted simply through interpola-
tion/ extrapolation along this latent direction to obtain the intermediate frames. For an arbitrary
input image I 00, we find its latent code V0

0 = E(I 00), and the videos can be synthesized through

It = G(Vt) = G(V0 + ↵t�V), (1)

where ↵ is a parameter controlling the degree of interpolation and extrapolation, t corresponds
to the index of the frame, and the resulting set of frames {It} collectively construct the desired
micromotion such as “smiling”, “eyes opening”. Combining these synthesized frames, we obtain a
complete video corresponding to the desired micromotion.

4. Experiments
In the experiments, we focus on the following questions related to our hypothesis and workflow:
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Figure 5: Illustrations of the micromotion “turning head” found by our video-anchored method.

• Can we locate subspaces for meaningful and highly disentangled micromotions? (Sec. 4.1)
• Compared with the existing image editing methods, does the located subspace o�er higher

quality results? (Sec. 4.1)
• Can we painlessly transfer micromotion to other subjects in various domains? (Sec. 4.2)

In short, we target two concepts in following experiments: (a) Universality: Our pipeline can con-
sistently find various micromotion, and they can be extended to di�erent subjects across domains;
(b) Lightweight: Transferring the micromotion only requires a small computation overhead. To
validate these concepts, we now analyze our framework by synthesizing micromotions. We mainly
consider fivemicromotions as examples: (a) smiling, (b) angry, (c) opening eyes, (d) turning head,
and (e) aging face. We also consider more editings when comparing with other methods.

Experiment Settings The pre-trained models are all loaded from the public repositories [7, 30, 36,
37]. When optimizing latent codes, the learning rate is 0.1 and we use Adam optimizer. For the
text-anchored and video-anchored methods, the numbers of latent codes we generate are 16 and 7.
In robust PCA, 4 principal dimensions are chosen. More details are in Appendix A.

4.1. Micromotion Subspace Decoding

In this section, we use our anchoring methods to locate the micromotion subspace, discovering
the editing direction, and apply it to the in-domain identities to generate desired changes. Fig-
ure 4 and Figure 5 show the generated five micromotions using text-anchored and video-anchored
methods respectively. Within each row, the demonstrated frames are sampled from our synthe-
sized videowith the desiredmicromotions. These results illustrate continuous transitions of human
faces performing micromotions, which indicates the edit direction from the micromotion subspace
is semantically meaningful and highly disentangled. Therefore, our framework successfully locates
subspaces for various micromotions. More analysis and comparison can be found in Appendix B.

4.1.1. Quantitative Analysis

To validate if our framework can produce high-quality edits, we compare our decoded micromo-
tions with results from other baselines. We consider InterfaceGAN [20] and GANspace [24]. Inter-
faceGAN is a supervised method obtaining edit directions from trained SVMs, while GANspace is
an unsupervised method that discovers edit directions from the principal components of sampled
latent codes. We obtain the editing directions from these baselines respectively, performing edits
on 2,000 images, and comparing results quantitatively via the following two analyses.

Re-scoring Analysis First, we quantitatively measure if our discovered editing directions can be
successfully disentangled with other irrelevant attributes. Following Shen et al. [20], we perform a
re-scoring analysis. Specifically, for a target attribute (e.g. smiling), we edit the images using our
methods and baselines, and we use the scores from pretrained classifiers [38] to measure how the
edits influence the target attribute as well as non-target attributes. Ideally, a well-disentangled edit
should result in a major change for the target attributes, with minor influence on others.
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(a) InterfaceGAN (b) GANspace (c) Our Framework
Figure 6: Re-scoring analysis. In each row,weperformediting targeting the attribute of the row, and
each column shows the corresponding changes scored by di�erent pre-trained attribute classifiers,
respectively. Higher scores indicate larger changes. We notice a clear diagonal pattern when editing
latent space using our framework, indicating its strong disentangle property.

Our results2 are shown in Figure 6. In these three confusion matrices, for each row, we run latent-
space editing with the target attribute, and each column shows the corresponding changes mea-
sured by pretrained attribute classifiers. For example, in the matrix of InterfaceGAN, the first row
means when editing with target attribute “smile” andmeasuring the changes using pretrained clas-
sifiers, the score of “smile” increases by 0.482 while the score of “age” also increases by 0.005, etc.
Higher scores indicate larger changes. We observe that our framework produces a clear diagonal
pattern, while the baseline methods lead to significant changes in both target and non-target at-
tributes. Therefore, our framework demonstrates stronger disentangle performance.

Table 1: Identity-agnostic Analysis. Each row shows
the changes in identity score (the smaller the better)
when editing the attributes in latent space.

Smile Age Gender Glass
InterfaceGAN 0.0515 0.1294 0.1225 0.0916
GANspace 0.1081 0.0975 0.0507 0.1420
Ours 0.0047 0.0660 0.0491 0.0279

Identity-agnostic Analysis Preserving the
identity is essential in face editing. Follow-
ing [20], we perform an identity-agnostic
analysis, where we use a pre-trained face
identifier [38] to quantitatively evaluate if
the identity is changed after edits.

We compare our framework with other edit-
ing baselines and demonstrate the results in
Table 1. Here, each row shows the changes in identity score when editing the target attributes,
and a smaller score indicates better identity preservation. In this table, we find our method pre-
serves identities well in di�erent edits, while Other baselines incur more severe identity changes.
Therefore, we find that our framework is able to discover more precise editing directions and better
disentangles the target attributes from the human identities.

4.2. Micromotion Applications on Cross-domain Identities
Next, we further explore if decoded micromotions can be applied to cross-domain identities. Fig-
ure 7 shows the result of transferring the decoded micromotions on novel identities. Within each
row, we exert the decodedmicromotions on the novel identities, synthesize the desiredmovements,
and demonstrate sampled frames from the generated continuous videos. From these results, we
observe that the sampled frames on each new identity also depict the continuous transitions of
desired micromotions. This verifies that the decoded micromotions extracted from our workflow
can be successfully transited to the out-domain identities, generating smooth and natural transfor-
mations. Also, this shows the low-dimensional micromotion subspace in StyleGAN is indeed not
isolated nor tied to certain identities. In fact, the identity-agnostic micromotions can be found using
our framework and can be ubiquitously applied to those even out-of-domain identities.
Moreover, we emphasize that to generate micromotion on a novel identity, the entire computational
cost boils down to inverting the identity into latent space and extrapolating along the edit direc-
tion, without the requirement of conducting identity-specific computations. This leads to e�ortless
editing of new identity images using the found direction, with little extra cost.

2Since the classifiers used by Shen et al. [20] are not available, we use di�erent classifiers [38].
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(a) Anime Character, Smiling

(b) Marble Sculpture, Opening Eyes

(c) Painting: Monet, Opening Eyes

(d) Painting: Da Vinci, Smiling

(e) Painting: Rembrandt, Aging face

(f) Painting: Van Gogh, Turning Head

Figure 7: Micromotions on cross-domain identities. Ourmicromotions generalizewellwhen trans-
ferred to novel domains, including anime characters, sculptures, and various genres of paintings.

5. Conclusions

In this work, we analyze the latent space of StyleGAN-v2, demonstrating that although trainedwith
static images, the StyleGAN still captures temporal micromotion representation in its feature space.
We find versatile micromotions can be represented by low-dimensional subspaces of the original
StyleGAN latent space, and such representations are disentangled and agnostic to the choice of
identities. Based on this finding, we explore and successfully decode representative micromotion
subspace by two methods: text-anchored and video-anchored reference generation, and these mi-
cromotions can be applied to arbitrary cross-domain subjects, even for the virtual figures including
oil paintings, sculptures, and anime characters.
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A. Implementation Details
For text-anchored experiments, the original images are generated using random latent codes in
StyleGAN-v2 latent space. The text prompts are in the general form of (a) “A person with {} smile”;
(b) “A person with {} angry face”; (c) “A person with eyes {} closed”; (d) “{} old person with
gray hair”, which correspond to the micromotions of smiling, angry, eyes opening and face aging.
Here, the wildcard “{}” are replaced by a combination of both qualitative adjectives set including
{“no”, “a big”, “big”, “a slight”, “slight”, “a large”, “large”, “ ”} and quantitative percentages set
including {10%, ..., 90%, 100%}. We will discuss the choice of various text templates and their out-
comes in the ablation study. For the video-anchored experiments, we consider the micromotion of
turning heads. The referential frames are collected from the Pointing04 DB dataset [39], and the
frames we used for anchoring include a single identity with di�erent postures, which has the angle
of {�45�,�30�,�15�, 0�, 15�, 30�, 45�}.

B. Qualitative comparison with baselines
In this experiment, we qualitatively compare the performance of our method with existing editing
methods. We consider the following baselines: InterfaceGAN [26], GANspace [24], StyleFlow [40],
[41], and MoCoGAN-HD [42].

Experiment Setting. All methods are tested on the StyleGAN-v2 pretrained on the FFHQ dataset,
and we follow the settings stated in Sec. 4. We adopt the released pretrained models for most of the
baselines except Zhuang et al. and StyleFlow. For Zhuang et al., since it is only trained on 256 ⇥
256 images, we first attempt to train the model on 1024 ⇥ 1024 using the code released by authors
for a fair comparison. However, the model does not converge on 1024 resolution. Therefore, we
perform comparisons by collecting the source and edited images shown on their papers and using
ourmethod to perform the edit. For StyleFlow, since the code is in Tensorflow 1.x and not supported
by ourmachines, we also compare with the images on their papers qualitatively. Formost baselines,
we compare their editing results on two representative target attributes in the paper: “smiling” and
“aging”. We choose these two attributes because these are the common attributes explored by both
ourmethod and baselines. Finally, forMoCoGAN-HD, since it is only trained on the “talking-head”
task on FFHQ dataset, we compare the editing performance on this task. Specifically, we apply
our video-anchored method to synthesize videos of a person talking using a single input reference
video. Meanwhile, videos of MoCoGAN-HD are synthesized using their pretrained models.

Results. We first demonstrate the comparison between ourmethod and InterfaceGAN, GANspace.
The comparison result is shown in Figure 8. From the result, we observe that our method demon-
strates comparable or better performance than existing baselines. Specifically, compared with these
methods, our method faithfully preserves the identities of the edited subjects, while InterfaceGAN
often changes the identities, even genders, during edition, and GANspace usually produces minor
edit towards target attributes. Also, to see the benefits of on-demand disentanglement vs. man-
ually picking from principal components, we demonstrate the first 14 principal directions from
GANspace in Figure 11. We observe that (1) all of these latent codes cannot open/close people’s
eyes, meaning GANspace fails to find editing directions for this attribute even after manually check-
ing 14 directions in this case; (2) some of the editing directions are clustered, e.g, attribute “glasses”
is entangledwith “age” in C3, and is entangledwith “gender” in C9. On the other hand, ourmethod
can find editing directions for these attributes without heuristic human choices.
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Besides, we demonstrate the comparison between our method and MoCoGAN-HD in Figure 9.
In the figure, the first six rows show synthesized videos by our methods. Starting from a single
input video (1st and 4th row), our video-anchored method inverts their frames, reconstructs the
original video (2rd and 5th row) and produces the same talking actions on a new identity (3rd and
6th row). The last two rows show the result of MoCoGAN-HD. From the results, we highlight two
benefits of our methods: First, videos synthesized by our method has more significant variance
than MoCoGAN-HD. Our synthesized videos show a person talking with mouth and eyes actions,
while most frames in MoCoGAN-HD resemble the first frame and have little changes. Second, our
method allows on-demand talking actions, i.e., the synthesized video resembles the reference video
at each frame. On the other hand, MoCoGAN-HD cannot control the synthesized talking action.
Besides these two benefits, we emphasize that our method only requires a single input video to
generate talking motions on novel identity, while MoCoGAN-HD requires a large training dataset
(e.g.,VoxCeleb [43] dataset with 22,496 clips). With these advantages, we conclude that ourmethod
is more e�ective and convenient than MoCoGAN-HD in the talking-head task.
Finally, the comparison between our method and StyleFlow, Zhuang et al. are shown in Figure
103. We observe that our method and two baseline methods result in di�erent styles of “smile” and
“aging”, while the quality is comparable. Besides, we emphasize that both StyleFlow and Zhuang
et al. require training auxiliary models, while our method does not need any new models, and
finding editing direction using our method can be done in a few minutes. Therefore, our method
outperforms the listed baselines by providing a more convenient editing framework.

C. Ablation Studies and Explorations
In this section, we perform a series of ablation studies and explore several design choices in our
proposed framework.

Changing identities of anchoring latent codes In this ablation, we explore if the choice of identity
influences the micromotion quality. We use photos of di�erent people (denoted as Identity A, B,
and C) to discover editing directions, and we generalize to the same sketch painting. The result is
shown in Figure 12. We observe that latent codes decoded from various identities generate visually
similar micromotions. Therefore, the micromotion can be decoded using di�erent identities and
still result in semantically correct edits.

Ablation on subspace decomposition techniques In this ablation study, we compare di�erent sub-
space decomposition techniques, including Robust PCA, Vanilla PCA, and without PCA. In Fig-
ure 13, we show Robust PCA yields the best visual results, followed by Vanilla PCA, while without
PCA yields results with the worst visual quality. When comparing the results using vanilla PCA
with robust PCA, we can observe the former creates more undesired artifacts. For example, in the
third column of Figure 13, we observe vanilla PCA create an unwanted artifact around the shoulder
of the sculpture, while robust PCA provides a cleaner image. On the other hand, micromotion sub-
space without PCA decomposition creates images with the worst quality. Most of them have serve
distortion and the faces are barely recognizable. The ablation demonstrates vanilla PCA is insu�-
cient for a noise-free micromotion subspace, while the Robust PCA is a more favorable choice.

The role of text templates To explore the sensitivity of themicromotion subspacew.r.t the text tem-
plates, we study various text templates that describe the same micromotion. In Figure 14 top row,
we can see that the micromotion “closing eyes” is agnostic to the choice of di�erent text templates
and generate similar visual results. On the other hand, In Figure 14 bottom row, we observe the
opposite where the micromotion “face aging” is sensitive to di�erent text templates, which results
in diverse visual patterns. This suggests the choice of text template may influence the performance
of some micromotions, and a high-quality text guidance based on prompts engineering or prompts
learning could be interesting future work.

3The original images used in our work are inverted from the corresponding input images for baselines.
Therefore, the original images are slightly di�erent.
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Figure 8: Qualitative comparison with InterfaceGAN and GANspace. The target attributes are
“smiling”, “aging” for human faces.
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Figure 9: Qualitative comparison with MoCoGAN-HD on task “talking head”. The first six rows
show synthesized videos by our methods. Starting from single input video (1st and 4th row), our
video-anchored method invert their frames, reconstruct the original video (2rd and 5th row) and
produce the same talking actions on new identity (3rd and 6th row). The last two rows show the
result of MoCoGAN-HD.

Changing the number of anchors and identities In our framework, we rely on a series of latent
codes to anchor the low-rank space, and these codes are obtained from one identity performing
micromotion. Therefore, we further ask two questions for our design: (a) How would the num-
ber of latent codes influence the editing performance? (b) Could we obtain better editing results
from multiple identities? For the first question, we hypothesize the number of latent codes would
influence the quality of the discovered low-dimensional space, therefore influencing the editing per-
formance. For the second question, although we have obtained high-quality micromotion editing
direction from a single identity, we explore if multiple identities decrease the correlation between
micromotion and identity and lead to better disentanglement.
We use di�erent numbers of anchoring latent codes and identities to discover the editing direction
and apply it to novel images. In the first study, multiple latent codes are used to determine the
low-rank space. Notice that when using only one anchoring latent code, the framework reduces to
using StyleCLIP to find editing direction and directly apply it to novel images. In the second study,
withmultiple identities, we optimize the latent code on each identity separately and use the average
latent code as the final editing direction.
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Figure 10: Qualitative comparison with StyleFlow and Zhuang et al.

Our results can be found in Fig 15 and Fig 16. For the e�ects of anchoring latent codes, we observe
that fewer anchors result in noises and artifacts, indicating insu�cient disentanglement. Mean-
while, we observe the quality of latent space editing improves gradually with respect to the number
of anchors. This motivates us to use a series of anchoring latent codes for a better low-rank latent
space. For the e�ects of identities, we observe that although using more identities has some weak
benefits (e.g. better background preservation), there is no clear visual improvement comparedwith
using one identity. This motivates us to stick with one identity with better e�ciency in our frame-
work.

E�ects of using di�erent GANs Besides the StyleGANv2 discussed in main paper, in this study,
we further discuss if we can disentangle from progressive GAN [1] and BigGAN [44].

For both progressive GAN and BigGAN, we adopt the publicly released pretrained models. The
progressiveGAN is loaded from pytorch hub. The BigGAN is loaded from the original repository.
For the editing tasks, we choose the target attributes according to their training datasets. Specifically,
for progressive GAN, the model is trained on CelebA [45] dataset, and we study the attributes
“smiling” and “aging” on human faces. For BigGAN, themodel is trained on ImageNet [46] dataset,
we study the attributes “openingmouth” and “closing eyes” on dogs. We use the same text prompts
for the human face experiment (“A person with {} smile”, “{} old person with gray hair”). For the
experiment on dogs, the text prompts we construct are in a similar form (“A dogwith eyes {} close”,
“A dog with mouth {} open”).
The result is shown in Figure 17. From the figure, we observe that both GANs do not synthe-
size high-quality editing images. For example, for the “opening mouth” attribute in BigGAN, the
mouths of dogs in the first two rows are larger, but both the dogs and backgrounds change drasti-
cally. This is even worse for the target attribute “closing eyes”. Similarly, in Progressive GAN, we
find slight changes toward target attributes “smiling” and “aging”, while the identities are largely
changed. This result indicates the latent space in BigGAN and progressive GAN are not highly
disentangled. There are two possible reasons: First, the latent code dimension in BigGAN and Pro-
gressive GAN (1⇥ 512) is smaller than the one in StyleGANv2 (18⇥ 512). Second, the hierarchical
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Figure 11: Principal Components of GANspace. We demonstrate the editing e�ects of using the
first 14 principal components to edit images.

structure in StyleGAN might lead to better disentanglement. Therefore, compared with these gen-
erators, the StyleGANv2 used in the main paper is a better choice.

Changing inversionmethods In this experiment, wedemonstrate howdi�erent inversionmethods
influence editing performance. We consider threemethods: Restyle+pSp [36, 47], Restyle+e4e [48],
and vanilla e4e method. The result is demonstrated in Figure 18. We observe that using di�erent
inversion methods influences the editing results. Arguably, Restyle+pSp preserves the background
color and details best. Besides, we also observe that other methods produce undesired changes
(e.g., images are darker for the upper rows). Choosing a faithful inversion method helps produce
high-quality edits.

D. Additional examples of micromotions transferred to novel
domains

In Figure 19, we include additional visual examples to demonstrate that our micromotions gener-
alize well when transferred to novel domains. The additional novel domains include bronze sculp-
tures, oil/sketch painting, and more anime characters.

E. Failure case
While our method can disentangle many micromotions and transfer to novel images in di�erent
fields, we would like to demonstrate a few limitations of our framework. First, the editing ability
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(a) Identity A

(b) Identity B

(c) Identity C

Figure 12: E�ects of changing the identities of anchoring latent codes. The first column shows
synthesized images of di�erent identities generated by three latent codes. From the second col-
umn, we show the micromotion subspace (i.e. “closing eyes") decoded from those three identities,
exhibiting visually similar results, when generalized to a sketch painting in the novel domain.

of our method originates from the disentangled latent space of StyleGANv2. We have shown in
section C that, with a less disentangled GAN architecture, this framework cannot produce high-
quality editing results. Second, when transferring the editing directions to out-of-domain images,
we first need to invert the input images to vectors in the latent space of StyleGAN. When the input
largely deviates from a photo-realistic person, the inversion model fails to find the corresponding
latent code, and therefore the editing will also fail. We provide an example in Figure 20. Here, the
target attribute is “smiling”, and the input images are anime characters (Mario, Chihiro). We find
that the latent code produced by the encoder cannot reconstruct the images (in the second and fifth
row), and therefore the editing images have poor quality.

F. Micromotions other than human face

Finally, we provide more micromotion examples on subjects other than the human face. In this
experiment, we explore the micromotions of wild animals. The StyleGANv2 model we used is
pretrained on the AFHQ-wild dataset [49] with 512 ⇥ 512 resolution, and we consider “eyes close”
and “mouth close” as two representative micromotion examples. The results can be found in Figure
21. From the figure, we observe that ourmethod can also synthesizemicromotions onwild animals,
while the quality is not as good as those on human faces. We highlight two drawbacks here. First,
the synthesized images change the background as well. Second, the synthesized images sometimes
do not reflect a smooth micromotion. We provide one example in the first row. Specifically, we
expect the wild animal to gradually close its eyes, while the synthesized images demonstrate a
pixel-wise interpolation from open eyes to close eyes. We hypothesize this is due to the AFHQ-wild
dataset does not contain wild animals with di�erent eyes open degrees. As such, interpolation on
the editing direction cannot synthesize animals with eyes half-open, which is hardly seen in the
training dataset. We believe that with a high-quality dataset and better-pretrained generator, we
can expect better micromotions.
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(a) Original

(b) w/ Robust PCA

(c) w/ Vanilla PCA

(d) w/o PCA

Figure 13: Comparison between Vanilla PCA, Robust PCA and without PCA. For each column,
from left to right, the micromotions are “closing eyes” (for the first and third columns), “angry”,
“smiling”, and “aging face”. For conciseness, we only show the original and last frame. Best view
when zoomed in.

G. Performance on other StyleGANs

In the previous section, our primary focus was on StyleGAN-v2, a prominent representative within
the StyleGAN family of architectures. In this section, we aim to broaden our investigation by assess-
ing whether our discoveries can be extrapolated to other advanced StyleGAN models. Specifically,
we perform experiments on StyleGAN-v3 [2] and StyleGAN-XL [5], which are two recent StyleGAN
models with larger architecture and better general performance. We utilize publicly accessible pre-
trainedmodels on the FFHQ dataset for both StyleGAN-v3 and StyleGAN-XL. For the editing tasks,
we use the example attributes “smile” and “angry” following our previous experiments. We also
use the same text prompts for these experiments and follow the same procedures to find and apply
subspaces.
The experiment result is demonstrated in Figure 22 and Figure 23. From these results, we ob-
serve themicromotion subspaces consistently emergewithin both of these architectural frameworks,
yielding fluid and semantically meaningful transitions. However, it is worth noting the occasional
discrepancies in these transitions, exemplified by background alterations in the final row of Fig-
ure 22 and Figure 23. These issues can be attributed to two primary factors: First, although with
robust-PCA, since we are only using several latent codes as reference images, the discovered sub-
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Original “eyes {}
open”

“a person with
{} eyes open”

“a woman with
{} eyes open”

“a man with
{} eyes open”

Original “a {} year
old person”

“a {} old
person”

“a {} old
woman”

“a {} old
man”

Figure 14: Ablation on the choice of text template for micromotion “opening eyes” and “aging
face”. For each template, we fill the wildcard “{}” using descriptive text, including {10%, 20%, ...,
100%}, {10, 20, ..., 60}, and {small, big, ...}. For conciseness, we only show the last frame of each
group. Best view when zoomed in.

Original 1 anchor 5 anchors 10 anchors 15 anchors

Figure 15: Ablation on the number of anchoring latent codes used to find the low-rank latent
space. Weuse themicromotion “smiling” as an example, while applying to both in-domain (human
face) and out-of-domain (painting) images, we notice the quality of latent space editing improves
proportionally w.r.t the number of anchors until it finally saturated at around 10 anchors.

space can sometimes be noisy, which introduces minor undesirable changes. Second, the training
processes employed for StyleGAN-v3 and StyleGAN-XL may not be flawless, potentially leading to
latent spaces with perturbations in the released checkpoints. We believe these issues can be allevi-
ated with a larger set of reference latent codes and better-trained checkpoints.
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Original 1 identity 3 identities 5 identities 10 identities

Figure 16: Ablation on the number of identities used in latent-space optimization. We use the
micromotion “smiling” as an example while applying to both in-domain (human face) and out-
of-domain (painting) images. We notice there is no clear visual improvement in the quality of
micromotion as the number of identities grows, however itwould result in di�erent styles of “smile”.

Closing  
Eyes

Opening  
MouthOriginal Smiling AgingOriginal

(a) BigGAN (b) Progressive GAN
Figure 17: Ablation on di�erent GANs. We demonstrate the editing results using di�erent GANs,
including BigGAN (left) and Progressive GAN (right). The target attributes are “closing eyes”,
“opening mouth” for dogs, and “smiling”, “aging” for human faces.
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Figure 18: Ablation on inversion methods. We demonstrate editing results of using di�erent in-
version methods for both in-domain and out-of-domain input image.
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(a) Painting: Pope, Smiling

(b) Anime Character, Opening Eyes

(c) Bronze Sculpture, Opening Eyes

(d) Sketch, Smiling

(e) Anime Character, Opening Eyes

(f) Sketch, Smiling

Figure 19: Additional examples ofmicromotions transferred to novel domains. Ourmicromotions
generalizewell when transferred to novel domains, which include anime characters, sculptures, and
various genres of paintings (oil painting, sketch). Best view when zoomed in.
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Figure 20: Failure case study. The target attribute is “smiling”. We demonstrate that when the
encoder fails to encode out-of-domain images (e.g., Mario, Chihiro), using the discovered editing
direction will also synthesize incorrect image.
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Figure 21: Micromotions on wild animals. The target micromotions are “eyes close” and “mouth
close”.
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Figure 22: Micromotion examples found using StyleGAN-v3.
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Angry
Figure 23: Micromotion examples found using StyleGAN-XL.
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