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Abstract
Proper hyperparameter tuning is essential for achieving optimal performance of modern machine
learning (ML) methods in predictive tasks. While there is an extensive literature on tuning ML
learners for prediction, there is only little guidance available on tuning ML learners for causal
machine learning and how to select among different ML learners. In this paper, we empirically
assess the relationship between the predictive performance of ML methods and the resulting causal
estimation based on the Double Machine Learning (DML) approach by Chernozhukov et al. (2018).
DML relies on estimating so-called nuisance parameters by treating them as supervised learning
problems and using them as plug-in estimates to solve for the (causal) parameter. We conduct an
extensive simulation study using data from the 2019 Atlantic Causal Inference Conference Data
Challenge. We provide empirical insights on the role of hyperparameter tuning and other practical
decisions for causal estimation with DML. First, we assess the importance of data splitting schemes
for tuning ML learners within Double Machine Learning. Second, we investigate how the choice of
ML methods and hyperparameters, including recent AutoML frameworks, impacts the estimation
performance for a causal parameter of interest. Third, we assess to what extent the choice of a
particular causal model, as characterized by incorporated parametric assumptions, can be based on
predictive performance metrics.
Keywords: Causal Machine Learning, Hyperparameter Tuning, Causal Inference, Double Machine
Learning

1. Introduction

Double/Debiased machine learning (DML) is an estimation framework for causal parameters based
on ML-estimated nuisance functions that has been established by Chernozhukov et al. (2018).
DML combines the strengths of machine learning for prediction with estimation and inference
of causal parameters. The major idea of the double machine learning framework is to make the
estimation framework robust to inherent biases of ML estimation: To address the bias-variance
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tradeoff, ML methods introduce some regularization. Without any further adaption of the estimation
procedure this will effectively translate into a bias of the causal parameter of interest. To overcome
these shortcomings, the double machine learning approach combines three key ingredients (Bach
et al., 2022, 2021): (i) Identification of causal parameters through Neyman-orthogonal moment
conditions, (ii) high-quality machine learning estimators and (iii) sample splitting. Incorporating
these ingredients makes it possible to establish

√
N convergence and asymptotic normality of the

causal estimator. In recent years, the DML framework has become popular in various disciplines,
including econometrics (Knaus, 2022), reinforcement learning (Narita et al., 2020) and management
science (Schacht et al., 2023). Whereas there is an extensive literature and ample benchmark studies
on hyperparameter tuning approaches in predictive ML tasks, for example see Bischl et al. (2021),
there is a considerable gap on the interaction between the predictive performance and the quality
in terms of causal estimation. Several studies investigate model selection strategies for different
estimation approaches that are based on ML, mostly with a focus on heterogeneous treatment
effects (Schuler et al., 2018; Mahajan et al., 2022). Previous studies with a specific focus on DML
compare different sample splitting schemes (Okasa, 2022) or different ML learners (Knaus et al.,
2020) for estimation of heterogeneous treatment effects based on synthetic or semi-synthetic data.
However, the question of how to select learners within the DML framework remains unclear in the
existing literature. Few studies address the aspect of hyperparameter tuning in the context of double
machine learning. The approach by Fingerhut et al. (2022) is based on a target metric that combines
the predictive losses from two predictive tasks incorporated in partially linear regression models.
Chernozhukov et al. (2022) provide a multitask framework for neural networks that is based on a
general Riesz representation. In this work, we will perform a thorough empirical study to show that
hyperparameter tuning is required when using DML in order to achieve optimal inference on the
target parameter. We assess different data splitting schemes for the tuning process, draw connections
between the predictive performance of the ML learners and the error of the causal estimate and give
recommendations on the selection of the causal model.

2. Problem Setting: Learners, Hyperparameters and Sample Splitting

2.1. The role of learners in double machine learning

In DML, the goal is estimation and inference on a target parameter θ0 in the presence of a high-
dimensional nuisance parameter. Importantly, identification in DML is based on an orthogonal
moment condition with a score function ψ(W ; θ, η), namely

E[ψ(W ; θ0, η0)] = 0,

with data W , true value of the causal parameter θ0 is and nuisance function η0. The general idea is to
use ML methods to estimate each of the nuisance parameters, plug them into the score function and
solve for the target parameter. A key condition for valid inference is so-called Neyman-orthogonality

∂ηE[ψ(W ; θ0, η)]|η=η0 = 0.

∂η denotes the pathwise Gateaux derivative operator. Neyman-orthogonality ensures that the moment
condition identifying θ0 is insensitive to small perturbations of the nuisance function η around η0
under relatively general assumptions. This eliminates the first-order bias which might stem from
regularization, when replacing η0 by the ML estimate η̂0. Formally, the learner requirement applies
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(a) (b)

(c)

Figure 1: Average results from 100 repetitions for a simulated data example, DGP from Belloni et al.
(2013) with n = 100 observations and p = 200 explanatory variables. The figures show
various metrics as obtained for different combinations of the lasso penalty for the nuisance
components η0 = (ℓ0,m0). Panel (a): Mean squared error, Panel (b): Empirical coverage
of true parameter, Panel (c): Combined loss for PLR.2

to the rates of convergence of the employed ML prediction methods. If the used ML estimators
do converge sufficiently fast, the bias in η̂0 will eventually vanish in the limit, giving rise to a√
N -consistent and normally distributed estimate θ̂0. The theoretical framework of Chernozhukov

et al. (2018) specifies structural assumptions that guides the choice of the ML learners. For example,
under the assumption of sparsity, ℓ1 penalized estimators such as the lasso (Tibshirani, 1996) are
known to satisfy the rate criterion for estimating η0, such that it can be used for causal estimation of
θ0. Generally, the theoretical criterion on the learners refers to the error in the composed nuisance
term η0, which collects multiple prediction problems in a so-called combined loss, which is specific
to a particular causal model and orthogonal score formulation (Chernozhukov et al., 2018).

2. An ineractive version of the figures is available at https://docs.doubleml.org/stable/examples/py_
double_ml_firststage.html.
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(a) (b)

(c)

Figure 2: Schematic representation of sample splitting approaches for hyperparameter tuning: Panel
(a) full sample, (b) split sample, (c) on folds.

2.2. Choice of hyperparameters in double machine learning

How to select among different ML learners for the nuisance part, is key for practical applications and
understanding this better has been a main motivation for this study.
To make the role of the learners in DML more tractable, we will briefly introduce two causal models
that will also be used in our simulation study: The Partially Linear Regression (PLR) model and
the Interactive Regression Model (IRM). Under common assumptions for identification such as
unconfoundedness, the PLR can be used to estimate the Average Treatment Effect (ATE) of a binary
or continuous treatment variable D on an outcome Y . The PLR incorporates a partially linear
additive structure, i.e., the causal effect is constant for all individuals

Y = Dθ0 + ℓ0(X) + ξ, E[ξ | X,D] = 0

D = m0(X) + V, E[V | X] = 0

Using the so-called partialling out score, the corresponding nuisance component comprises two func-
tions, η0 = (ℓ0,m0) = (E[Y |X],E[D|X]). The IRM imposes weaker functional form assumptions
and makes it possible to estimate heterogeneous treatment effects. Thus, the nuisance component g0
can also model interactions between D and Y .

Y = g0(D,X) + ξ, E[ξ | X,D] = 0

D = m0(X) + V, E[V | X] = 0

Using the doubly robust score which identifies the ATE of a binary treatment variable D on Y ,
the nuisance parameter comprises two functions η̂0 = (g0,m0) = (E[Y |D,X],E[D|X]). Double
machine learning is closely related to “double robustness” and DML-based estimators build on doubly
robust scores (Robins et al. (1994)) and their augmented inverse probability weighting estimators.
Doubly robust estimators, which rely on two nuisance parameters (outcome regression and propensity
score), are robust against misspecification of one of the nuisance parameters. Hence, whenever it is
possible to estimate one nuisance component at the parametric rate, DR estimators tolerate slower
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Learner Implementation Tuning Procedure and Parameters Fixed Parameters
Lasso Scikit-learn (Pedregosa et al.,

2011)
Internal cross-validated fitting of ℓ1 reg-
ularization parameter

5-fold CV

Random Forest Scikit-learn (Pedregosa et al.,
2011)

Cross-validated grid search for tree
depth (4,5,6).

100 trees, 5-fold CV

Extreme Gradient
Boosting

xgboost (Chen and Guestrin, 2016) Cross-validated grid search for number
of trees (up to 100 with early stopping)

Tree-depth 2, learning rate 0.1, 5-fold
CV

AutoML FLAML (Wang and Wu, 2019) Computation time of 60s3

Table 1: Overview of the learners and tuning grids used in the simulation study.

rates for the other nuisance component. DML generalizes this idea to a broader class of causal
models and formulates the rate requirement in terms of a model-specific combined loss. For the PLR
and IRM, their definition is provided in Table 4. For a detailed discussion we refer to Knaus (2022)
and Smucler et al. (2019). Finally, we would like to note that DML is also closely related to targeted
maximum likelihood learning (van der Laan and Rubin, 2006).
Figure 1 serves as a simplified illustration of the role of an appropriate hyperparameter choice for the
causal estimation quality. It shows the mean squared error with respect to the true causal parameter
θ0 in Panel (a), the empirical coverage in Panel (b) and the combined loss in the PLR in Panel (c)
as obtained for a grid of lasso-penalty values. The example is based on a high-dimensional sparse
data generating process with n = 100 observations and p = 200 explanatory variables as presented
in Belloni et al. (2013), which we refer to as BCH. In a PLR model, the lasso can be used as an
appropriate learner for the sparse nuisance relationships η0 = (ℓ0,m0). The surface plots illustrate
that an appropriate choice of the hyperparameter, i.e., the lasso penalty λ, is essential for a precise
estimator of θ0. The figures show that it is important to have suitable estimation performance in
both nuisance components ℓ0 and m0 in order to obtain a low mean squared error for the causal
parameter as well as to achieve the nominal coverage of the confidence intervals. In line with the
theoretical foundation of the DML approach, Panel (c) of Figure 1 reveals that a lower combined loss
for the nuisance component corresponds to a better estimation performance and higher coverage in
Panel (a) and (b). An additional motivating example that highlights the importance of an appropriate
hyperparameter choice in terms of the empirical distribution of the DML estimator is provided in
Appendix A.

2.3. Cross-fitting and forms of data splitting

In addition to using an orthogonal score function for identification and appropriate ML estimation
of the nuisance part, DML incorporates sample-splitting as a third ingredient. Splitting the sample
in different partitions makes it possible to abstract from (small) overfitting biases. Sample splitting
guarantees the independence of the samples that are (i) used to learn the nuisance functions η0
(training data) and (ii) used to solve the orthogonal score with regard to the causal parameter
θ0 (holdout data). Cross-fitting is an efficient form of data splitting, that uses all the available
data by swapping the roles of the training and holdout data in a cross-validated manner. Cross-
fitting proceeds as (Chernozhukov et al., 2018): (1) Take a K-fold random partition (Ik)

K
k=1 of

observation indices {1, . . . , N} such that the size of each fold Ik is n = N/K. For each {1, . . . ,K},
define IC

k := {1, . . . , N} \ Ik. (2) For each k ∈ K, construct an ML estimator η̂0,k based on the
observations i ∈ IC

k . (3) For each k ∈ K, construct the estimator θ̂0 using the empirical expectation
of the estimator using the observations i ∈ Ik and average over the K folds. This procedure refers
to fitting the nuisance learners and does not explicitly address hyperparameter tuning and similar
considerations. Sample splitting and resampling is crucial to avoid overfitting in predictive machine
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DGP D on Y X on D X on Y ε θ oracle bias (%) oracle std SNR n
1 linear, additive linear linear N(0, 2) 0.2 7.4472 0.1318 0.404 1000
2 linear, additive non-linear non-linear N(0, 1) 0.8 0.0289 0.0703 0.462 1000
3 linear, additive linear, sparse linear, sparse N(0, 1) -0.8 0.0039 0.0738 0.985 1000
4 linear, additive non-linear non-linear t(5) 2.1 0.4789 0.0541 0.842 2000
5 interacts with 11 Xi and ε non-linear non-linear t(12) -0.3429 2.2763 0.0861 2000
6 interacts with 1 Xi and ε linear linear t(19) -1.1039 0.0021 0.0718 1000
7 No effect non-linear non-linear N(0, 1) 0 0.0511 0.905 2000
8 interacts with 5 Xi non-linear non-linear N(0, 0.02) -1.432 0.0065 0.0143 12.463 1000
9 interacts with 2 Xi non-linear non-linear N(0, 3) 12.62 -0.0181 0.0952 12.284 2000
10 interacts with 3 Xi non-linear linear t(4) 9.134 0.0057 0.1206 11.676 2000
11 interacts with 23 Xi linear non-linear N(0, 2) 10.77 0.0338 0.0547 61.092 2000
12 interacts with 7 Xi non-linear non-linear N(0, 2) -3.159 -0.0011 0.1009 12.820 2000
13 interacts with 1 Xi non-linear non-linear dependent on D -0.8486 0.0871 0.0402 2000
14 interacts with 4 Xi non-linear non-linear N(0, 4) 61.11 -0.0074 1.2539 219.221 1000
15 interacts with 2 Xi non-linear non-linear dependent on D -0.1606 -0.3792 0.0254 2000
16 linear, additive linear linear t(8) 1 -0.0316 0.0553 10.934 2000

Table 2: Details on the data generating processes, with description of relationships and error term,
true parameter, oracle estimate and standard error, sample size and signal to noise ratio
(SNR). The SNR is calculated empirically from the DGPs, by calculating V ar(Y )/V ar(ε)
for each repetition and averaging. Full description of the DGPs can be found in Appendix
F.

learning (Bischl et al., 2023). There are different ways to combine the DML cross-fitting procedure
with ML tuning cross-validation schemes in practice. In our simulation study, we investigate three
sample splitting approaches when tuning the nuisance estimators, which are illustrated in Figure
2. Full sample: We apply cross-validated tuning on the whole sample and find the best learner
and the best hyperparameter configuration by minimizing a loss target for each of the nuisance
prediction tasks. Causal estimation by DML is also performed on all observations according to the
cross-fitting algorithm, using the same learner and set of hyperparameters on all folds. The splits
in the cross-validation scheme for tuning and the splits in the DML cross-fitting algorithms are
independent of each other. Split sample: Splitting the data into a tuning and an inference fold is
frequently employed in predictive machine learning. We adapt it by splitting the sample in half and
tune the hyperparameters using cross-validation on 50% of the data only. We choose the optimal
learner and hyperparameter set and use them for fitting the nuisance functions in the remaining
50% observations using DML cross-fitting. In this schedule, the samples used for tuning and causal
estimation do not overlap. Hence, fitting the ML learners only uses data that has not been used
for tuning. On folds: We perform sample splitting as in the cross-fitting algorithm and perform
cross-validated hyperparameter tuning within each of the cross-fitting folds: We take a K-fold
random partition (Ik)

K
k=1 of observation indices [N ] = {1, . . . , N} such that the size of each fold Ik

is n = N/K. For each k ∈ [K], we perform cross-validation based hyperparameter optimization
with the observations i /∈ Ik directly on the same partition (or fold) which is used for predicting the
nuisance components. This approach takes K-times the calculation power of the other two. With
our empirical results, we would like to investigate how the cross-fitting scheme of DML and the
cross-validation splitting schemes for hyperparameter tuning interact, for example, comparing the
split sample approach with non-overlapping subsamples to the overlapping, but independent sample
splits of the full sample and on folds approach.
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(a) (b) (c)

Figure 3: Average results on the ATE estimation over all ACIC DGPs, grouped by learner and
sampling scheme. The groups show the learner, the colors the tuning scheme. The results
refer to the causal model that is suitable for the underlying assumptions of the DGP,
see Table 2. (a) Root mean squared error on the ATE parameter, relative to oracle and
subtracted by −1. (b) Boxplot of bias on ATE parameter. (c) Coverage of the estimated
95% confidence interval with the true ATE parameter.

3. Set-up of the Simulation Study

The empirical assessment of causal estimators is generally limited by the fact that the ground truth
(i.e., the true value of the causal parameter θ0) is not observable in real data sets. Hence, empirical
studies have to rely on simulated data sets. To investigate the role of different sample splitting
schemes, the choice of learners and hyperparameters as well as the scope to which predictive metrics
can be used to motivate the choice of a causal model (PLR vs. IRM), we use two sources of data.
Our major analysis will be based on data originally introduced for the 2019 Atlantic Causal Inference
Conference (ACIC) data challenge.4 We choose this data source because it generates designs with
common and relatively complex empirical patterns under unconfoundedness.5 Moreover, we focused
on an external resource for the DGP as this helps to abstract from biases that might stem from
using self-defined simulation scenarios. To gain more detailed insights, we used the BCH DGP
by Belloni et al. (2013) as a second source. The advantage of this design is its clear structure,
which makes it possible to match the empirical results with general theoretical reasoning. The
ACIC data consist of 1600 data sets from 16 data generating processes (DGP) with n = 1000
or n = 2000 observations and p = 200 covariates, a binary treatment variable and a continuous
outcome. Table 2 contains a brief overview of the processes. A more detailed description can be
found in Appendix F. The data generating processes are mostly in line with the unconfoundedness
or conditional exogeneity assumption, Y (d) ⊥ D | X , with Y (d) indicating the potential outcome
under treatment D = d. Hence, these settings allow for identification of the average treatment
effect, θ0 = E[Y (d = 1)− Y (d = 0)]. Overall, the summary in Table 2 makes clear that the data
generating processes of the ACIC challenge are very disparate, including settings with homogeneous
and heterogeneous treatment effects, sparse and non-sparse, linear and non-linear settings, different
values for the signal-to-noise ratio and varying values for the ATE across settings. In DGP 5 and 6, the

4. For more info, see https://sites.google.com/view/acic2019datachallenge/
data-challenge.

5. There are some scenarios, for which the unconfoundness assumption will not hold exactly, see Table 2.
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unconfoundedness assumption is violated, which complicates estimation of the ATE. The information
on the effect of D on Y is informative for the assumptions in the causal models introduced in Section
2. In cases of a linear and additive treatment effect of D on Y , the assumptions of the PLR are
satisfied, such that it should allow for consistent estimation of θ0. In case of interactions of D with
other covariates, X , the functional form assumption of the PLR is violated, such that the resulting
estimator is likely to be affected by a misspecification bias. The IRM, however, is more general, such
that it should basically be suitable for causal estimation of θ0 in both cases. As the PLR incorporates
more structure, it is expected to lead to more efficient estimation in cases the underlying assumptions
hold in the data generating process.
We study hyperparameter optimization with four different learners, including lasso, random forest
(Breiman, 2001), extreme gradient boosting (Chen and Guestrin, 2016) and the AutoML learning
framework FLAML (Wang and Wu, 2019). We focus on these learners as they are widely used
in empirical research and industry practice. Moreover, the learners differ substantially in terms
of the modeling assumptions and the way they introduce regularization to avoid overfitting. For
example, the linear lasso learner uses an explicit penalty, whereas the nonlinear random forests
and gradient boosting learners are based on ensembles of tree learners. As a result, these learners
have different hyperparameters, which in turn affect the estimation performance in a different way
(Probst et al., 2019). For random forests6 and gradient boosting, the hyperparameter choice is based
on cross-validated search over a grid of values presented in Table 1. We use cross-validated lasso
with the built-in penalty selection and the automated search for FLAML with a time budget of 60
seconds. As a tuning-free, but linear and low-dimensional benchmark, we compare our results to
causal models that are based on linear and logistic regression.

4. Results

In this section we present results on different aggregation levels. Table 4 in Appendix C presents an
overview on the different metrics7.

4.1. Sample Splitting: Tuning and Causal Estimation

Tuning on the full sample or on folds exhibit similar performance, which is superior to the
split sample approach in small samples. The first set of our results refer to the role of the sample
splitting scheme that is used for hyperparameter optimization as described in Section 2.3. Figure 3
provides a summary of our results across all ACIC DGPs as obtained from 100 repetitions of every
DGP. It presents an evaluation of the performance for different learners and sampling schemes based
on a selection of the causal model (PLR, IRM) according to the underlying assumptions of the DGPs
presented in Table 2.8 9 Panel (a) in Figure 3 shows the average root mean squared error relative
to an oracle estimator for each of the employed learners and each sampling scheme as averaged

6. For random forests, 100 trees were chosen for computational reasons. However, the performance did not significantly
alter in trials with 300 or 500 trees.

7. Full results and replication code are available at https://github.com/DoubleML/
DML-Hyperparameter-Tuning-Replication.

8. If θ0 is additively separable, i.e., constant for all individuals, we use the PLR and the IRM otherwise. We select the
results according to the causal model in order to abstract from model misspecification considerations.

9. Due to the considerable differences in the simulation designs, we would like to note that Figure 3 is not entirely able to
present a comprehensive picture of our extensive simulation results. We would like to refer readers to the more detailed
results for every learner, sample splitting scheme and each causal model for each DGP in Appendix E.1 and E.2.
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(a) (b)

Figure 4: Comparison of the RMSE on the ATE parameter of different sample splitting strategies in
the BCH data generating process for (a) Lasso and (b) Boosting. Number of covariates in
DGP is fixed, but n is increasing.

over all DGPs. Panel (b) shows a boxplot of the bias of the corresponding causal estimates and
the empirical coverage of 95% confidence intervals is depicted in Panel (c). The results reflect the
main empirical finding that the full sample and on folds scheme perform similarly well. The only
exception from this is the result on the AutoML learner, for which the adjusted tuning time for the
on-folds scheme might not have been sufficient. The causal estimates obtained from the split sample
approach are on average less accurate (in terms of the RMSE relative to an oracle) and more variable
(cf. the boxplots in Panel (b)). This observation holds for virtually all learners and simulation settings
considered as can be recognized from the Figures in E.1 and E.2 as well. We interpret these results
as evidence of a considerable efficiency loss in finite samples by using only 50% of the observations
for hyperparameter tuning. The empirical coverage of the confidence intervals are below the nominal
level, which mainly reflects the differences in the underlying simulation settings. Due to the different
structural assumptions across DGPs, it is unlikely that one learner will perform well in all settings.
The efficiency loss of the split sample approach vanishes with increasing sample size. We
investigate to what extent the efficiency loss of the split sample approach persists with increasing
samples size in Figure 4, which is based on data from the BCH DGP with p = 200 explanatory
variables. In line with our previously reported results, the split sample scheme provides a higher
RMSE on the causal parameter than the other two options. However, with growing number of
observations, we observe that the RMSE of all tuning approaches converge with

√
n-rate. Thus, the

difference between the schemes diminishes for larger samples.

4.2. Selection of Learners

The performance of the causal estimation depends on structural assumptions and appropriate
learner choice. Comparing the four learners in the study, overall we find that the tuned AutoML and
lasso learners perform very well across multiple settings (see Appendix E.1 and E.2). In line with
the theoretical formulation of the learner criterion in the DML approach, we observe that the causal
estimation performance depends on the validity of structural form assumptions such as sparsity and
linearity. For example, in linear settings (i.e., DGP 1, 3 or 16) lasso performs well in terms of the
rRMSE for the causal estimate as well as the empirical coverage. We believe that the reason why the
AutoML learner performs well is its ability to adapt to various settings.
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Figure 5: Combined nuisance loss and bias in the BCH DGP with increasing sample size n for
p = 200 explanatory variables. For large n/p, the tuned learner becomes more distinct in
terms of both bias and combined nuisance loss.

A lower combined nuisance loss is associated with better causal estimation. Low signal-to-
noise ratios create challenges in small samples. In our simulation study, we investigate the
relationship of the predictive performance for the nuisance functions, η0, and the quality of the
resulting causal estimate. A practical strategy for selecting the learners which would be aligned with
the theoretical reasoning would be to pick the learner with the smallest out-of-sample loss for the
nuisance predictions. In our simulations, however, we noticed that greedily minimizing the combined
loss might not always deliver the lowest error (bias) on the causal parameter. We provide more
insights on this in Appendix B.
As we compare tuned algorithms, for most DGPs we only observe an area of combined loss, where the
fit is sufficient for a good causal inference performance. Still, considering the plots in Appendix E.4,
it is valid to say that the possibility of a high bias decreases with a low combined loss. Considering
the different scenarios of the ACIC data, it is important to relate the predictive performance for the
nuisance function, η0, to the noise in the prediction problems. Whenever it is possible to approximate
η0 relatively well, it is possible to obtain an accurate causal estimator. However, the ability to
find such a predictive model depends on the noisiness of the incorporated predictive tasks, see the
information in Table 2. This is further highlighted by Figure 5, which illustrates the relationship of
the average bias and the combined predictive loss for increasing samples based on the BCH DGP:
The larger the n/p-ratio, the higher is the predictive quality of the nuisance estimators in terms of the
combined loss. The scatter plots also include the comparison to the default settings for the parameters
of lasso and xgboost, which basically implement untuned learners. With increasing sample size, it is
easier to detect the default parameter learners by considering their higher combined nuisance loss. It
can be observed that the estimation quality with respect to θ0 is worse for these learners. The results
for the tuned estimators show a similar performance in terms of the combined nuisance loss as well
as the bias of the causal estimator.
Combined nuisance loss serves as a good learner selection metric for causal estimation. We
briefly evaluate practical selection strategies for the employed learners based on the ACIC data. To
do so, we focus on the full sample scheme and pick the causal model with the lowest predictive loss
on Y (see Section 4.3). We investigate the following approaches: (1) Pick the single best learner
for each data set based on the best predictive performance for Y , (2) Pick the single best learner for
each iteration based on the combined out-of-sample nuisance loss, (3) Stack all tuned learners. We
present average results for the rRMSE as well as a boxplot for the bias as aggregated over all DGP in
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Figure 6: rRMSE of ATE parameter aggregated over learners and learner selection strategies for the
full sample tuning scheme.

Figure 6. It is visible that using the learner with the lowest combined loss leads to the best overall
rRMSE (mean). The strategies that select using the predictive error on Y or always using FLAML
appear to perform also well, especially concerning the median rRMSE. The performance of basic
stacking (Wolpert, 1992) is overall competitive in terms of the median rRMSE, but is affected by a
weak performance of random forests in several scenarios (high mean rRMSE). The linear/logistic
benchmark model exhibits an overall inferior performance as compared most other learners.

4.3. Causal Models

In this section we assess the relationship of the structural assumptions encoded in the causal models
(IRM and PLR) and the predictive performance of these models.
The performance of the causal estimators depends on the structural assumptions encoded in
causal models. As described in Section 2.1, the PLR model incorporates stronger structural assump-
tions than the IRM. Hence, in cases where these assumptions hold in the underlying DGP, we expect
the PLR to benefit from that additional structure in terms of more precise estimation performance
as compared to IRM estimates. However, in cases with a non-additive heterogeneous causal effect,
the PLR estimate on θ0 will be biased due to model misspecification. For our investigation, we split
the DGPs into two categories: DGPs with a linear, additive effect and in DGPs with a heterogenous
effect.10 The results in Figure 7(a) are in line with our expectations, i.e., in linear additive DGPs, the
PLR performs better than the IRM as it exhibits a lower rRMSE on average. Figure 7(b) illustrates
that violations of these assumptions lead to a bias and, thus, less precise estimation of the ATE with
the PLR. In contrast, the IRM is found to still accurately estimate θ0. These results hold generally
for all considered learners.
The predictive performance of the causal models provides guidance on the choice of the causal
model. In practice, researchers are typically concerned with the question of which causal model to
choose when multiple models are basically applicable, i.e., to what extent one is willing to make the
assumption of a constant treatment effect. We investigate whether the predictive performance of the
causal models with regard to the outcome variable Y might be informative for that choice. To do so,

10. We drop some DGPs, in which we observe both models struggle with the estimation, i.e. because model assumptions
(conditional exogeneity) fail.

111075



BACH SCHACHT CHERNOZHUKOV KLAASSEN SPINDLER

(a) (b)

Figure 7: Root mean squared error on the ATE parameter, relative to oracle and subtracted by −1.
The groups show the learner, the colors the tuning scheme. Results are aggregated over
different groups of DGP. The columns show the two different causal models. (a) Aggre-
gated over group of linear, additive processes. (b) Aggregated over group of interactive
processes.

Figure 8: Relative advantage (or disadvantage) of PLR over IRM for all 16 ACIC processes. In
many cases, the mean relative advantage in prediction error on the outcome Y coincides
with the mean relative advantage in estimation of θ.

we first estimate the causal model and then, generate predictions for the outcome variable Y as based
on the PLR model (i.e., plugging in the observed values for D which are multiplied by the estimate
θ̂0) and the IRM (using predictions as generated by g(D,X)), see Table 4. The results are displayed
in Figure 8. We find that in many of the settings, the relative advantage in the error predicting Y is
associated with a better estimation performance for the causal parameter θ0. However, as displayed
in Table 14 presented in Appendix D, this measure does not always prove reliable. In the group of
linear, additive DGPs, only in 33.42% of the iterations, the predictive loss using the PLR was lower,
although it would yield the lower rRMSE on θ in overall nearly 60% . In terms of the IRM, this is a
bit more straight forward: In 75.65% of the cases, the predictive loss accurately points towards the
better causal model to use (see Table 15). These results can be interpreted to reflect a conservative
modeling approach. The prediction-based selection of the causal rather tends to recommend the more
general IRM unless there is stronger evidence for validity of the PLR assumptions.
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5. Application

We apply the tuning methodology to the infant health and development program (IHDP) semi-
synthetic data, which was previously used as a benchmark of causal ML methods in Chernozhukov
et al. (2022) and Shi et al. (2019), see Appendix C.1 for more information. We use the IRM model
and the full sample tuning approach, as well as FLAML, as this combination has performed well in
our ACIC analysis. The results are displayed in Table 3. It is visible that the standard DML approach
is very competitive with other state-of-the art appraoches such as RieszNets and DragonNet of Shi
et al. (2019).

Method MAE ± std. err.
DML with FLAML 0.110 ± 0.009
RieszNet (Chernozhukov et al., 2021) 0.110 ± 0.003
Dragonnet (Shi et al., 2019) 0.146 ± 0.010

Table 3: Comparison of the tuning strategies discussed in this work and other recent approaches.

6. Conclusion

Our results underscore the importance of proper hyperparameter tuning and selection of the ML
estimators and the proper choice of DML related parameters. Particularly, the use of default parameter
estimators can lead to significant bias in the causal estimate. Hence, we would like to encourage
analysts working with causal and double machine learning approaches to transparently communicate
their tuning strategies as well as information on the nuisance prediction loss, in particular when also
employing several ML learners for nuisance estimation. Our results show that in general, tuning on
the full data or on the folds is preferable over splitting the sample. In larger samples the difference
of these approaches is found to vanish. Moreover, the choice between PLR and IRM was crucial
in our results to achieve a low causal estimation error. To find the proper causal model, monitoring
the predictive performance of the nuisance learners on Y can serve as a helpful guidance for the
choice of the causal model. Finally, we generally find evidence supporting a relationship between
the out-of-sample prediction error in the nuisance components and the error on the target parameter.
This is in line with theoretic results. However, our results also suggest the measure of combined loss
can be noisy, especially when dealing with small sample sizes and low signal-to-noise ratios. In our
study, the lowest nuisance prediction error did not always translate in the optimal ML configuration
for DML. As guidance for empirical applications is crucial, we would like to analyse the use of
neural networks (Klaassen et al., 2024), more advanced stacking algorithms (Ahrens et al., 2022;
Van der Laan et al., 2007), more elaborate tuning approaches, and extend the simulation framework
to conditional average treatment effects (CATE).
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(a) (b)

Figure 9: Histogram of studentized DML estimator corresponding to a properly tuned ML estimator
in Panel (a) and to an underfitting learner in Panel (b).

Appendix A. Motivation for Hyperparameter Tuning for Double Machine Learning

Figure 9 highlights the importance of appropriately choosing the ML predictors using a simulated
data from a data generating process (DGP) from Chernozhukov et al. (2018) with 1000 repetitions.
The left plot shows the empirical distribution corresponding to a DML estimate on θ0 when estimating
the nuisance with optimally tuned ML methods (random forest). The distribution of the studentized
estimator is close to a normal distribution. However, the right figure shows the analogous results
for regression stumps, which implies underfitting of the nuisance components, η0. Even though a
Neyman-orthogonal scoring function as well as sample-splitting are used in the DML procedure, the
causal estimate exhibits a severe bias and thus the inference becomes invalid.

Appendix B. Additional Information on Learner Selection

Figure 10: Absolute bias on causal estimate and combined loss of nuisance prediction for DGP 11
in IRM model.

As motivated in Section 4.2, based on our results, we find it not straight forward to select the
best learner and tuning scheme purely on the combined nuisance loss. We showcase this in Figure
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Name of Metric Explanation

Relative root mean
squared error (rRMSE)

√
MSE(θ̂)

MSE(θ̂oracle)
. The rRMSE was used as a metric in the ACIC 2019 chal-

lenge.
rRMSE-1 We subtract the rRMSE by one for clearer barplots.
Mean bias θ̄ = 1

R

∑R
r (θ̂r − θ) with r = 1, ..., R being the repetitions.

Standard deviation s =
√

1
R−1

∑R
r (θ̂r − θ̄)2

Coverage The coverage of the estimated 95% confidence band with the true parameter.
Predictive loss MSE(Ŷ ). In case of an IRM, this is equivalent to the out-of-sample loss

of ĝ0(D,X). In case of an PLR, this is 1
n

∑n
i (Yi − θ̂Di − ℓ̂(Xi))

2.
Combined loss We combine the out-of-sample error for the prediction of both nuisance

components. Identically to Chernozhukov et al. (2018), we use for
the PLR RMSE(m̂0) ·

(
RMSE(m̂0) +RMSE(ℓ̂0)

)
and for the IRM

RMSE(m̂0) · RMSE(ĝ0). This serves a measure to assess the overall
quality of predictive fit for the nuisance function.

Table 4: Overview of metrics used in the analysis of the results.

10 for DGP number 11, in which tuning of the nuisance estimators is particularly important, as the
signal-to-noise ratio is high. On the left panel, we see that there is clearly a relationship that a lower
combined loss implies a lower absolute bias. In the group of very well fitted learners (right panel),
this difference becomes marginal and random statistical deviations are becoming more important.

Appendix C. Information on Metrics and ACIC 2019 Competition

Based on the learnings from above, we pick the tuning scheme, learner and causal model with
different approaches to compare our results to the results of some selected top challenge participants.
Strategy 1 refers to the most sophisticated strategy: Per each repitition first selecting the causal model
by the lowest median of MSE on Y , then selecting learner and tuning scheme by the lowest combined
loss. Always FLAML uses the AutoML tuning on the fullsample. Untuned RF is a comparison to
the straight-away approach to always use the more flexible model (IRM) with Random Forest in
standard hyperparameter configurations. We would like to note that contrary to the participants of
the original challenge, our goal was not to achieve an optimal result in terms of a good rank. Rather
we used the DGPs from the ACIC 2019 challenge as realistic benchmark scenarios to investigate the
performance of DML with regard to various parameter choices. We provide the comparison to the
challenge participants in order to relate the performance of our strategies presented in the main paper
to the original results.
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Approach Relative Bias RRMSE Coverage Rel. Std.
Strategy 1 1372.1 (10) 2.932 (11) 0.813 (14) 2.407 (16)
Always FLAML 1457.1 (15) 2.971 (13) 0.815 (8) 2.441 (17)
Untuned RF 1735.0 (17) 9.256 (16) 0.665 (20) 2.559 (12)
BART* 1628.8 (11) 2.257 (3) 0.750 (11) 1.244 (1)
Std* 1105.0 (9) 3.428 (9) 0.821 (4) 2.509 (11)
BART TMLE* 1301.5 (2) 2.192 (1) 0.811 (2) 1.356 (4)
eb* 988.04 (1) 3.567 (15) 0.850 (7) 2.748 (21)

Table 5: Data challenge results for selected tuning strategies. Approaches marked with an * are
original challenge participants. The number in parenthesis is the rank of that method in
the competition. The ranks were assigned on a weighted average on the scenarios, which
explains deviations between the absolute mean and the rank.

C.1. Information on IHDP Benchmark

IHDP was a randomized control trial, studying the effect of certain measures (i.e. attendance at
specialized clinics) of low birth weight infants on future developmental and health outcomes. We
use 1000 generated datasets of 747 observations as in Chernozhukov et al. (2022). Each observation
consists of an outcome Y , a binary treatment T and 25 confounders X that can are continuous or
binary.

Appendix D. Full Results in Tables

D.1. Results for ACIC in PLR

Learner FLAML Lasso Random Forest XGBoost Linear
Scheme Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample
DGP #

1 1.0956 1.0711 1.5503 1.0950 1.0834 1.5079 1.1037 1.1243 1.5464 1.1211 1.1007 1.5178 1.1316
2 1.2170 1.1127 1.9287 1.3736 1.3645 1.9830 1.5906 1.6105 2.1073 1.4099 1.4231 1.7750 1.2233
3 2.5519 2.7523 3.0255 1.8610 1.9886 2.6898 2.6640 2.6650 2.9801 2.6569 2.7180 3.0301 1.2472
4 1.5408 1.2863 2.0526 1.2975 1.7261 2.5651 1.9560 1.9304 2.2321 1.7138 1.6899 2.1581 1.2317
5 5.8245 7.4997 11.1874 5.2938 4.9919 10.2095 4.7933 4.0252 8.1064 3.9275 4.5782 5.6138 7.7705
6 5.2872 5.2690 7.2466 6.3771 6.6130 9.1519 6.5917 6.5087 7.9793 6.5679 6.2539 8.2382 6.0200
7 1.9908 1.9907 3.0353 2.7420 2.7849 3.1009 2.7755 2.6055 3.6463 3.1572 2.6295 3.6171 1.7489
8 11.5467 10.6801 8.0848 7.2969 7.2996 8.0905 6.2807 6.1882 6.7360 6.8165 6.8931 8.3904 5.9193
9 7.0943 6.0958 11.1786 4.7796 5.7621 7.5124 2.5647 2.4356 3.6759 2.7096 2.7590 4.1712 6.3971
10 4.7436 4.5514 7.4038 1.9442 1.9287 2.6623 2.9929 3.0181 2.8375 1.8525 1.8546 2.4634 5.1557
11 8.3446 5.5440 15.8245 9.0712 9.7453 12.9054 73.4896 73.7701 88.6298 28.7352 29.0876 32.8459 28.2037
12 7.2101 9.9652 22.9163 10.8196 10.4065 17.0188 9.7530 9.5929 17.2773 7.0729 9.1706 18.9174 10.5871
13 1.5778 1.5353 2.6675 1.1738 1.2183 2.5256 1.3325 1.3368 2.0142 1.1345 1.1930 1.7841 1.2574
14 6.4037 6.0266 4.6313 4.1826 5.6041 7.2586 3.6332 3.6325 4.7675 2.9706 2.9178 4.4545 7.3758
15 2.3446 2.4324 3.7893 1.5638 1.5424 2.6860 8.3167 8.4921 8.8339 3.4202 3.4428 4.2264 1.6678
16 2.6017 2.8543 3.8674 2.0663 2.0125 3.0523 3.0596 3.1965 3.9160 2.4614 2.3995 3.4155 2.3445

Table 6: Relative Root Mean Squared Error of estimates
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Learner FLAML Lasso Random Forest XGBoost Linear
Scheme Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample
DGP #

1 0.0008 0.0014 0.0162 -0.0149 -0.0144 -0.0059 0.0045 0.0034 0.0196 0.0021 0.0105 0.0242 0.0131
2 0.0123 0.0152 0.0976 0.0627 0.0624 0.0878 0.0872 0.0866 0.1187 0.0684 0.0662 0.0873 0.0226
3 0.1690 0.1863 0.1879 0.1097 0.1220 0.1467 0.1777 0.1788 0.1817 0.1778 0.1809 0.1874 0.0357
4 -0.0029 0.0099 -0.0310 0.0351 0.0636 0.1096 0.0886 0.0880 0.0905 0.0738 0.0721 0.0843 -0.0000
5 -0.0583 0.0043 0.0699 -0.0783 -0.0678 -0.0977 -0.0719 -0.0741 -0.0355 -0.0955 -0.0671 -0.1006 -0.0123
6 -0.0958 -0.0843 -0.2166 -0.2132 -0.2548 -0.2739 -0.2598 -0.2628 -0.2685 -0.2194 -0.2587 -0.2809 0.0104
7 0.0746 0.0753 0.1127 0.1097 0.1141 0.1248 0.1181 0.1156 0.1514 0.1062 0.1029 0.1372 0.0572
8 0.1565 0.1466 0.1090 0.1011 0.1005 0.0972 0.0865 0.0850 0.0898 0.0946 0.0958 0.1152 0.0729
9 -0.5722 -0.5066 -0.8890 -0.3237 -0.4878 -0.5670 -0.0850 -0.0764 -0.1858 -0.1461 -0.1567 -0.2578 -0.5376
10 -0.5134 -0.5120 -0.7648 -0.1604 -0.1790 -0.2061 -0.3251 -0.3273 -0.2509 -0.1731 -0.1712 -0.1875 -0.5848
11 -0.1500 -0.0640 -0.3808 0.3297 0.3569 0.2032 3.9828 3.9992 4.7878 1.5458 1.5690 1.7544 -1.5191
12 0.4234 0.5158 0.7573 0.5785 0.5916 0.7617 0.5461 0.5479 0.6864 0.3640 0.4289 0.6427 0.4687
13 0.0449 0.0428 0.0752 0.0156 0.0195 0.0316 0.0316 0.0333 0.0461 0.0228 0.0254 0.0369 0.0228
14 -7.3964 -7.0113 -4.6878 -4.0059 -6.1637 -7.5730 -3.7727 -3.7802 -4.3082 -3.0428 -2.9528 -3.8826 -8.5521
15 0.0473 0.0503 0.0787 0.0034 0.0022 0.0023 0.2065 0.2106 0.2158 0.0797 0.0797 0.0944 0.0226
16 -0.1057 -0.1172 -0.1450 -0.0676 -0.0633 -0.0740 0.0744 0.0871 0.0936 -0.0177 -0.0207 -0.0245 -0.1177

Table 7: Mean Bias of Estimates in PLR

Learner FLAML Lasso Random Forest XGBoost Linear
Scheme Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample
DGP #

1 0.1453 0.1420 0.2050 0.1445 0.1430 0.1999 0.1463 0.1491 0.2041 0.1487 0.1456 0.1998 0.1495
2 0.0847 0.0767 0.0936 0.0731 0.0725 0.1079 0.0695 0.0724 0.0878 0.0713 0.0747 0.0887 0.0829
3 0.0815 0.0789 0.1192 0.0819 0.0807 0.1330 0.0823 0.0799 0.1226 0.0809 0.0847 0.1207 0.0848
4 0.0848 0.0701 0.1086 0.0621 0.0703 0.0884 0.0605 0.0589 0.0826 0.0583 0.0583 0.0833 0.0678
5 0.5001 0.6484 0.9646 0.4509 0.4261 0.8772 0.4080 0.3399 0.6999 0.3257 0.3900 0.4747 0.6717
6 0.3675 0.3690 0.4730 0.4050 0.4002 0.5971 0.3951 0.3859 0.5058 0.4172 0.3664 0.5202 0.4324
7 0.0689 0.0681 0.1060 0.0866 0.0845 0.0970 0.0778 0.0652 0.1077 0.1211 0.0859 0.1232 0.0685
8 0.0496 0.0394 0.0364 0.0233 0.0260 0.0617 0.0223 0.0225 0.0332 0.0209 0.0206 0.0311 0.0422
9 0.3541 0.2784 0.5781 0.3181 0.2459 0.4320 0.2287 0.2188 0.2959 0.2121 0.2102 0.3009 0.2809
10 0.2472 0.1911 0.4545 0.1703 0.1474 0.2454 0.1534 0.1560 0.2314 0.1402 0.1429 0.2297 0.2032
11 0.4316 0.2969 0.7780 0.3704 0.3955 0.6770 0.4368 0.4274 0.6540 0.2552 0.2312 0.3603 0.2387
12 0.5901 0.8615 2.1833 0.9240 0.8655 1.5371 0.8168 0.7960 1.6010 0.6127 0.8187 1.7961 0.9587
13 0.0445 0.0442 0.0759 0.0444 0.0448 0.0963 0.0430 0.0419 0.0663 0.0394 0.0406 0.0613 0.0450
14 3.0356 2.7291 3.3949 3.3609 3.3169 4.9907 2.5251 2.5123 4.1216 2.1265 2.1395 3.9963 3.4142
15 0.0361 0.0357 0.0552 0.0397 0.0392 0.0683 0.0420 0.0438 0.0595 0.0341 0.0356 0.0508 0.0359
16 0.0972 0.1052 0.1567 0.0920 0.0914 0.1516 0.1519 0.1537 0.1952 0.1350 0.1311 0.1874 0.0533

Table 8: Standard Deviation of Estimates in PLR

Learner FLAML Lasso Random Forest XGBoost Linear
Scheme Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample
DGP #

1 0.9800 0.9700 0.9900 0.9500 0.9600 0.9700 0.9700 0.9700 0.9900 0.9600 0.9600 0.9900 0.9600
2 0.8900 0.9200 0.8800 0.8200 0.8400 0.8600 0.7700 0.7200 0.8300 0.8600 0.8200 0.8800 0.9400
3 0.4800 0.3600 0.6800 0.7500 0.6400 0.7400 0.3100 0.3800 0.7100 0.3900 0.3700 0.6400 0.8500
4 0.8500 0.9100 0.9000 0.9000 0.7700 0.7800 0.6900 0.7100 0.8000 0.8000 0.7800 0.8500 0.9300
5 0.9800 0.9400 0.9800 0.9400 0.9600 0.9600 0.9800 0.9700 0.9900 0.9700 0.9900 0.9900 0.9600
6 0.9300 0.9300 0.9800 0.8700 0.8700 0.8900 0.8700 0.8800 0.9600 0.9300 0.8900 0.9100 0.9100
7 0.8000 0.6900 0.7500 0.5600 0.5400 0.6900 0.5000 0.5100 0.6100 0.6300 0.6100 0.6800 0.8600
8 0.0000 0.0000 0.1900 0.0500 0.0500 0.1800 0.0700 0.0900 0.3500 0.0300 0.0300 0.1000 0.4600
9 0.3800 0.4100 0.3600 0.6800 0.4200 0.6500 0.8700 0.9100 0.9100 0.8400 0.8300 0.8600 0.3900
10 0.1900 0.0800 0.2300 0.7100 0.7400 0.7900 0.4000 0.3500 0.6800 0.7500 0.7400 0.7600 0.0600
11 0.6600 0.8500 0.5900 0.5700 0.5100 0.5800 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12 0.5600 0.6600 0.6500 0.7100 0.6400 0.7200 0.6200 0.5900 0.8000 0.7700 0.7800 0.8200 0.8600
13 0.7700 0.8100 0.7600 0.9400 0.9300 0.9500 0.9000 0.9100 0.8500 0.9300 0.9200 0.9300 0.9400
14 0.1400 0.1800 0.6200 0.6300 0.4100 0.5300 0.5400 0.5500 0.7200 0.6400 0.6900 0.6900 0.1800
15 0.7500 0.7100 0.6900 0.9800 0.9800 0.9600 0.0000 0.0000 0.0700 0.4000 0.4500 0.5900 0.9200
16 0.7700 0.7300 0.7900 0.9100 0.9200 0.9200 0.9300 0.9200 0.9300 0.9500 0.9500 0.9300 0.5100

Table 9: Coverage of a 95% confidence interval of Estimates in PLR

201084



HYPERPARAMETER TUNING WITH DOUBLE MACHINE LEARNING

D.2. Results for ACIC in IRM

Learner FLAML Lasso Random Forest XGBoost Linear
Scheme Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample
DGP #

1 1.3588 1.3630 1.7276 1.1518 1.1371 2.0895 1.1122 1.1045 1.4990 1.1264 1.0896 1.6069 2.5831
2 1.8481 1.9990 2.8468 2.2938 2.7010 4.9673 2.4966 2.5182 3.0464 1.9754 1.9987 2.6066 2.6247
3 2.1507 2.3604 2.7521 1.9395 2.3650 4.0566 2.6021 2.6391 2.9372 2.4988 2.4924 2.9337 2.3944
4 1.8834 1.9894 2.6970 1.8346 2.9436 3.7637 2.3158 2.3131 2.4912 2.1787 2.1952 2.4840 4.5590
5 5.2058 2.9685 4.7837 5.9087 5.2530 8.9381 3.5861 4.3097 7.6908 4.8240 4.1155 6.5163 14.1868
6 6.0683 9.4405 7.7748 7.2419 6.9156 42.8648 6.5744 6.3504 7.9838 6.1250 6.2455 7.8693 11.6220
7 2.1790 2.4775 3.7704 3.1105 3.4190 4.0870 3.3558 3.3924 4.8019 3.2628 2.8861 5.1730 1.9411
8 2.1816 2.1540 2.9889 2.3516 2.6188 4.9129 2.5738 2.5683 3.6972 1.9341 1.9384 2.8684 3.3512
9 2.1780 2.1648 3.1616 3.3264 3.5310 6.5262 2.2096 2.2212 3.3503 2.1566 2.1208 2.9709 6.0698
10 1.0583 1.1584 1.6751 1.2953 1.2360 1.6880 1.1315 1.1312 1.7191 1.0623 1.0628 1.7064 1.2540
11 16.1035 17.1417 30.9374 14.8590 14.1398 26.1562 102.4055 102.6740 117.7050 44.9960 45.1375 61.1337 6.8687
12 5.0122 17.5622 10.8482 13.3427 10.9391 14.3851 7.9385 8.8918 18.0516 6.0753 8.4058 19.1437 13.2814
13 1.2434 1.2850 2.4153 1.4954 1.5418 2.1832 1.5515 1.5889 2.2084 1.2405 1.2465 1.8756 1.9354
14 2.4035 2.4894 3.0314 5.8649 5.1529 11.8739 2.7362 2.8075 3.8439 1.9560 1.9653 3.0277 7.7059
15 1.8830 1.9021 3.0548 1.8549 1.8952 4.2829 7.1471 7.3370 7.6195 3.3580 3.3432 4.0278 1.5976
16 2.2907 2.8196 4.7231 3.4038 3.0508 6.9476 3.6034 3.7914 4.5298 2.4305 2.4160 3.2699 1.5786

Table 10: Relative Root Mean Squared Error in IRM

Learner FLAML Lasso Random Forest XGBoost Linear
Scheme Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample
DGP #

1 0.0017 0.0132 0.0121 -0.0129 -0.0158 -0.0174 0.0038 0.0070 0.0184 0.0041 0.0156 0.0245 0.0061
2 0.0838 0.1014 0.1675 0.0932 0.1513 0.1754 0.1592 0.1607 0.1927 0.1183 0.1175 0.1545 0.0294
3 0.1160 0.1252 0.1573 0.0730 0.1269 0.1055 0.1734 0.1751 0.1788 0.1655 0.1640 0.1761 0.0036
4 0.0803 0.0908 0.1166 0.0693 0.1331 0.1139 0.1122 0.1128 0.1098 0.1043 0.1049 0.1096 0.0091
5 -0.0661 -0.0845 -0.1171 -0.1125 -0.0852 -0.0962 -0.0879 -0.0671 -0.0479 -0.0761 -0.0728 -0.0773 -0.0209
6 -0.1540 -0.0734 -0.2870 -0.1898 -0.3038 0.0318 -0.2756 -0.2828 -0.2810 -0.2699 -0.2814 -0.2962 -0.0363
7 0.0852 0.0931 0.1401 0.1210 0.1440 0.1477 0.1567 0.1578 0.2161 0.1274 0.1241 0.1864 0.0533
8 0.0156 0.0121 0.0305 0.0221 0.0223 0.0370 0.0305 0.0304 0.0438 0.0193 0.0201 0.0281 0.0060
9 -0.0592 -0.0859 -0.0950 -0.1448 -0.1583 -0.1980 -0.0969 -0.1024 -0.1718 -0.0811 -0.0843 -0.1317 -0.1616
10 -0.0384 -0.0357 -0.0057 -0.0143 -0.0219 0.0089 -0.0559 -0.0555 -0.0692 -0.0345 -0.0326 -0.0487 0.0134
11 0.7748 0.9012 1.4762 0.3106 0.3859 0.4988 5.5669 5.5815 6.3789 2.4396 2.4493 3.3038 -0.0109
12 0.2658 0.4442 0.3857 0.6121 0.6047 0.5671 0.3786 0.4018 0.5647 0.2879 0.3216 0.5837 0.4215
13 0.0239 0.0253 0.0273 0.0143 0.0210 0.0075 0.0470 0.0484 0.0595 0.0296 0.0296 0.0389 0.0183
14 -0.9836 -1.0578 -2.0111 -0.8780 -2.3449 -4.6327 -2.3683 -2.4044 -2.8725 -1.2906 -1.2137 -1.6891 2.3656
15 0.0285 0.0318 0.0430 -0.0035 -0.0075 -0.0080 0.1764 0.1809 0.1830 0.0782 0.0775 0.0894 0.0075
16 -0.0403 -0.0292 -0.0409 -0.0846 -0.0789 -0.0807 0.1266 0.1378 0.1451 0.0183 0.0198 0.0304 0.0069

Table 11: Mean Bias of Estimates in IRM

Learner FLAML Lasso Random Forest XGBoost Linear
Scheme Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample
DGP #

1 0.1802 0.1803 0.2288 0.1522 0.1500 0.2766 0.1475 0.1463 0.1979 0.1493 0.1437 0.2117 0.3425
2 0.0989 0.0968 0.1083 0.1312 0.1137 0.3014 0.0720 0.0724 0.0913 0.0717 0.0761 0.0972 0.1821
3 0.1077 0.1205 0.1276 0.1229 0.1191 0.2800 0.0807 0.0836 0.1212 0.0797 0.0816 0.1247 0.1767
4 0.0651 0.0606 0.0911 0.0732 0.0915 0.1727 0.0595 0.0580 0.0815 0.0584 0.0591 0.0810 0.2508
5 0.4451 0.2422 0.3965 0.4982 0.4460 0.7667 0.2972 0.3664 0.6631 0.4100 0.3482 0.5580 1.2263
6 0.4076 0.6742 0.4784 0.4841 0.3920 3.0795 0.3826 0.3569 0.4993 0.3465 0.3484 0.4806 0.8342
7 0.0713 0.0854 0.1317 0.1025 0.0981 0.1471 0.0682 0.0702 0.1144 0.1070 0.0788 0.1867 0.0835
8 0.0270 0.0283 0.0297 0.0252 0.0299 0.0595 0.0202 0.0203 0.0291 0.0196 0.0190 0.0296 0.0475
9 0.1986 0.1871 0.2854 0.2812 0.2961 0.5885 0.1864 0.1847 0.2681 0.1884 0.1832 0.2499 0.5545
10 0.1217 0.1350 0.2020 0.1556 0.1474 0.2034 0.1244 0.1245 0.1953 0.1233 0.1239 0.1999 0.1507
11 0.4149 0.2484 0.8199 0.7519 0.6707 1.3426 0.4231 0.4249 0.7007 0.2573 0.2383 0.4411 0.3762
12 0.4294 1.7148 1.0236 1.1975 0.9214 1.3348 0.7048 0.8011 1.7307 0.5404 0.7841 1.8403 1.2713
13 0.0438 0.0449 0.0930 0.0583 0.0582 0.0874 0.0406 0.0413 0.0655 0.0400 0.0402 0.0644 0.0755
14 2.8469 2.9348 3.2191 7.3008 6.0159 14.1417 2.4709 2.5599 3.8595 2.0815 2.1411 3.3956 9.3652
15 0.0385 0.0364 0.0647 0.0471 0.0477 0.1087 0.0409 0.0426 0.0617 0.0337 0.0342 0.0494 0.0400
16 0.1201 0.1532 0.2581 0.1681 0.1491 0.3758 0.1535 0.1576 0.2039 0.1332 0.1322 0.1784 0.0871

Table 12: Standard Deviation of Estimates in IRM
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Learner FLAML Lasso Random Forest XGBoost Linear
Scheme Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample On Folds Split Sample Full Sample
DGP #

1 0.9800 0.9800 0.9500 0.9500 0.9800 0.9400 0.9800 0.9800 0.9900 0.9700 0.9800 0.9900 0.9800
2 0.8300 0.8300 0.6600 0.8400 0.6300 0.7800 0.4200 0.3900 0.5500 0.6100 0.5800 0.7000 0.9700
3 0.7600 0.7800 0.7600 0.8200 0.5900 0.8800 0.3900 0.3900 0.6900 0.4300 0.4500 0.6800 0.9400
4 0.7300 0.7500 0.8400 0.8300 0.4600 0.8200 0.5100 0.5400 0.7500 0.5700 0.5800 0.7500 0.9500
5 1.0000 0.9700 1.0000 0.9700 0.9800 0.9900 0.9700 0.9700 1.0000 0.9800 0.9700 0.9900 0.9500
6 0.9300 0.9400 0.9200 0.8900 0.8300 0.8900 0.8600 0.8500 0.9300 0.9100 0.9000 0.9100 0.9600
7 0.7700 0.7100 0.6800 0.6600 0.4700 0.6900 0.2500 0.2500 0.2800 0.4900 0.5100 0.5200 0.9000
8 0.9100 0.9100 0.8700 0.8300 0.8400 0.8000 0.7300 0.7300 0.7400 0.8400 0.8600 0.8400 0.9600
9 0.9300 0.9200 0.9700 0.9200 0.8800 0.9300 0.9000 0.9100 0.9200 0.8900 0.8900 0.9000 0.9700
10 0.9400 0.9200 0.9500 0.9400 0.9500 0.9100 0.8800 0.8700 0.8700 0.9200 0.9000 0.8700 0.9500
11 0.2200 0.0800 0.2900 0.8400 0.7200 0.7400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9400
12 0.9300 0.9600 0.9800 0.8600 0.7500 0.9000 0.8600 0.8300 0.9100 0.8800 0.8700 0.9600 0.9500
13 0.9200 0.9600 0.9400 0.9200 0.9500 0.9400 0.8500 0.8000 0.8300 0.8900 0.9000 0.9000 0.9200
14 0.9000 0.9300 0.8200 0.8800 0.7400 0.7900 0.7100 0.6700 0.8200 0.8300 0.8300 0.8600 0.9600
15 0.8600 0.8600 0.8300 0.9600 0.9500 0.9600 0.0100 0.0100 0.1300 0.4400 0.4300 0.6700 0.9600
16 0.9600 0.9200 0.9400 0.9600 0.9400 0.9400 0.8500 0.8100 0.8900 0.9500 0.9600 0.9600 0.9500

Table 13: Coverage of a 95% confidence interval of Estimates in IRM

IRM θ PLR θ

IRM Yloss 11.91% 24.42%
PLR Yloss 30.25 % 33.42%

Table 14: Share of iterations in which each
model was better in estimating θ
and the predictive loss on Y for the
group of linear, additive DGP.

IRM θ PLR θ

IRM Yloss 75.65% 5.95%
PLR Yloss 15.75% 2.65%

Table 15: Share of iterations in which each
model was better in estimating θ
and the predictive loss on Y for the
group of heterogeneous DGP.
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Appendix E. Full Results in Figures

E.1. Relative Root Mean Squared Error

Figure 11: Relative Root Mean Squared Error of ACIC DGP 1-4 (adjusted by −1)
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Figure 12: Relative Root Mean Squared Error of ACIC DGP 5-8 (adjusted by −1)
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Figure 13: Relative Root Mean Squared Error of ACIC DGP 9-12 (adjusted by −1)
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Figure 14: Relative Root Mean Squared Error of ACIC DGP 13-16 (adjusted by −1)
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E.2. Bias of Estimates

Figure 15: Boxplot of bias, ACIC DGP 1-4
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Figure 16: Boxplot of bias, ACIC DGP 5-8
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Figure 17: Boxplot of bias, ACIC DGP 9-12
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Figure 18: Boxplot of bias, ACIC DGP 13-15
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E.3. Predictive Performance

Figure 19: Predictive Performance on Y of ACIC DGP 1-4
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Figure 20: Predictive Performance on Y of ACIC DGP 5-8
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Figure 21: Predictive Performance on Y of ACIC DGP 9-12
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Figure 22: Predictive Performance on Y of ACIC DGP 13-15
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E.4. Combined Loss

Figure 23: Combined Loss of ACIC DGP 1-4
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Figure 24: Combined Loss of ACIC DGP 5-8
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Figure 25: Combined Loss of ACIC DGP 9-12
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Figure 26: Combined Loss of ACIC DGP 13-15
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E.5. RRMSE-1 vs. Bias vs. Combined Loss PLR

Figure 27: Combined Loss of ACIC DGP 1-4
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Figure 28: Combined Loss of ACIC DGP 5-8
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Figure 29: Combined Loss of ACIC DGP 9-12
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Figure 30: Combined Loss of ACIC DGP 13-15
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E.6. RRMSE-1 vs. Bias vs. Combined Loss IRM

Figure 31: Comparison of RRMSE-1, Bias and Combined loss of ACIC DGP 1-4
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Figure 32: Comparison of RRMSE-1, Bias and Combined loss of ACIC DGP 5-8
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Figure 33: Comparison of RRMSE-1, Bias and Combined loss of ACIC DGP 9-12
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Figure 34: Comparison of RRMSE-1, Bias and Combined loss of ACIC DGP 13-15
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Appendix F. ACIC 2019 DGP overview

In the following, we present a rough structure of the DGPs used. This is meant for an understanding
of how the DGP look, presenting the exact data generating process with all coefficients would be
infeasible. The Xi are drawn from multiple distributions in multiple copula.

F.1. DGP 1

p = α0 +

200∑
j=1

αj ∗Xj

A ∼ Bin(1, sig(p))

Y = θ ∗A+
200∑
i=1

βi ∗Xi + ϵ

ϵ ∼ N (0, 2))

F.2. DGP 2

p = α0 + α1 ∗
√
X1 + α2 ∗X5 + α3 ∗X32 + α4X5 ∗X32 + α5 ∗X70

+ α6 ∗X2
70 + α7 ∗ [1[X101 > 2.5]] + α8 ∗X150 + α9 ∗ [1[X179 < −0.5]] ∗ (X179 + 1.5)

A ∼ Bin(1, sig(p))

Y = θ ∗A+ β1 ∗
√
X1 + β2 ∗X5 + β3 ∗X23 + β4 ∗X32 + β5 ∗X5 ∗X32 + β6 ∗X70 + β7 ∗X2

70

+ β8 ∗ [1[X101 > 2.5]] + β9 ∗X15 ∗X10 ∗ [1[X179 < −0.5]] ∗ (X179 + 1.5) + β11 ∗X179 + ϵ

ϵ ∼ N (0, 1)

F.3. DGP 3

p =
90∑
i=1

αi ∗Xi i are 90 random indices

A ∼ Bin(1, sig(p))

Y =
90∑
i=1

αi ∗Xi

ϵ ∼ N (0, 1)
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F.4. DGP 4

p = α0 + α1 ∗X2 + α2 ∗X5 + α3 ∗X2 ∗X5 + α4 ∗X12 + α5 ∗X23

+ α6 ∗X2
23 + α7 ∗X12 ∗X2

23 + α8 ∗
√
X67 + α9 ∗X77 + α10 ∗ [1[X89 > 19]]

+ α11 ∗ [1[X95 > 5]] ∗ (X95 − 3) + α12 ∗ exp(X106) + α13 ∗X122 + α14 ∗X146 + α15 ∗X122 ∗X146

+ α16 ∗X150 + α17 ∗X168 + α18 ∗ [1[X199 > 1]]

A ∼ Bin(1, sig(p))

Y = (θ ∗A) + β1 + β2 ∗X2 + β3 ∗X5 + β4 ∗X2 ∗X5 + β5 ∗X12

+ β6 ∗X23 + β7 ∗X2
23 + β8 ∗X12 ∗X2

23 + β9 ∗X40 + β10 ∗
√
X67 + β11 ∗X77

+ β12 ∗ [1[X89 > 19]] + β13 ∗ [1[X95 > 5]] ∗ (X95 − 3) + β14 ∗ exp(X106) + β15 ∗X122 + β16 ∗X133

+ β17 ∗X146 + β18 ∗X122 ∗X146 + β19 ∗X150 ∗ β20 ∗X168 + β21 ∗X198

+ β22 ∗ [1[X199 > 1]] + ϵ

ϵ ∼ t(5)

F.5. DGP 5

P = α0 + α1 ∗X23 + α2 ∗X2
23 + α3 ∗

√
X67 + α4 ∗X77

+ α5 ∗ [1[X89 > 19]] + α6 ∗ [1[X95 > 5]] ∗ (X95 − 3) + α7 ∗ exp(X106) + α8 ∗X122

+ α9 ∗X146 + α10 ∗X122 ∗X146 + α11 ∗X150 + α12 ∗X168 + α13 ∗ [1[X199 > 1]]

A ∼ Bin(1, sig(p))

Y = exp(θ ∗A+ β1 + β2 ∗
√
X67 + β3 ∗X77 + β4 ∗ [1[X89 > 19]]

+ β5 ∗ 1[X95 > 5]] ∗ (X95 − 3) + β6 ∗ exp(X106) + β7 ∗X122 + β8 ∗X146 + β9 ∗X146 ∗X122

+ β10 ∗X150 + β11 ∗X168 + β12 ∗ [1[X199 > 1]] + ϵ)

ϵ ∼ t(12)

F.6. DGP 6

p = α0 + α1 ∗X4 + α2 ∗X19 + α3 ∗X44

A ∼ Bin(1, sig(p))

Y = exp(A ∗ (θ + τ ∗X55) + β1 + β2 ∗X4 + β3 ∗X19 + β4 ∗X44 + ϵ)

ϵ ∼ t(19), θ = 0.4, τ = 0.2
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F.7. DGP 7

p = α0 + α1 ∗X3 + α2 ∗X6 + α3 ∗X3 ∗X6 + α4 ∗X24 + α5 ∗X2
24 + α6 ∗X35 + α7 ∗X68

+ α8 ∗
√
X68 + α9 ∗X35 ∗

√
X68 + α10 ∗ [1[X96 < 2]] ∗ (X96 − 1) + α11 ∗ exp (X107) + α12 ∗X123

+ α13 ∗X149 + α14 ∗X123 ∗X149 + α15 ∗X151 + α16 ∗ 1/X169 + α17 ∗X200

A ∼ Bin(1, sig(p))

Y = θ ∗A+ β1 + β2 ∗X3 + β3 ∗X6 + β4 ∗X3 ∗X6 + β5 ∗X24 + β6 ∗X2
24

+ β7 ∗X35 + β8 ∗X40 + β9 ∗X68 + β10 ∗
√
X68 + β11 ∗X35 ∗

√
X68

+ β12 ∗ [1[X96 < 2]] ∗ (X96 − 1) + β13 ∗ expX107 + β14 ∗X123 + β15 ∗X133 + β16 ∗X149

+ β17 ∗X123 ∗X149 + β18 ∗X151 + β19 ∗ 1/X169 + β20 ∗X198 + β21 ∗X200 + ϵ

ϵ ∼ N (0, 1)

F.8. DGP 8

p = α0 + α1 ∗ log(X7 + 1) + α2 ∗ 1/X16 + α3 ∗ |X51|+ α4 ∗X156

+ α5 ∗X156/ log(X7 + 0.5) + α6 ∗X2
163

A ∼ Bin(1, sig(p))

y = θ ∗A+ β1 + β2 ∗X7 + β3 ∗X16 + β4 ∗X51 + β5 ∗X156

Y = 10/(2 + exp(−1 ∗ y)) + ϵ

ϵ ∼ N (0, 0.2)

F.9. DGP 9

p = α0 + α1 ∗ log(X8) + α2 ∗ 1/
√
X17 + α3 ∗ exp(−X52) + α4 ∗ |X157|

+ α5 ∗X157 ∗ log(X8) + α6 ∗X164 + α7 ∗X165 + α8 ∗X164 ∗X165

A ∼ Bin(1, sig(p))

y1 = θ ∗A+ β1 + β2 ∗X8 + β3 ∗X17

y2 = β4 ∗X52 + β5 ∗X157 + β6 ∗X166

ỹ = exp(y1) + (y2 + 59) ∗ (y2 > −59.5)

Y = ỹ + ϵ

ϵ ∼ N (0, 3)
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HYPERPARAMETER TUNING WITH DOUBLE MACHINE LEARNING

F.10. DGP 10

p = α0 + α1 ∗X1 + α2 ∗ log(X8) + α3 ∗ 1/
√
X17 + α4 ∗ exp(−X52) + α5 ∗ |X157|

+ α6 ∗X157 ∗ log(X8) + α7 ∗X164 + α8 ∗X165 + α9 ∗ |X157| ∗X165

A ∼ Bin(1, sig(p))

Y = A ∗ (θ +X8 ∗ λ+X157 ∗X166 ∗ δ) + β1 + β2 ∗X8 + β3 ∗X17 + β4 ∗X52

+ β5 ∗X157 + β6 ∗X166 + β7 ∗X157 ∗X166 + ϵ

ϵ ∼ t(4), θ = 5, λ = 5, δ = 0.5

F.11. DGP 11

p =
18∑
i=1

αi ∗Xi (18 random drawn indices)

A ∼ Bin(1, sig(p))

Ỹ =
23∑
i=1

αi ∗Xi + θ ∗A

Y = Ỹ 2 + ϵ

ϵ ∼ N(0, 2)

F.12. DGP 12

p = α0 + α1 ∗ (X5 − 200) ∗ (X5 > 204) + α2 ∗ log(X7 + 1) + α3 ∗ 1/(X16) + α4 ∗
√
X25

+ α5 ∗ |X51|+ α6 ∗X96 + α7 ∗X96/(log(X7 + 1) + 0.5) + α8 ∗X156 + α9 ∗X2
163

A ∼ Bin(1, sig(p))

y = −0.5 ∗A+ β1 + β2 ∗ (X5 − 200) ∗ (X5 > 204) + β3 ∗
√
X25 + β4 ∗X96

+ β5 ∗X2
163 + β6 ∗ |X169|+ β7 ∗X3

188

Y = 3/(exp(−0.6 ∗ y)) + ϵ

ϵ ∼ N (0, 2)
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BACH SCHACHT CHERNOZHUKOV KLAASSEN SPINDLER

F.13. DGP 13

p = α0 + α1 ∗ (X5 − 200) ∗ (X5 > 204) + α2 ∗
√
X25 + α3 ∗ (X5 − 200) ∗ (X5 > 204) ∗

√
X25

+ α4 ∗X96 + α5 ∗X163 + α6 ∗X96 ∗X163 + α7 ∗X2
163 + α8 ∗ |X169|+ α9 ∗X3

188

+ α10 ∗ |X169| ∗X3
188

A ∼ Bin(1, sig(p))

ỹ = A ∗ (−0.5− 0.25 ∗X2
163) + β1 + β2 ∗ (X5 − 200) ∗ (X5 > 204) + β3 ∗ log(X7 + 1)

+ β4 ∗ 1/X16 + β5 ∗ |X51|+ β6 ∗X96 + β7 ∗X96/(log(X7 + 1) + 0.5) + β8 ∗X156

+ β9 ∗X2
163 + β10 ∗X2

188

Y = ỹ + ϵ

ϵ = (1−A) ∗ ϵ1 +A ∗ ϵ2
ϵ1 ∼ N (0, 1)

ϵ2 ∼ N (0, 0.5)

F.14. DGP 14

p = α0 + α1 ∗ log(X8) + α2 ∗ 1/
√
X17 + α3 ∗ exp(X52) + α4 ∗X100 + α5 ∗ |X157|

+ α6 ∗ |X157| ∗ log(X8) + α7 ∗X2
162 + α8 ∗X165 + α9 ∗X100 ∗X165

y1 = 0.75 ∗A+ β1 + β2 ∗ log(X8) + β3 ∗
√
X17 + β4 ∗X52 + β5 ∗ |X157|

y2 = 10 ∗A+ |β6 ∗X162 + β7 ∗X166 + β8 ∗ (X2
188) ∗ (X188 > 0.4)|

Y = exp(y1) + y2 + ϵ

ϵ ∼ N (0, 4)
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HYPERPARAMETER TUNING WITH DOUBLE MACHINE LEARNING

F.15. DGP 15

p = α0 + α1 ∗ (X10 − 5) ∗ (X10 > 5) + α2 ∗
√
X25 + α3 ∗ (X10 − 5) ∗ (X10 > 5) ∗

√
X25

+ α4 ∗X42 + α5 ∗ log(X52) + α6 ∗ |X70|1/3 + α7 ∗X96

+ α8 ∗ log(X52) ∗X96 + α9 ∗X158 + α10 ∗X96 ∗X158

+ α11 ∗X2
163 + α12 ∗ |X169|+ α13 ∗X3

188 + α14 ∗X192 + α15 ∗X3
188 ∗X192

A ∼ Bin(1, sig(p))

Y = A ∗ (−0.75− 0.25 ∗X192 + 0.6 ∗X51) + β1 + β2 ∗ log(X7 + 1) + β3 ∗ (1/X16) + β4 ∗
√
X25

+ β5 ∗ log(X52) + β6 ∗X96 + β7 ∗X96/((log(X7 + 1) + 0.5)

+ β8 ∗X158 + β9 ∗X2
163 + β10 ∗X2

188 + β11 ∗X192 + β12 ∗X96

+ β13 ∗X3
188 ∗X192 + ϵ

ϵ = (1−A) ∗ ϵ1 +A ∗ ϵ2
ϵ1 ∼ N (0, 0.05)

ϵ2 ∼ N (0, 0.1)

F.16. DGP 16

p = α0 +

200∑
j=1

αj ∗Xj ]

A ∼ Bin(1, sig(p))

Y = (θ ∗A) +
200∑
i=1

βi ∗Xi + ϵ

ϵ ∼ t(8)
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