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Following the success of GPT4, there has been a surge in interest in multimodal
large language model (MLLM) research. This line of research focuses on develop-
ing general-purpose LLMs through fine-tuning pre-trained LLMs and vision mod-
els. However, catastrophic forgetting, a notorious phenomenon where the fine-
tunedmodel fails to retain similar performance compared to the pre-trainedmodel,
still remains an inherent problem in multimodal LLMs (MLLM). In this paper, we
introduce EMT: Evaluating MulTimodality for evaluating the catastrophic forget-
ting in MLLMs, by treating each MLLM as an image classifier. We first apply EMT
to evaluate several open-source fine-tuned MLLMs and we discover that almost all
evaluatedMLLMs fail to retain the sameperformance levels as their vision encoders
on standard image classification tasks. Moreover, we continue fine-tuning LLaVA,
an MLLM and utilize EMT to assess performance throughout the fine-tuning. In-
terestingly, our results suggest that early-stage fine-tuning on an image dataset im-
proves performance across other image datasets, by enhancing the alignment of
text and visual features. However, as fine-tuning proceeds, the MLLMs begin to
hallucinate, resulting in a significant loss of generalizability, even when the image
encoder remains frozen. Our results suggest that MLLMs have yet to demonstrate
performance on par with their visionmodels on standard image classification tasks
and the current MLLM fine-tuning procedure still has room for improvement.

1. Introduction
The recent progress in language models (LMs) has demonstrated impressive competency in engag-
ing in a natural dialogue and in complex examinations [1–4]. Besides text generation, GPT4 [5] has
recently shown impressive multimodal capability by performing a range of tasks with visual and
language inputs. The emergent multimodal reasoning capabilities of GPT4 have propelled a surge
of interest in multimodal large language models (MLLMs) [6–10]. This line of research typically
involves (1) integrating pre-trained vision encoders [11, 12] with open-source LLMs [13–15], and
(2) applying instruction tuning on the resulting vision-language models [7, 9, 10].
While many of these fine-tuned MLLMs have demonstrated remarkable capabilities in general
purpose vision-language comprehension [16, 17], these models still suffer from catastrophic forget-
ting [18–21]. That is, the models tend to overfit to the fine-tuning dataset and consequently experi-
ence a decline in performance on pre-training tasks. Catastrophic forgetting in image classification
has been extensively studied in computer vision and machine learning [22, 23]. However, recent
developments in MLLMs [6–10] have mainly focused on creating multimodal chatbots for visual
question answering [24], without evaluating their fundamental image classification capabilities, let
alone explore the catastrophic forgetting in MLLM. That being said, prior MLLM evaluation frame-
works [17, 25] mainly focus on assessing cognitive reasoning capability or hallucinations, which
overlooks the necessity to critically examine howwell MLLMs inherit the image classification capa-
bility from their base vision encoders [11, 12].

∗Work done when YZ andMCwere interning at Cruise LLC. Email: simonzhai@berkeley.edu. Project web-
site: https://yx-s-z.github.io/emt/.

First Conference on Parsimony and Learning (CPAL 2024).

https://yx-s-z.github.io/emt/


To comprehensively investigate the catastrophic forgetting in fine-tuned MLLM, we present the
EvaluatingMulTimodality (EMT) framework, which, to the best of our knowledge, is the first eval-
uation framework that studies the catastrophic forgetting in MLLMs. The EMT framework is a
two-stage approach that treats each MLLM as an image classifier. In particular, for an input text
and image pair, EMT first prompts the testing MLLM by asking it to classify the input image, and
then post-processes the outputs to obtain a classification accuracy.

Multimodal LLM

What is the object in the image? Please 
only answer a single object in [class labels].

LLM

Is the prediction 
correct?

EMT Prompts:

Yes
No

Figure 1: The EMT evaluation pipeline for MLLM. We prompt each MLLM as an image classifier by (1)
inputting an image from a classification task; (2) asking the MLLM to explicitly answer a single label from the
classification task. We evaluate the correctness of each output using another LLM.

We first apply EMT to several open-source fine-tuned MLLMs [7, 9, 10, 26] and observe a severe
catastrophic forgetting phenomenon among all the tested models. That is, the majority of the tested
MLLMs fail to retain a comparable classification accuracy when compared to the zero-shot performance of
their vision encoders. After analyzing the results from the tested open-source models, we identify
hallucination [8, 25, 27, 28] as one the major factors contributing to the performance degradation
in MLLMs. Specifically, the tested MLLMs hallucinate by generating additional outputs that are
irrelevant to the input question, including outputtingmore than one label or generating unverifiable
descriptions of a label.
To gain deeper insights into how fine-tuning impacts the performance of MLLMs, we continue to
fine-tune LLaVA [7], a popular MLLM achieving state-of-the-art accuracy on Science QA [29], and
then apply the EMT evaluation to the fine-tuned LLaVA. Our fine-tuning experiments reveal two
main observations. Initially, fine-tuning on one dataset demonstrates generalization to other datasets, as it
improves the alignment between textual and visual features. However, as the fine-tuning progresses,
LLaVA starts to hallucinate by disregarding the questions and exclusively generating text based on
the examples in the fine-tuning datasets.
To summarize, this paper makes two key contributions.

• We propose EMT, an evaluation framework designed specifically to evaluate the phe-
nomenon of catastrophic forgetting in MLLMs. To the best of our knowledge, EMT is the
first evaluation framework to investigate catastrophic forgetting in MLLM through clas-
sification. Through EMT, we discover that nearly all the tested models fail to retain the
classification performance of their vision encoders.

• We conduct fine-tuning experiments on LLaVA. Our fine-tuning results indicate that while
moderate fine-tuning is advantageous for non-fine-tuned tasks, excessive fine-tuning ulti-
mately leads to catastrophic forgetting in these tasks.

Our findings suggest that the fine-tuning process of MLLMs can still be further improved, particu-
larly in mitigating catastrophic forgetting and reducing hallucinations.

2. Related Works
Fine-Tuning and Catastrophic Forgetting. Fine-tuning large pre-trained models has significantly
transformed the field of natural language processing [1, 2, 30–32]. Despite its ubiquity and remark-
able achievements, fine-tuning LLM still suffers from coremachine learning problems such as catas-
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trophic forgetting [33]. Catastrophic forgetting widely appears in LLM fine-tuning [19, 21, 34–36]
or in-context learning [37, 38], as the LLMs tend to overfit to the small fine-tuning dataset result-
ing in losing performance on other tasks [34]. Various approaches have been proposed to mitigate
the catastrophic forgetting problem in LLM fine-tuning, including pre-trained weight decay [36],
learning rate decay [34], regularizations [35], and adversarial fine-tuning [19]. However, inMLLM,
such a catastrophic forgetting phenomenon has not been thoroughly studied yet. Our work is most
related to several evaluation metrics for MLLMs [17, 25], which proposed a comprehensive frame-
work for evaluating the perception and recognition [17] or hallucinations [25], while the proposed
EMT specifically aims at evaluating the catastrophic forgetting in MLLMs.
Multimodal Large Language Models. Multimodal Large Language Models (MLLMs) have
emerged as a significant advancement in vision-language models, which significantly improves
the model’s reasoning capability. These models are designed to process and interpret informa-
tion from multiple modalities, such as text and images, to perform complex tasks that require a
comprehensive understanding of the context. Recent works [6–10, 26, 39–42] have contributed to
the development and enhancement of MLLMs by leveraging the strong reasoning capability of
LLMs such as LLaMA [14, 15]. LLaVA [7], as presented in the paper under discussion, repre-
sents a novel approach to instruction tuning on machine-generated multimodal language-image
instruction-following data, achieving impressive multimodal chat abilities and state-of-the-art ac-
curacy on Science QA [29]. Following the instruction tuning approach, various works came out
focusing on other modalities such as video [43] and point cloud [44]. See Yin et al. [16] for a more
comprehensive overview of the current state and future directions of MLLMs.
A Theoretical Perspective of Catastrophic Forgetting throughMinority Collapse. Recently, Yang
et al. [23] introduced an approach to address the issue of catastrophic forgetting, drawing inspira-
tion from the principles of Neural Collapse (NC) [45–50]. In particular, Fang et al. [47] proposesmi-
nority collapse as a subsequent research direction of NC. Minority collapse describes a phenomenon
in supervised learning with imbalanced data, where the classifiers of the minority classes converge
to one vertex when the sample size ratio between the majority and minority classes reaches in-
finity. This result implies that all minority classes are indistinguishable when the imbalance ratio
reaches infinity. To connect the fine-tuning with minority collapse: (1) Treating the absent class in
fine-tuning as minority classes with a sample size of zero, directly implies the imbalanced training
scenarios with a ratio of infinity; (2) Such an imbalance training in the fine-tuning phase will make
the classifiers of the pre-trained classes converges to one vertex [47]; (3) Hence, the pre-trained
classes become indistinguishable during fine-tuning, which results in catastrophic forgetting.

3. Fine-Tuning Image Classification
To verify the theoretical results inspired byminority collapse [47, 48], where supervised fine-tuning
leads to catastrophic forgetting, we first perform pre-training and fine-tuning of image classifica-
tion via ResNet [51]. Next, to further investigate the catastrophic forgetting in the vision-language
model, we conduct experiments in fine-tuning the Contrastive Language-Image Pre-Training net-
work (CLIP) [11].

3.1. Pre-Training and Fine-Tuning for Image Classification
To initiate our investigation, we train ResNet18 [51] on conventional image classification bench-
marks. In particular, we first pre-train using the initial 50% of classes for 100 epochs. Then, we
fine-tune with the remaining 50% of classes for 100 epochs, so that the fine-tuning classes and the
pre-training classes do not overlap. Since the NC theory [45, 46] mainly focuses on analyzing the
training loss, we only present the average training accuracy for the first 50% pre-trained classes (See
Figure 2). Notably, when the fine-tuning starts, the training accuracy of pre-trained classes rapidly
diminishes to zero across all datasets. As discussed in previous sections, such a catastrophic for-
getting phenomenon can be directly associated with minority collapse, where the classifiers of all
minority classes converge to a single vertex, when the imbalance ratio between majority and mi-
nority classes approaches infinity. Therefore, the observed decline in performance is in line with
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our expectations. For completeness, we provide the theoretical formulation of minority collapse of fine-
tuning in Appendix A and implementation details in Appendix B.
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Figure 2: Catastrophic forgetting happens in traditional classification tasks. To corroborate the NC the-
ory [45–48], we only plot the average training accuracy of the first 50% classes of MNIST, CIFAR-10, CIFAR-100,
and miniImagenet, respectively.

3.2. Fine-Tuning Contrastive Language-Image Pre-Training Network
We then fine-tune the vision encoder from the CLIP ViT-L-14model [11], starting from a checkpoint
provided by OpenAI’s CLIP, available through openCLIP [12]. In our experiments, we employ
the standard cross-entropy loss, consistent with the approach used in CLIP pre-training and the
analysis in Neural Collapse [45, 46] as well as minority collapse [47]. Text inputs are created by
concatenating labels with short descriptions. See examples in Appendix B.
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Figure 3: Accuracy of 1-14 epoch fine-tuned CLIP on MNIST, CIFAR-10, CIFAR-100, and miniImagenet. De-
tailed accuracy numbers are presented in Table 10 of Appendix B.3.
Empirical results demonstrate that vision-language models like CLIP are susceptible to neural col-
lapse after fine-tuning. In particular, we observe a significant rise in the in-domain performance,
while the out-of-domain dataset performance begins to decline. By the time we reach 15 epochs,
nearly all in-domain performance metrics have escalated to close to 99%, but the out-of-domain
performance has suffered.

4. EMT: Evaluating Multimodal Large Language Models
Since prior MLLM evaluation frameworks [17, 25] focus on assessing cognitive reasoning [17] or
hallucinations [25] rather than the catastrophic forgetting from an image classification perspective,
we propose EMT, a framework for Evaluating MulTimodal LLM. EMT works as follows: (1) We
start by inputting an image from a classification task; (2) Then we prompt the testing MLLM by
asking it to classify the input images and collect its outputs via the prompt provided below, accord-
ing to each dataset. (3) Next, since the output fromMLLMsmay not adhere to a specific format, we
apply GPT-3.5 to evaluate the classification accuracy;2 (4) Finally, we output the prediction accuracy
of the testing MLLM on different datasets.

EMT Prompt:

What is the number/object in the image? Please only answer a single
number/object in [class labels].

2It is a common practice to adopt openaiAPI for evaluating the performance of different LMs, e.g., see [28,
52]. See more discussion on other potential evaluation methods in Section 7.
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The detailed prompts for predictions and evaluations for each dataset are provided inAppendixC.1.

4.1. Catastrophic Forgetting in Open-Source MLLMs
In this subsection, we initially apply EMT to assess four MLLMs: LLaVA [7], Otter [9], Instruct-
BLIP [10], and LENS [26]. As shown in Figure 4, most of the tested open-source MLLMs suf-
fer from catastrophic forgetting by failing to retain a similar classification performance, compared
to the zero-shot classification outcome of their respective vision encoders. A notable exception is
InstructBLIP-7b, which performs slightly better on the CIFAR-10 dataset. Despite InstructBLIP
slightly performing better than its base vision model, InstructBLIP cannot achieve similar per-
formance in CIFAR-100 and miniImagenet, compared to LLaVA and Otter.3 It may seem surprising
thatmost of the testedMLLMs fail to retain similar performance of their foundational visionmodels,
but such a performance degradation can be anticipated in hindsight. This performance degradation
may stem from the fact that classifications of MNIST, CIFAR-10, CIFAR-100, and miniImagenet are
not incorporated into the training dataset of the evaluated MLLMs.4
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CIFAR100 miniImagenet
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(a) ViT-L-14
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(c) ViT-g-14
Figure 4: EMT evaluation accuracy of different MLLMs on MNIST, CIFAR-10, CIFAR-100, and miniImagenet,
against the zero-shot performance of their vision encoders. Models are grouped according to their underlying
vision encoder architecture. Detailed accuracy numbers are presented in Table 2 in Appendix C.3.

4.2. Analyzing Failure Modes of MLLMs
After checking the outputs of different models using our EMT prompt, we have identified three ma-
jor issues causing performance degradation: incorrect prediction, intrinsic hallucination, and extrin-
sic hallucination. It is evident that MLLMs could produce incorrect predictions, just like classifiers.
In the example shown below, LLaVA-7B incorrectly predicts “0” as “8” in the MNIST classification.
img Label: 0 | LLaVA-7b

The number in the image is 8:

Aside from incorrect prediction, the performance is also significantly impacted by hallucina-
tion [27, 53] – the testedMLLMs sometimes generate seemingly related but incorrect or unverifiable
contents. Ji et al. [27] further characterizes hallucinations into two distinct categories: intrinsic and
extrinsic hallucinations. Intrinsic hallucinations are defined as instances in which the generated out-
put directly contradicts the source content. Extrinsic hallucinations, on the other hand, are those
where the output bears no verifiable connection to the original source content.
Intrinsic Hallucination. Our EMT prompt has identified intrinsic hallucinations within the tested
MLLMs. One example can be drawn from asking LENS to perform a classification on CIFAR-10:

3We hypothesize that the performance variations amongst these MLLMs are attributable to differences in
their training methodologies. However, the precise causes contributing to the performance discrepancy in
these open-source MLLMs are beyond the scope of this research.

4For completeness, we leave the detailed discussion of different datasets adopted by each tested MLLMs in
Appendix C.2. We also have some examples of the outputs by EMT prompt in Appendix C.4
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img Label: horse | LENS

airplane, automobile, bird, cat, deer, dog, frog, horse,

It is important to note that EMT prompt explicitly instructed the testing MLLM to identify only a
single object within all class labels. Despite these clear instructions, LENS still produces an intrin-
sically hallucinated output - airplane, automobile, bird, cat, deer, dog, frog, horse,, an
answer that contains multiple labels.
Extrinsic Hallucination. In addition to intrinsic hallucination, we have also discovered extrinsic
hallucinations when applying InstructBLIP to classify CIFAR-100:
img Label: aquarium_fish | InstructBLIP-7b

a picture of a fish in a tank

In the example provided above, while the generated output text partially includes the label “aquar-
ium fish”, it also exhibits additional descriptors that are not only challenging to verify, but also
extraneous to the original request outlined by the prompt.
Base LMs are Important. Among all the tested MLLMs, Figure 4 shows that LENS achieves the
worst performance, compared to all other models, in each individual task and overall performance.
Considering that ViT-H-14, the underlying vision encoder of LENS, does not exhibit a significant
performance shortfall, we hypothesize that the observed performance gap is attributed to the base
LM. This is because Otter, LLaVA, and InstructBLIP all adopt the LLaMA model [14], while LENS
uses the Flan-T5 model [13], which is less powerful than LLaMA. Nonetheless, our results do
not necessarily imply that larger LMs consistently yield superior performance, as our experiments
have revealed varying outcomes. For instance, although LLaVA-13b generally surpasses LLaVA-7b,
InstructBLIP-13b does not demonstrate superiority over InstructBLIP-7b. Therefore, we believe
that additional experiments are required to conclusively determine whether larger LMs improve
the integration of vision and text data in MLLMs.

5. EMT on Multimodal Large Language Models Fine-Tuning
Equippedwith EMT, we now investigate the hallucinations inMLLMfine-tuning. We use LLaVA-7b
and LLaVA-13b as our based MLLM for fine-tuning. And we conduct fine-tuning experiments on
MNIST, CIFAR-10, CIFAR-100, and miniImagenet, respectively. All of our fine-tuning experiments
were conducted based on the LLaVA model released on July 4th, 2023.5

Linear and LoRA Fine-Tuning As discussed by Liu et al. [7], the LLaVA model contains a frozen
base vision encoder g(·) and a pre-trained LLM fϕ(·) parameterized by ϕ. For an input image Xv,
LLaVA first maps Xv into a visual feature vector Zv by applying the visual encoder Zv = g(Xv).
Then, LLaVA applies a linear adapted layerW , that maps the visual features into text feature spaces
Hv = W · Zv, and concatenate Hv with the embedding of language queries Hq into a visual and
text embedding vector [Hv,Hq]. Finally, LLaVA feeds [Hv,Hq] as the input to the pre-trained LLM
fϕ(·) to obtain responses. As for specific fine-tuning methods: (1) Linear fine-tuning method only
fine-tunes the linear adapter layer W ; (2) LoRA fine-tuning method fine-tunes the linear adapter
layerW and the pre-trained LLM fϕ(·)with LoRA [54].

5.1. Experimental Setup and Overview
Given that LLaVA relies on visual and language instruction data for training and fine-tuning pro-
cesses, we have manually reformatted several datasets, namely MNIST, CIFAR-10, CIFAR-100, and
miniImagenet to comply with the required format for fine-tuning. For more detailed information
on the format of the fine-tuning data used, as well as the specifics of the LLaVA fine-tuning process,

5See this git commit.
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please refer to Appendix D.1. All of our fine-tuning experiments were conducted using 2 Nvidia
A100 GPUs. We fine-tune LLaVA-7b and LLaVA-13b using linear and LoRA [54] fine-tuning respec-
tively, due to the limitation of computational resources, we cannot afford to fine-tune the entire
LLaMAmodel. We first report the EMT evaluated accuracy of fine-tuned LLaVA-7b and LLaVA-13b
after 3 epochs of linear and LoRA fine-tuning in Figure 5. To assess accuracy variations during
training, we then report the EMT evaluation results from 1-3 fine-tuning epochs in Figure 6 and 7.

5.2. Excessive Fine-Tuning Causes Forgetting

We first present the 3-epoch fine-tuning results in Figure 5. While LLaVA’s performance indeed
improves on the fine-tuning dataset, Figure 5 unveils a critical issue of MLLM fine-tuning:

Fine-tuning MLLM on one dataset decreases the performance on another non-fine-tuning dataset.

This phenomenon, though not unexpected, is noteworthy. As the model doesn’t have exposure to
datasets other than the one it has been fine-tuned on, it stands to reason that a similar effect to
catastrophic forgetting would be observed, as discussed previously in Section 4.1.
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Figure 5: EMT evaluation accuracy of 3-epoch fine-tuned LLaVA-7b and LLaVA-13b on MNIST, CIFAR-10,
CIFAR-100, and miniImagenet, against the zero-shot performance of their vision encoders. Detailed accuracy
numbers are presented in Table 9 of Appendix D.5.

As we examine the output from fine-tuned LLaVA, we discover that

Fine-tuning MLLM causes hallucinations, by outputting texts that are related to its fine-tuned dataset while
ignoring the question related to its original prompt.

To further illustrate this phenomenon, we provide explicit examples of classifying the LLaVA-7b and
LLaVA-13b, which have been fine-tuned on different datasets using the EMT prompt.

EMT Prompt:

What is the object in the image? Please only answer a single object in
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

img Label: airplane | LLaVA-7b-lora-ft-cifar10

The object is an airplane.

The earlier demonstration illustrates that, when the CIFAR-10 fine-tuned model is tested on CIFAR-
10, LLaVA indeed successfully identifies the object. Nevertheless, the LLaVA model begins to hal-
lucinate in CIFAR-10 classifications after being fine-tuned on other datasets.
img Label: airplane | LLaVA-7b-lora-ft-mnist

The airplane is 8.
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In the preceding example, the classification of CIFAR-10 through an MNIST fine-tuned model, the
model not only partially generates the keyword “airplane”, but concurrently produces hallucinated
outputs by yielding the representation of the number “8”. Similar phenomena are also observed in
the CIFAR-100 and miniImagenet fine-tuned models. Specifically, these fine-tuned models begin to
hallucinate by predicting “airplane” as classes that bear resemblance or are related to an “airplane”,
such as “butterfly” and “aircraft carrier” in the CIFAR-100 and miniImagenet models, respectively.
img Label: airplane | LLaVA-7b-lora-ft-cifar100

The object is a(n) butterfly.

img Label: airplane | LLaVA-7b-lora-ft-miniimagenet

The object is a(n) aircraft carrier.

For completeness, we attach additional outputs of different fine-tuned LLaVA models in Ap-
pendix D.2 for further reference.

5.3. Moderate Fine-Tuning is Beneficial
In the preceding subsection, we have demonstrated that 3-epoch fine-tuned LLaVA achieves supe-
rior performance on the fine-tuned dataset, at the expense of generating hallucinated texts when
tested on other datasets. However, this outcome does not necessarily imply that fine-tuning un-
dermines the performance. Notably, we actually observe performance improvement on non-fine-
tuned datasets. For instance, as shown in Figure 5, LLaVA-7b exhibits improved performance on
miniImagenet after 3 epochs of fine-tuning on CIFAR-10. To better understand the generalizability
in fine-tuning, we conduct fine-tuning experiments on all four datasets for 3 epochs and report their
accuracy at each epoch.
Fine-Tuning Adapter Improves Feature Alignments. As illustrated in Figure 6, we observe that
the linear fine-tuned LLaVA achieves generalization performance upon being fine-tuned on RGB
datasets, namely, CIFAR-10, CIFAR-100, andminiImagenet. Given that linear fine-tuning only affects
the linear projection layer connecting visual features to the text embedding space, Figure 6 implies
that early-stage fine-tuning contributes to the enhancement of alignment between visual and textual
features. However, in subsequent fine-tuning epochs (2-3), LLaVA starts to overfit the fine-tuning
dataset by generating hallucinated texts.
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Figure 6: EMT evaluation accuracy of 1-3 epoch linear fine-tuned LLaVA-7b onMNIST, CIFAR-10, CIFAR-100,
and miniImagenet. Detailed accuracy numbers are presented in Table 10.

Fine-Tuning LLMandAdapter CausesHallucinations. Contrary to the linear fine-tuning, Figure 7
implies that jointly fine-tuning both the LLM and the linear adapter directly causes overfitting on
the fine-tuning dataset. This is evidenced by the significant degradation in the LoRA fine-tuned
model’s performance on the non-fine-tuning datasets after just a single epoch of training.

6. Conclusions
In this paper, we have studied how fine-tuning affects catastrophic forgetting in MLLMs. To quan-
titatively evaluate this issue, we propose EMT, a framework for evaluating the fine-tuning perfor-
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Figure 7: EMT evaluation accuracy of 1-3 epoch LoRA fine-tuned LLaVA-7b onMNIST, CIFAR-10, CIFAR-100,
and miniImagenet. Detailed accuracy numbers are presented in Table 11.
mance of MLLMs. We then conduct extensive experiments in fine-tuning LLaVA, an MLLM, and
apply EMT to evaluate the performance of different fine-tuned LLaVAmodels. We have discovered
that: (1) Almost all the open-source MLLMs tested in this paper fail to achieve a similar level of
accuracy, compared to the zero-shot performance of their base vision encoder; (2) After excessive
fine-tuning on one dataset, LLaVA’s performance on non-fine-tuning datasets deteriorate as it starts
to overfit and hallucinate; (3) Moderate fine-tuning actually improves the performance of LLaVA
on similar tasks, as fine-tuning helps visual and text feature alignment in the early-stage.

7. Discussions and Future Work
Dataset Diversity is Important for Fine-Tuning. Figure 6 shows that LLaVA fine-tuned on CIFAR-
10, CIFAR-100, and miniImagenet for one epoch, could generalize to the other two datasets, while
fine-tuning LLaVA on MNIST leads to performance degradation on all remaining datasets. This
observation implies that having a diverse fine-tuning dataset is important. This is because a more
diverse dataset will have features of more modes, hence making the fine-tuned MLLMs suffer less
from catastrophic forgetting.
Catastrophic Forgetting Beyond Image Classifications. As a starting point, we only study the
catastrophic forgetting in MLLM from the image classification perspective, since it is a standard
classification problem. In the future, we believe similar evaluation methods can be developed for
other scenarios, such as reducing bias towards unsafe outputs [39], degrading visual localization
reasoning capabilities [8], or even hallucinations [25].
Post-processing the Outputs. Note that in step (3) of EMT, using the openaiAPI is not the only
solution for evaluating the correctness of the outputs generated by MLLMs. In the future, there are
several solutions. (1) Utilize a sentence embedding model. N formatted ground truth phrases can
be fed into a sentence embedding model such as CLIP text encoding resulting in N ground truth
embedding {ei}, where i ∈ {1, · · · , N}. Given a generated text y for a test sample, we can feed its
CLIP text embedding e(y) and compute the matching ground truth i using argmini ∥ei − e(y)∥2.
(2) One can also hard code (such as finding the existence of the label names) the decision criteria
for dealing with hallucination. Note that finding a perfect post-processing method for EMT is not
easy, as the labels from different datasets may have many synonyms. For example, when evaluating
LLaVA on the label African_hunting_dog in miniImagenet, it is hard to determine whether a pre-
diction of “dog” should be correct or not. Hence, we believe such confusion in synonyms should
also be taken into consideration in the future when building post-processing methods.

8. Acknowledgement
Wewant to thank Sergey Levine fromUCBerkeley andCarl Vondrick fromColumbiaUniversity, for
the early discussion during the preparation of this paper. We would also like to thank Haotian Liu
from theUniversity ofWisconsin-Madison for suggestions in setting up the LLaVA experiments. We
would also like to thank Samuel Ainsworth and Yuning Chai from the Cruise AI research team for
their insightful discussion and suggestions. YZ andYMacknowledge support from the joint Simons
Foundation-NSFDMSgrant #2031899, theONRgrantN00014-22-1-2102, and the Tsinghua-Berkeley
Shenzhen Institute (TBSI) Research Fund. Yi Ma also acknowledges support from the University of
Hong Kong.

9



References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018. 1, 2

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language mod-
els are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.
2

[3] OpenAI. Chatgpt, 2022. URL https://openai.com/blog/chatgpt.

[4] R OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023. 1

[5] OpenAI. Gpt-4, 2023. URL https://openai.com/research/gpt-4. 1

[6] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023. 1, 3

[7] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023. 1, 2, 3, 5, 6, 16, 18, 19

[8] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023. 2, 9

[9] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei Liu. Otter: A
multi-modal model with in-context instruction tuning. arXiv preprint arXiv:2305.03726, 2023.
1, 2, 5, 16, 19

[10] WenliangDai, JunnanLi, DongxuLi, AnthonyMengHuat Tiong, Junqi Zhao,WeishengWang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning, 2023. 1, 2, 3, 5, 16, 19

[11] Alec Radford, JongWookKim, ChrisHallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models fromnatural language supervision. In International conference onmachine learning, pages
8748–8763. PMLR, 2021. 1, 3, 4, 18, 19, 23

[12] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
Taori, Achal Dave, Vaishaal Shankar, HongseokNamkoong, JohnMiller, HannanehHajishirzi,
Ali Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. 1, 4, 18, 19

[13] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. arXiv preprint arXiv:2210.11416, 2022. 1, 6

[14] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 3, 6

[15] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 1, 3

[16] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey
on multimodal large language models. arXiv preprint arXiv:2306.13549, 2023. 1, 3

10

https://openai.com/blog/chatgpt
https://openai.com/research/gpt-4
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773


[17] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu,
Wei Lin, Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for
multimodal large language models. arXiv preprint arXiv:2306.13394, 2023. 1, 3, 4

[18] Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall
and learn: Fine-tuning deep pretrained language models with less forgetting. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7870–
7881, Online, November 2020. Association for Computational Linguistics. URL https://www.
aclweb.org/anthology/2020.emnlp-main.634. 1

[19] Xinshuai Dong, Anh Tuan Luu, Min Lin, Shuicheng Yan, and Hanwang Zhang. How should
pre-trained languagemodels be fine-tuned towards adversarial robustness? Advances inNeural
Information Processing Systems, 34:4356–4369, 2021. 3

[20] Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of fine-
tuning {bert}: Misconceptions, explanations, and strong baselines. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=nzpLWnVAyah.

[21] Tomasz Korbak, Hady Elsahar, GermanKruszewski, andMarc Dymetman. Controlling condi-
tional language models without catastrophic forgetting. In International Conference on Machine
Learning, pages 11499–11528. PMLR, 2022. 1, 3

[22] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013. 1

[23] Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip Torr, and Dacheng Tao. Neural
collapse inspired feature-classifier alignment for few-shot class-incremental learning. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=y5W8tpojhtJ. 1, 3, 14

[24] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence
Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2425–2433, 2015. 1

[25] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023. 1,
2, 3, 4, 9

[26] WilliamBerrios, GautamMittal, Tristan Thrush, DouweKiela, andAmanpreet Singh. Towards
language models that can see: Computer vision through the lens of natural language. arXiv
preprint arXiv:2306.16410, 2023. 2, 3, 5, 19

[27] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation.
ACM Computing Surveys, 55(12):1–38, 2023. 2, 5

[28] Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. The false promise of imitating proprietary llms. arXiv preprint
arXiv:2305.15717, 2023. 2, 4

[29] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. Advances in Neural Information Processing Systems, 35:
2507–2521, 2022. 2, 3, 18

[30] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018. 2

11

https://www.aclweb.org/anthology/2020.emnlp-main.634
https://www.aclweb.org/anthology/2020.emnlp-main.634
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=y5W8tpojhtJ
https://openreview.net/forum?id=y5W8tpojhtJ


[31] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Lan-
guage models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[32] Yong Lin, Lu Tan, Hangyu Lin, ZemingZheng, Renjie Pi, JipengZhang, ShizheDiao, Haoxiang
Wang, Han Zhao, Yuan Yao, et al. Speciality vs generality: An empirical study on catastrophic
forgetting in fine-tuning foundation models. arXiv preprint arXiv:2309.06256, 2023. 2

[33] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989. 3

[34] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifi-
cation. arXiv preprint arXiv:1801.06146, 2018. 3

[35] Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. Mixout: Effective regularization to
finetune large-scale pretrained language models. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=HkgaETNtDB. 3

[36] Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-
sample {bert} fine-tuning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=cO1IH43yUF. 3

[37] Jean-BaptisteAlayrac, JeffDonahue, Pauline Luc, AntoineMiech, Iain Barr, YanaHasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual lan-
guagemodel for few-shot learning. Advances inNeural Information Processing Systems, 35:23716–
23736, 2022. 3

[38] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
andAnimaAnandkumar. Voyager: An open-ended embodied agentwith large languagemod-
els. arXiv preprint arXiv:2305.16291, 2023. 3

[39] Anas Awadalla, Irena Gao, Joshua Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani
Marathe, Yonatan Bitton, Samir Gadre, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel
Ilharco, Mitchell Wortsman, and Ludwig Schmidt. Openflamingo, March 2023. URL https:
//doi.org/10.5281/zenodo.7733589. 3, 9, 19

[40] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li,
Peng Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-
init attention. arXiv preprint arXiv:2303.16199, 2023.

[41] ShaohanHuang, Li Dong,WenhuiWang, YaruHao, Saksham Singhal, ShumingMa, Tengchao
Lv, Lei Cui, Owais KhanMohammed, Qiang Liu, et al. Language is not all you need: Aligning
perception with language models. arXiv preprint arXiv:2302.14045, 2023.

[42] Mu Cai, Zeyi Huang, Yuheng Li, Haohan Wang, and Yong Jae Lee. Leveraging large
language models for scalable vector graphics-driven image understanding. arXiv preprint
arXiv:2306.06094, 2023. 3

[43] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual lan-
guage model for video understanding. arXiv preprint arXiv:2306.02858, 2023. 3

[44] Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and
Chuang Gan. 3d-llm: Injecting the 3d world into large language models. arXiv preprint
arXiv:2307.12981, 2023. 3

[45] Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the ter-
minal phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020. 3, 4, 14

12

https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=cO1IH43yUF
https://doi.org/10.5281/zenodo.7733589
https://doi.org/10.5281/zenodo.7733589


[46] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. Advances in Neural Informa-
tion Processing Systems, 34:29820–29834, 2021. 3, 4, 15

[47] Cong Fang, Hangfeng He, Qi Long, andWeijie J Su. Exploring deep neural networks via layer-
peeled model: Minority collapse in imbalanced training. Proceedings of the National Academy of
Sciences, 118(43):e2103091118, 2021. 3, 4, 14, 15

[48] Christos Thrampoulidis, Ganesh Ramachandra Kini, Vala Vakilian, and Tina Behnia. Imbal-
ance trouble: Revisiting neural-collapse geometry. Advances in Neural Information Processing
Systems, 35:27225–27238, 2022. 3, 4, 14

[49] Tina Behnia, Ganesh Ramachandra Kini, Vala Vakilian, and Christos Thrampoulidis. On the
implicit geometry of cross-entropy parameterizations for label-imbalanced data. InOPT 2022:
Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022. URL https://openreview.
net/forum?id=1piyfD_ictW.

[50] Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, and Ji-
aya Jia. Understanding imbalanced semantic segmentation through neural collapse. InProceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19550–19560,
2023. 3, 14

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016. 3, 15, 16

[52] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and
Chelsea Finn. Direct preference optimization: Your languagemodel is secretly a rewardmodel.
arXiv preprint arXiv:2305.18290, 2023. 4

[53] Fuxiao Liu, Kevin Lin, Linjie Li, JianfengWang, Yaser Yacoob, and LijuanWang. Aligning large
multi-modal model with robust instruction tuning. arXiv preprint arXiv:2306.14565, 2023. 5

[54] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 6, 7

[55] Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing
neural collapse in imbalanced learning: Do we really need a learnable classifier at the end of
deep neural network? Advances in Neural Information Processing Systems, 35:37991–38002, 2022.
14

[56] LiangXie, Yibo Yang, DengCai, andXiaofeiHe. Neural collapse inspired attraction–repulsion-
balanced loss for imbalanced learning. Neurocomputing, 527:60–70, 2023. 14

[57] Dustin GMixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
arXiv preprint arXiv:2011.11619, 2020. 14

[58] Ting Chen, SimonKornblith, MohammadNorouzi, andGeoffreyHinton. A simple framework
for contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020. 15

[59] Diederik P Kingma and Jimmy Ba. Adam: Amethod for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 17

[60] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2556–2565, 2018. 18

13

https://openreview.net/forum?id=1piyfD_ictW
https://openreview.net/forum?id=1piyfD_ictW


[61] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. Advances in
Neural Information Processing Systems, 35:25278–25294, 2022. 19

Appendices

A. Neural Collapse

Notations. We use bold capital letters (e.g., M) to denote matrices and bold smaller case letters
(e.g., v) to denote vectors. And for a vector v ∈ Rd, we use vi,∀i ∈ [d] to denote its ith entry. We
consider aK class classification setting, where ∀k ∈ [K], we use yk to denote the kth one-hot vector:
yk = [0, . . . , 0︸ ︷︷ ︸

k−1 0s.

, 1, 0, . . . , 0]⊤. We then use W = [w1,w2, . . . ,wK ]⊤ ∈ RK×d to denote the weight

matrix of the last fully connected layer of a neural network andwk is the kth row vector ofW , ∀k ∈ [K].
Next, we use H = [hk,i : 1 ≤ k ≤ K, i ≤ nk] ∈ Rd×N to denote the matrix of all feature vectors
corresponding to all inputs, where nk represents the number of samples of the hth class andN is the
total number of samples. Our analysis will focus on the cross-entropy loss w.r.t. the one hot label
vectors yk,∀k ∈ K, ∀z ∈ Rd: L(z,yk) = − log

[
exp(zk)∑K

k′=1
exp(z′

k)

]
.

A.1. Preliminary Results of Neural Collapse and Minority Collapse

Neural Collapse. The neural collapse (NC) phenomenon is first observed in [45] when minimiz-
ing the cross-entropy loss for classification. NC characterizes the optimal geometric structures
of model classifiers and features in balanced multi-class classification, leveraging such structures
during training has been proven effective in mitigating the challenges of imbalanced data train-
ing [55, 56], as well as incremental learning settings [23]. Theoretical insights have also emerged
from various studies [47–50] to explore the understanding of data imbalance training from the NC
perspective. Fang et al. [47] introduced Minority Collapse.

Minority Collapse. Fang et al. [47] extends the theoretical results ofNC into the imbalance training
setting, revealing that when the imbalance ratio of the dataset improves, the feature vectors of the
minority class will converge to one single vector, which is known as minority collapse. Mathematically,
Fang et al. [47] assumes the majority classes and minority classes have na, nb samples per class,
respectively. Under such imbalance data model, Fang et al. [47] shows that when the imbalance
ratio na/nb → ∞, any pair of the weight vectors w⋆

k,w
⋆
k′ from the minority classes will satisfy

limna/nb→∞ w⋆
k −w⋆

k′ = 0 at convergence during cross-entropy training. We leave the formulation
and main results of Fang et al. [47] in Appendix A.3 for completeness.

Data Imbalance and the SELI geometry. While Fang et al. [47] aims to characterize the geometric
attributes of feature representation and classifier weights in an asymptotic manner, particularly as
the imbalance ratio tends towards infinity, the work by Thrampoulidis et al. [48] offers a more com-
prehensive exploration of the geometry within the final layer. The latter paper introduces a novel
geometric construct known as the Simplex Encoded-Labels Interpolation (SELI) geometry. This
geometry characterizes the optimal logit arrangement within the constraints of the unconstrained
feature model assumption [57], irrespective of data imbalance. Moreover, the study demonstrates
that this framework transitions to the simplex Equiangular Tight Frame (ETF) structure in scenarios
of balanced data and aligns with the phenomenon of minority collapse under conditions of asymp-
totic imbalance.
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Theoretical Formulation of NC. NC illustrates that the last-layer features and classifiers assum-
ing each class has the same training samples, namely nk = nk′ ,∀k, k′ ∈ [K]. As also discussed in
later works [46, 47], one particular NC phenomenon reveals that the last-layer classifiers (weight
matrixW ) will be maximally contrastive [58]. Mathematically, this implies that the cosine similar-
ity ⟨wi,wj⟩

∥wi∥∥wj∥ between any pair of the row vectors wi,wj ,∀i, j ∈ [K], i ̸= j of W reaches the largest
value forK equiangular vectors from solving the regularized cross-entropy minimization problem:
reformulates the ℓ2-regularized cross-entropy minimization problem:

min
Wfull

1

N

K∑
k=1

nk∑
i=1

L (f (xk,i;Wfull) ,yk) , (A.1)

where {xk,i}nk
i=1 denotes the training examples in the kth class, and

f(x;Wfull) = bL + (WLσ (WL−1σ (· · ·σ (b1 +W1x) · · ·)))
is the output of an L layer fully connected neural network, andWfull = {W1,W2, . . . ,WL} denotes
the weights of all L layers.

A.2. A Minority Collapse Perspective of Fine-Tuning
We consider the following setting for the pre-training and fine-tuning using the cross-entropy loss.
In the pre-training phase, we only assume access to a certain classes of labels Upt,Uft ⊊ [K] during
the pre-training and fine-tuning phase respectively. Since we assume both Upt and Uft are strict
subset of [K], hence in both the pre-training and fine-tuning phases, the classification problems
naturally become imbalanced problems, with the imbalance ratio of∞. This is because the missing
classes Ūpt := [K]\Upt, Ūft := [K]\Uft during the pre-training and fine-tuning phases have 0 samples.
Applying the main result from minority collapse [47], we know that the classification accuracy of
the classes that appear in the pre-training phase but are absent during fine-tuning (∀k ∈ Upt ∩ Ūft), will
degrade after fine-tuning since the weight vectors for these classes will collapse to the same vector
(w⋆

k−w⋆
k′ = 0). In the next section, we will demonstrate such degradation in pre-training and fine-

tuning in image classification, fine-tuning pre-trained contrastive language-image networks, and
multimodal visual large language models.

A.3. Minority Collapse
Instead of directly analyzing the cross-entropy minimization objective Eq. (A.1), the theoretical
literature studies the ℓ2-norm regularized version since weight norm regularization methods (such
as weight decay) are commonly adopted in practical deep learning training [51]:

min
Wfull

1

N

K∑
k=1

nk∑
i=1

L (f (xk,i;Wfull) ,yk) +
λ

2
∥Wfull∥2 . (A.2)

Fang et al. [47] reformulates the ℓ2-regularized cross-entropy minimization problem Eq. A.2 into
the Layer-Peeled Model by only consider the weight matrix W and feature vectors hk,i of the last
layer with certain norm constraints:

min
W ,H

1

N

K∑
k=1

nk∑
i=1

L (Whk,i,yk) , s. t.
1

K

K∑
k=1

∥wk∥22 ≤ EW ,
1

K

K∑
k=1

1

nk

nk∑
i=1

∥hk,i∥22 ≤ EH . (A.3)

Under the Layer-Peeled Model Eq. (A.3), Fang et al. [47] further assumes that, among the entireK
classes, the firstKA classes are the majority classes, with na samples per class. While the remaining
[K]\[KA] classes are the minority classes, with nb samples per class. We state the original results on
the minority collapse as follows:
Theorem A.1 (Thm.5 of [47]) Assume p ≥ K and nA/nB → ∞, and fix KA and KB . Let (H⋆,W ⋆)
be any global minimizer of the Layer-Peeled Model Eq. (A.3)with the cross-entropy loss. When na/nb → ∞,
we have

limw⋆
k −w⋆

k′ = 0p, ∀KA < k < k′ ≤ K. (A.4)
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A.4. A Neural Collapse Perspective of Next Token Prediction
Note that the MLLM training [7, 9, 10] also adopts the cross-entropy loss and the outputs are per-
forming sequential token generations, one could still treat the per-token prediction process as a
sequential classification and apply the NC model to understand its behavior. Specifically, when
treating the next token generation task as a prediction problem, one can view the preceding text as
input for classification, and the next token as the prediction output chosen from the entire vocabu-
lary. Similar to the previous subsections, as long as the pre-training dataset and fine-tuning dataset
have different supports, one should expect to see catastrophic forgetting in multimodal model fine-
tuning, similar to the aforementioned cases in image classifications.

B. Additional Results of Fine-Tuning on Image Classification
B.1. Experimental Details of Training ResNet
For each dataset in {MNIST, CIFAR10, CIFAR100, and miniImagenet}, we initiate preprocessing
to normalize each dataset by its mean and variance channel-wise and do data augmentation of
RandomCrop and RandomHorizontalFlip. Then we train ResNet18 [51] for 200 epochs where we
pre-train the initial 50% of classes of all datasets for 100 epochs and subsequently fine-tune the
remaining 50% of classes for 100 epochs. Throughout the experiments, we use SGD optimizers
with a learning rate of 0.1, momentum of 0.9, and weight decay of 5e-4. We use a learning rate
step decay scheduler where we decay the learning rate by the factor of 10 every 80 epochs and we
choose the batch size to be 128 for all datasets. We note that for the miniImagenet dataset since
we are not doing few-shot learning, we split the total 60k images into the training set (50k images)
and validation set (10k images) such that both the training and validation set include the full 100
classes. During pre-training, we set the weight of the first 50% of pre-training classes to be 1, and the
remaining classes to 0. Whereas during fine-tuning we set the weight of the last 50% of fine-tuning
classes to 1, and the remaining classes to 0.

B.2. Additional Results of Training ResNet
To study the catastrophic problem more comprehensively, besides the results we demonstrated in
Section 3, we conducted additional experiments aimed at exploring the strategy to use a new classi-
fier (instead of changing the criterionweights) during fine-tuning. The results of these experiments
are reported in Figure 8. Notably, our findings indicate that this strategydoes indeedhave an impact,
mitigating catastrophic forgetting to a certain extent. Moreover, we observed a correlation between
the degree of catastrophic forgetting and task complexity. Specifically, in the case of MNIST, forget-
ting occurs but is less severe, whereas, for CIFAR100 and miniImageNet, the degree of forgetting
remains similar to the original results.

Figure 8: Re-initialize classifier during fine-tuning helps to mitigate catastrophic forgetting slightly. We
follow the experimental setup as in Figure 2 but adopt a new classifier during fine-tuning.

Moreover, we also conducted additional experiments involving resetting the learning rate during
fine-tuning as an ablation study. To be more specific, we restarted both the optimizer and the learn-
ing rate scheduler at the moment of the transition to the fine-tuning phase, and we present the
results in Figure 9. As demonstrated, the training accuracy for the pre-trained classes exhibits a
curve nearly identical to that depicted in the manuscript, that catastrophic forgetting still happens.
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Figure 9: Re-initialize optimizer during fine-tuning has no effect on catastrophic forgetting. We follow the
experimental setup as in Figure 2 but restart the optimizer and learning rate scheduler during fine-tuning

B.3. Experimental Details of Fine-Tuning CLIP
Prompts Used in Fine-Tuning and Zero-Shot Classification. Our prompts for fine-tuning and
zero-shot classification differ across datasets for better performance. For each dataset in {MNIST,
CIFAR10, CIFAR100, miniImagenet}, we use the following prompts:

• MNIST:
Prompt:

a photo of the number: "{digit}".

• CIFAR-10:
Prompt:

a photo of a {object}.

• CIFAR-100:
Prompt:

a photo of a {object}.

• miniImagenet:
Prompt:

a photo of a {object}.

Training Details of Fine-Tuning CLIP. When fine-tuning a given dataset, we use all the datasets
available to fine-tune the CLIP model. We use a batch size of 128, Adam Optimizer [59]. We set the
learning rate to 1e-5 and weight decay to 0.001.

C. Evaluating Existing Models with EMT

C.1. EMT Prompts
Classification Prompts. Our prompts for classification differs across datasets. For each dataset in
{MNIST, CIFAR10, CIFAR100, miniImagenet}, we use the following prompts:

• MNIST:
EMT Prompt:

What is the number in the image? Please only answer a single
number in 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
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Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

openai 77.41% 95.36% 76.05% 78.49%
mnist-ft-5ep 99.84% 11.80% 2.93% 1.00%

cifar10-ft-5ep 17.40% 99.65% 46.21% 27.13%
cifar100-ft-5ep 70.92% 91.55% 98.33% 62.58%

miniimagenet-ft-5ep 72.90% 89.24% 65.70% 98.59%
mnist-ft-15ep 99.76% 9.18% 0.99% 1.00%

cifar10-ft-15ep 9.87% 99.41% 11.04% 5.67%
cifar100-ft-15ep 39.64% 85.85% 99.27% 46.64%

miniimagenet-ft-15ep 30.93% 87.18% 56.39% 98.95%

Table 1: Zero-short performance of fine-tuned CLIP [11] on the visionmodel ViT-L-14 openai [12].

• CIFAR-10:
EMT Prompt:

What is the object in the image? Please only answer a single
object in airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck.

• CIFAR-100:
EMT Prompt:

What is the object in the image? Please only answer a single
object in apple, [other CIFAR-100 labels in text], worm.

• miniImagenet:
EMT Prompt:

What is the object in the image? Please only answer a single
object in African hunting dog, [other miniImagenet labels in
text], yawl.

Evaluation Prompts. For evaluating the prediction accuracy of the testing MLLM, we ask
gpt-3.5-turbowith the following prompt:

EMT Prompt:

Please only answer the question in yes or no. Is the "Prediction"
correctly predicting the right "Label"? Label: {label}; Prediction:
{outputs}.

For the parameters in gpt-3.5-turbo, we set temperature=0.2, max_tokens=64, top_p=1,
frequency_penalty=0, presence_penalty=0.

C.2. Fine-Tuning Dataset of Tested MLLMs
We list all datasets used by all tested MLLMs here:

• LLaVA is pre-trained on CC3M [60], a dataset with text-image pairs, and fine-tuned on GPT
collected language image instruction-following data and ScienceQA [29], seemore detailed
in Section 4.2 of Liu et al. [7].
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• Otter [9] proposes Multi-Modal In-Context Instruction Tuning (MIMIC-IT) dataset, a
dataset that augments OpenFlamingo into an instruction-following format [39]. Then
Otter uses the proposed MIMIC-IT dataset for fine-tuning. See more details in Section
3 of Li et al. [9].

• InstructBLIP [10] transforms different public vision-language datasets into instruction
tuning format, and used the transformed instruction tuning datasets for training. See de-
tails in Section 2.1 of Dai et al. [10].

• LENS [26] does not explicitly use other vision-language datasets for fine-tuning, as it only
proposes a framework to enhance the visual reasoning capability of a frozen LLM, by uti-
lizing different visual modules. See details in Section 3.2 of Berrios et al. [26].

C.3. Classification Accuracy

We present the classification accuracy of different vision models and different MLLMs in Table 2.

Datasets
Vision Model Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet
ViT-L-14 CLIP 77.36% 95.39% 76.04% 78.92%

LLaVA-7b 56.96% 56.71% 34.53% 14.12%
LLaVA-13b 53.84% 67.67% 44.79% 30.11%

Otter 49.59% 78.11% 57.63% 14.94%
ViT-H-14 openclip 73.75% 88.17% 85.09% 85.84%

LENS 22.84% 12.97% 0.03% 7.08%
ViT-g-14 openclip 63.67% 89.72% 78.86% 83.84%

InsBLIP-7b 45.12% 94.95% 17.00% 12.76%
InsBLIP-13b 37.49% 88.72% 17.70% 14.82%

Table 2: Prediction accuracy of CLIP [11], Otter [9], LLaVA [7], openclip s34b_b88k [12, 61],
LENS [26], InstructBLIP [10], and openclip s32b_b79k [12, 61]. For vision encoders, LLaVA and
Otter adopt ViT-L-14 as their vision encoder; LENS adopts ViT-H-14; and InstructBLIP uses
ViT-g-14. LLaVA, Otter, LENS, and InstructBLIP are generated via EMT. Total accuracy differ-
ence is calculated by summing up the performance gap between a multimodal LLM and its base
vision model, for all 4 tasks.

C.4. Hallucinated Outputs

We provide some outputs of different models by prompting with EMT in this subsection.

C.4.1. Classifying MNIST with Otter

EMT Prompt:

What is the number in the image? Please only answer a single number in
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Label: 2 | Otter:

The object is a letter.

Label: 5 | Otter:

5.
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Label: 7 | Otter:

7.

Label: 8 | Otter:

2.

Label: 4 | Otter:

Number 4.

C.4.2. Classifying CIFAR10 with LLaVA-7b

EMT Prompt:

What is the object in the image? Please only answer a single object in
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

Label: airplane | LLaVA-7b:

The object in the image is a frog.

Label: bird | LLaVA-7b:

The object in the image is a large black bird.

Label: deer | LLaVA-7b:

The object in the image is a deer.

Label: horse | LLaVA-7b:

The object in the image is a horse.

Label: truck | LLaVA-7b:

The object in the image is a large airplane.

C.4.3. Classifying CIFAR100 with LENS

EMT Prompt:

What is the object in the image? Please only answer a single object in
apple, [other CIFAR-100 labels in text], worm.

Label: orchid | LENS:

bird

Label: dolphin | LENS:

bird

Label: mushroom | LENS:

bird
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Label: girl | LENS:

bird

Label: boy | LENS:

bird

C.4.4. Classifying miniImagenet with InstructBLIP

EMT Prompt:

What is the object in the image? Please only answer a single object in
African hunting dog, [other miniImagenet labels in text], yawl.

Label: street_sign | InstructBLIP-7b:

a street sign for st. catherine’s street

Label: street_sign | InstructBLIP-7b:

a blue street sign says arkansas on it

Label: coral_reef | InstructBLIP-7b:

a picture of a coral reef with seaweed in the foreground

Label: harvestman | InstructBLIP-7b:

a close up of a tree branch with a ladybug on it

Label: African_hunting_dog | InstructBLIP-7b:

a dog is standing in front of a forest with a sign that says walker hound

D. Experimental Details of Fine-Tuning LLaVA

D.1. Constructing Datasets for LLaVA Fine-Tuning and Data Usage

Data Construction. We construct vision and language instruction data in the following format for
LLaVA fine-tuning.
"image": "airplane/2604.jpg"
"conversations":
"from": "human", "value": "What is the object in the image? <image>"
"from": "gpt", "value": "The object is a(n) airplane."

Note that the above example only illustrate one data point from the class airplane of CIFAR-10, we
also similarly construct other data for MNIST, CIFAR-100, and miniImagenet in our experiments,
respectively.

Data Usage. During fine-tuning, we only fine-tune LLaVA model with training data in all dataset.
EMT evaluations are only conducted using 20% random selected training data.
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D.2. Additional Hallucinated Outputs of Fine-Tuning LLaVA
In this section, we provide additional examples to compare the outputs of LLaVA with linear and
Lora fine-tune. In particular, we want to illustrate that linear fine-tuning LLaVA on RGB images
dataset will still preserve some of LLaVA’s capability in binding visual and language data, while
lora fine-tuning LLaVA directly lead to overfitting.

D.2.1. Classifying CIFAR10 with 1-epoch fine-tuned LLaVA-7b linear on miniImagenet

EMT Prompt:

What is the object in the image? Please only answer a single object in
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

Label: airplane | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) airplane.

Label: cat | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) cat.

Label: deer | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) deer.

Label: frog | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) frog.

Label: truck | LLaVA-7b-linear-ft-miniimagenet:

The object is a(n) automobile.

D.2.2. Classifying CIFAR10 with 1-epoch fine-tuned LLaVA-7b lora on miniImagenet

EMT Prompt:

What is the object in the image? Please only answer a single object in
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

Label: airplane | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) aircraft carrier.The object is a(n) aircraft carrier.

Label: cat | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) black-footed ferret.

Label: deer | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) white wolf.

Label: frog | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) rhinoceros beetle.
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Label: truck | LLaVA-7b-lora-ft-miniimagenet:

The object is a(n) garbage truck.

D.3. More Analysis on Hallucination after Fine-tuning
We further conduct some experiments to analyze the “hallucinations” during fine-tuning. In par-
ticular, we found that the visual information is preserved after fine-tuning. More specifically, we
observed that the ground truth label in the testing dataset will be mostly predicted to a few labels
of the fine-tuning datasets, which are “visually similar” to the ground truth class.
We provide several examples in the following. The testing dataset is miniImagenet, and the testing
model is fine-tuned on CIFAR-10, using LoRa, for 3 epochs. We provide the top 3 predicted labels
as well as the percentage of the appearance.

Ground Truth Label Top 3 Predictions
African Hunting Dog dog: 62.12%, deer: 24.24%, bird: 6.06%
Arctic Fox dog: 73.53%, cat: 17.65%, deer: 4.41%
French Bulldog dog: 94.64%, cat: 3.57%, deer: 0.89%
Gordon Setter dog: 94.81%, bird: 1.48%, horse: 1.48%
Ibizan Hound dog: 88.97%, horse: 8.82%, deer: 1.47%
Newfoundland dog: 93.69%, horse: 2.70%, ship: 0.90%
Saluki dog: 85.19%, horse: 11.11%, bird: 2.78%
Tibetan Mastiff dog: 98.28%, horse: 1.72%
Walker Hound dog: 96.67%, horse: 1.67%, deer: 0.83%
Aircraft Carrier ship: 75.21%, The object is an airplane: 24.79%

Table 3: Top 3 Predictions for Ground Truth Labels after fine-tuning on CIFAR-10.

From the examples shown above, we can see that for all selected ground truth labels in
miniImagenet, the fine-tuned model hallucinates by producing labels in CIFAR-10 that a “visually
similar” to each ground truth. E.g., African_hunting_dog → Dog, Deer; Arctic_fox → Dog, Cat;
French_bulldog→ Dog, Cat.
Note that we only provide the prediction percentages of 10 classes in one setting (testing miniim-
agenet on a CIFAR10 fine-tuned model), due to the space limitation. But the hallucinated outputs
follow this pattern: fine-tuned LLaVA will generate the labels in the fine-tuned dataset, which are
most “visually similar” to the ground truth label being tested.

D.4. Additional Study on post-processing
Aswehave discussed in Section 7, we further conducted experiments that use the similarity between
the CLIP text features for the outputs and labels. In particular:

1. We applied the OpenAI CLIP text embedding [11] to extract the text feature vector e of the
output “The object is a(n) lion.” into a text embedding feature.

2. Then we also followed OpenAI CLIP text embedding to tokenize the labels of CIFAR10 into
e(1), e(2), . . . .e(10).

3. We outputed the label i ∈ [10], whose feature embedings has the smallest ℓ2 distance with
the text embedding feature of e.

We report the results in Table 4, Table 5, Table 6, Table 7, Table 8.
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Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet
llava-7b-v0 46.13% 68.10% 44.87% 28.35%
llava-13b-v0 40.69% 78.62% 46.40% 34.27%

Table 4: Zero-shot Classification Performance, post-processing with CLIP features

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet
mnist-linear 98.89% 78.94% 58.21% 50.83%

c10-linear 66.34% 92.16% 33.08% 21.99%
c100-linear 17.20% 64.60% 86.39% 27.52%

miniIN-linear 29.70% 64.88% 38.05% 90.40%
mnist-lora 99.85% 77.29% 58.36% 43.22%

c10-lora 22.18% 95.49% 9.13% 8.58%
c100-lora 10.49% 41.04% 93.17% 17.23%

miniIN-lora 9.55% 44.05% 18.92% 95.77%

Table 5: 3-Epoch Fine-Tuned Classification Performance of llava-13b-v0, post-processing with CLIP
features

With the new clip text feature post-processing method, we observed a similar phenomena as the
original submission. In particular: Fine-tuning on one dataset causes catastrophic forgetting on
other datasets LoRa fine-tuning causes more severe catastrophic forgetting than linear fine-tuning.
Overall, using the CLIP text feature, we observe the similar catastrophic forgetting phenomenon.
Note that some of accurcracies using the new method are higher than the post-processing method
usingOpenAIAPI, because the CLIP text feature post processingwill still make a correct prediction,
even when the output sentence is logically incorrect. For the example provided in Section 5.2: label
“airplane”, when the output is “The airplane is 8.”, ChatGPT will classify result as “No”, since the
output “The airplane is 8.” is not making a classification.
But this result does not indicatewe shall in general prefer CLIP embedding toChatGPT or vice versa,
since CLIP embedding only works for selecting the “most similar labels”, while sometimes ignoring
the correctness of the output. On one hand, the clip embedding is designed for classification will
still classify “The airplane is 8.” to “airplane”. On the other hand clip embeddings is perhaps a
reasonable option for classification task and economically friendly (as it does not query the openai
API).

D.5. Classification Accuracy of Fine-Tuning LLaVA

24



Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

1ep-linear 97.22% 80.60% 58.87% 49.85%
2ep-linear 98.30% 81.09% 59.93% 49.11%
3ep-linear 98.03% 80.87% 59.04% 49.29%
1ep-lora 98.52% 39.84% 22.46% 16.18%
2ep-lora 99.24% 55.79% 35.75% 24.78%
3ep-lora 99.71% 61.95% 42.42% 29.03%

Table 6: 1-3 Epoch Fine-Tuned Classification Performance of llava-7b-v0 on Mnist, post-processing
with CLIP features

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

1ep-linear 21.47% 90.72% 45.43% 27.08%
2ep-linear 18.77% 91.69% 39.53% 26.15%
3ep-linear 17.91% 92.25% 34.77% 24.77%
1ep-lora 9.93% 89.90% 3.09% 3.45%
2ep-lora 9.64% 91.90% 3.96% 3.57%
3ep-lora 12.78% 94.59% 6.06% 6.79%

Table 7: Classification Performance of llava-7b-v0 on CIFAR-10, post-processing with CLIP features

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

1ep-linear 19.32% 71.10% 71.56% 28.93%
2ep-linear 22.17% 58.40% 76.05% 24.63%
3ep-linear 24.20% 45.30% 80.73% 19.50%
1ep-lora 9.80% 43.17% 84.45% 18.06%
2ep-lora 9.63% 43.92% 88.01% 17.91%
3ep-lora 10.07% 41.06% 92.18% 18.24%

Table 8: Classification Performance of llava-7b-v0 on CIFAR-100, post-processing with CLIP features
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Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

7b-v0 56.96% 56.71% 34.53% 14.12%
7b-linear-ft-mnist 98.03% 9.26% 9.96% 6.14%

7b-linear-ft-cifar10 17.10% 92.23% 36.24% 30.76%
7b-linear-ft-cifar100 17.88% 31.54% 83.86% 22.61%

7b-linear-ft-miniImagenet 6.36% 38.99% 24.99% 77.69%
7b-lora-ft-mnist 99.71% 7.03% 1.55% 1.04%

7b-lora-ft-cifar10 2.80% 94.59% 3.06% 17.90%
7b-lora-ft-cifar100 0.26% 2.47% 92.15% 14.14 %

7b-lora-ft-miniImagenet 0.24% 4.41% 5.14% 95.34%
13b-v0 53.84% 67.67% 44.79% 30.11%

13b-linear-ft-mnist 98.90% 22.63% 20.83% 10.35%
13b-linear-ft-cifar10 64.98% 92.15 % 35.29% 31.55%

13b-linear-ft-cifar100 39.17% 43.07% 86.42% 27.03%
13b-linear-ft-miniImagenet 47.75% 29.77% 29.89% 91.24%

13b-lora-ft-mnist 99.85% 38.09% 30.05% 15.58%
13b-lora-ft-cifar10 23.43% 95.50% 5.48% 19.68%

13b-lora-ft-cifar100 5.48% 3.24% 93.16% 14.20%
13b-lora-ft-miniImagenet 0.24% 4.99% 5.22% 95.76%

Table 9: EMT evaluation accuracy of 3-epoch linear/lora fine-tuned LLaVA-7/13b on MNIST, CIFAR-10,
CIFAR-100, and miniImagenet, against LLaVA-7/13b.

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

7b-v0 56.96% 56.71% 34.53% 14.12%
ft-mnist-1ep 97.21% 9.20% 10.38% 5.88%

ft-cifar10-1ep 20.45% 90.54% 47.34% 34.90%
ft-cifar100-1ep 26.16% 64.54% 72.94% 33.86%

ft-miniImagenet-1ep 0.67% 49.46% 38.07% 68.69%
ft-mnist-2ep 98.31% 9.27% 9.92% 5.91%

ft-cifar10-2ep 17.96% 91.63% 40.76% 32.36%
ft-cifar100-2ep 28.21% 52.26% 76.68% 30.86%

ft-miniImagenet-2ep 2.10% 44.95% 31.37% 75.48%

Table 10: Finetuning LLaVA-7b-linear under different epochs.

Datasets
Checkpoints MNIST CIFAR-10 CIFAR-100 miniImagenet

7b-v0 56.96% 56.71% 34.53% 14.12%
ft-mnist-1ep 98.52% 11.41% 0.57% 0.28%

ft-cifar10-1ep 0.01% 89.92% 0.44% 15.58%
ft-cifar100-1ep 0.01% 3.29% 84.46% 13.17%

ft-miniImagenet-1ep 0.01% 8.04% 4.78% 88.77%
ft-mnist-2ep 99.24% 13.72% 1.18% 0.86%

ft-cifar10-2ep 0.01% 91.89% 1.39% 15.96%
ft-cifar100-2ep 0.01% 2.55% 88.00% 13.59%

ft-miniImagenet-2ep 0.00% 5.77% 5.61% 92.03%

Table 11: Finetuning LLaVA-7b-lora under different epochs.
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