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Abstract
We consider the problem of efficient inference of the Average Treatment Effect in a sequential ex-
periment where the policy governing the assignment of subjects to treatment or control can change
over time. We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability
Weighted estimator, which is semiparametric efficient, under weaker assumptions than those previ-
ously made in the literature. This central limit theorem enables efficient inference at fixed sample
sizes. We then consider a sequential inference setting, deriving both asymptotic and nonasymptotic
confidence sequences that are considerably tighter than previous methods. These anytime-valid
methods enable inference under data-dependent stopping times (sample sizes). Additionally, we
use propensity score truncation techniques from the recent off-policy estimation literature to re-
duce the finite sample variance of our estimator without affecting the asymptotic variance. Empiri-
cal results demonstrate that our methods yield narrower confidence sequences than those previously
developed in the literature while maintaining time-uniform error control.
Keywords: Average Treatment Effect, Anytime-valid Inference, Confidence Sequences

1. Introduction

Randomized experiments with two treatment arms, also known as A/B tests, are widely used across
many domains. Classical statistical tools (fixed-time methods) require the analyst to select the sam-
ple size in advance and only perform inference when this sample size is reached. However, modern
A/B testing platforms enable continuous monitoring of results, which allows analysts to make re-
peated decisions about whether to stop or continue an experiment based on the data observed so far.
For example, an analyst might decide to run an experiment precisely until a test statistic becomes
statistically significant, at which point they may stop and declare a treatment effective. When the
test statistic is based on a fixed-time method, this can lead to inflated false positive (type-I error)
rates. In fact, when used in this fashion, fixed-time methods based on the central limit theorem will
in general cause these type-I error rates to go to 1 as t → ∞, a result that is implied by the law of
the iterated logarithm (Robbins, 1952; Johari et al., 2017).

Statistical tools which enable valid inference in this setting are known as anytime-valid methods.
To illustrate the distinction, consider a confidence interval (CI) for a parameter of interest θ. A
(1− α) CI for θ is an interval [Lt, Ut] based on a sample of size t with the property that

∀t ∈ N+,P(θ ∈ [Lt, Ut]) ≥ 1− α. (1)
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The coverage guarantee in (1) only holds when the sample size (aka stopping time) t is fixed in
advance. By contrast, a confidence sequence (CS) for θ is a sequence of intervals such that

P(∀t ∈ N+, θ ∈ [Lt, Ut]) ≥ 1− α. (2)

The coverage guarantee in (2) is uniform in the sample size, which enables valid inference under
data-dependent stopping times. This means that the analyst can continually monitor the experiment
and adaptively choose when to stop without inflating the type-I error rate. A CS can be constructed
so that time-uniform coverage is guaranteed asymptotically, a notion which is defined rigorously in
Waudby-Smith et al. (2023).

Continuous monitoring also enables analysts to adaptively update the policy governing the as-
signment of subjects to treatment vs. control. Adaptive experiments in general enable more effi-
cient estimation of treatment effects than non-adaptive experiments, such as a traditional experiment
which randomly assigns each subject to treatment or control with probability 0.5 (Hahn et al., 2011).
Adaptive designs can therefore enable users to spend less resources running experiments while also
minimizing the number of subjects that are exposed to ineffective or possibly harmful treatments.
Additionally, mid-stream changes to experimental designs are sometimes imposed by considerations
other than statistical efficiency, such as changes to budgets or unexpected impacts of the treatment
on a business metric. It is therefore desirable to be able to perform inference under a wide range of
adaptive settings.

As an example of this problem setting, consider a pharmaceutical company running a trial to
test whether a treatment is effective or not to gain regulatory approval. The pharmaceutical com-
pany would like to gain approval quickly by concluding the trial using as few samples as possible.
Without prior knowledge of the effect size, choosing an appropriate sample size is difficult. If an
overly large sample size is chosen, then the company will have wastefully run the trial longer than
necessary, keeping an effective treatment away from patients. However, if the chosen sample size
is too small, then the trial may be inconclusive, in which case the entire cost of the trial is wasted.
With standard fixed-time inference tools, the company must start the trial from the beginning, or
abandon the treatment. If an anytime-valid method is used, then the company can simply continue
the trial without worrying about inflating the false positive rate. To protect participants from poten-
tially harmful treatments, it is common to track the results of an experiment as they are observed. It
is also possible that a treatment is so overwhelmingly effective that the company would like to con-
clude the trial immediately and gain regulatory approval. All these settings involve data-dependent
stopping times, which require anytime-valid methods rather than fixed-time methods.

In this paper, we consider inference for the Average Treatment Effect (ATE), which is the ex-
pected difference in outcomes between the two treatment arms, in the context of adaptive experi-
ments. Kato et al. (2021) proposed the Adaptive Augmented IPW (A2IPW) estimator, which, when
coupled with a particular adaptive design, yields asymptotically efficient CIs based on the central
limit theorem (Hahn et al., 2011). Furthermore, Kato et al. (2021) analyzed finite-sample regret (in
terms of mean squared error) and showed that under certain conditions their adaptive design im-
proves the regret bound compared to a non-adaptive design. They also provided a CS for the ATE
using concentration inequalities based on nonasymptotic variants of the law of the iterated logarithm
(LIL).

In a similar, but independent line of research, Dai et al. (2023) proposed an experimental design
such that the variance of an adaptive IPW estimator asymptotically achieves the variance under the
optimal Neyman design, the fixed (non-adaptive) design that minimizes the variance of the IPW
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Figure 1: A single run of an experiment with bounded outcomes and the ATE set to 0.4 (simu-
lation setup of Appendix F.4 with πt ∈ [0.3, 0.7]). We propose confidence sequences
(AsympCS, Pr-PI, Hedged) that are narrower than previous work Kato et al. (2021).

estimator but is unknown in practice due to dependence on unknown parameters. They provided
a treatment assignment policy that achieves sublinear regret, in terms of the estimator’s variance,
through the use of a variant of online stochastic projected gradient descent. They also provided an
asymptotically-valid Chebyshev-type CI for the ATE. In contrast to our work, their work studied this
problem from a design-based potential outcomes framework, which assumes deterministic potential
outcomes, and did not consider contexts or covariates. Our work assumes that contexts and potential
outcomes are drawn at random. We provide an asymptotically valid Wald-type CI for an A2IPW
estimator and provide anytime-valid inference tools.

Our contributions are both theoretical and empirical. Theoretically, we provide semiparametric
efficient (approximate) inference at fixed times under weaker (more general) conditions than in the
previous literature. Empirically, we adapt state-of-the-art CSs to the setting of adaptive A/B tests
and show superior performance in a sequential testing setting using a treatment assignment policy
from our fixed-time theory. Explicitly, our contributions are:

• Theory: We prove a central limit theorem for the A2IPW estimator under weaker assump-
tions than those utilized by Kato et al. (2021), enabling approximately valid inference at fixed
sample sizes. While these results are valid for arbitrary adaptive designs (with some mild
restrictions), we propose a design which adaptively truncates the treatment assignment prob-
abilities for finite sample stability (Waudby-Smith et al., 2024). We show that this estimator
is semiparametric efficient when paired with the proposed design.

• Empirical Results: We couple the A2IPW estimator with anytime-valid methods which yield
much tighter intervals (more powerful inference) than the methods in Kato et al. (2021). We
derive CSs based on test (super)martingales (Waudby-Smith and Ramdas, 2023), as well as
asymptotic CSs (Waudby-Smith et al., 2023).

To offer a demonstrative example, Figure 1 compares our CSs to previous work for a single se-
quential experiment. Our inference methods provide narrower intervals, leading to higher statistical
power.
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2. Problem Setting and Fixed-Time Inference

2.1. Experimental Process

We follow the same problem setting and data generating process as described in Kato et al. (2021),
with minor modifications to their notation. Subjects are indexed by t ∈ N+ and arrive sequentially.
For each subject, the experimenter observes a context Xt ∈ X , where X is the context domain,
then assigns a treatment At ∈ {0, 1}, and then observes an outcome Yt ∈ R. We denote by
Yt(a) the potential outcome corresponding to treatment a, for a ∈ {0, 1}, and we assume that
Yt = 1[At = 0]Yt(0) + 1[At = 1]Yt(1), where 1[·] denotes the indicator function. That is, we
assume that a given subject’s outcome depends only on their own treatment assignment and not
on the treatment assignments of other subjects (Rubin, 1980, 1986). The accumulated data after T
subjects (equivalently, T time steps, where T ∈ {N+ ∪ ∞}) consists of a set {(Xt, At, Yt)}Tt=1,
whose distribution is

(Xt, At, Yt) ∼ p(x)πt(a | x,Ωt−1)p(y | a, x),

where Ωt−1 = {(Xs, As, Ys) : s ≤ t − 1} denotes the history. We denote the domain of Ωt−1

by Ht−1. We assume that {(Xt, Yt(0), Yt(1))}Tt=1 are independent and identically distributed (iid).
However, our treatment assignments are not fixed over time, and depend on previous observations.
We define the propensity score πt(a | x,Ωt−1) from the experimenter’s policy, πt : A×X×Ht−1 7→
[0, 1]. Although the context and potential outcomes are independent over time, the observed out-
comes {Yt}Tt=1 are dependent due to dependence in the policy.

Remark 1 Although we assume {Xt, Yt(0), Yt(1)}Tt=1 to be iid, our results can be extended to a
non-iid setting in which we estimate the running mean of the individual treatment effects, 1

T

∑T
t=1 θt,

where θt = (Yt(1) − Yt(0)) denotes the individual treatment effect for subject t. As a special case
of that setting, when {Xt, Yt(0), Yt(1)}Tt=1 are iid, we recover the ATE, since 1

T

∑T
t=1 θt → θ0. See

the version of our paper on the arXiv for additional results.

As data collection may be costly, time consuming, or high risk, the experimenter may not want
to continue until some predetermined sample size. Conversely, an experimenter may reach a pre-
determined sample size and consider proceeding with further data collection, for example because
they consider the results inconclusive. This type of data-dependent stopping requires methods which
can handle peeking (Ramdas et al., 2023), and is the focus of Section 3. Under the anytime-valid
inference methods described in that section, the experimenter can choose to stop the experiment,
continue under the current policy, or continue under a modified policy, without inflating the type-I
error rate.

2.2. Estimating the Average Treatment Effect

Additional notation: Our notation follows Kato et al. (2021) with minor modification. Let a be
a treatment in A. We denote E[Yt(a) | x], E[Y 2

t (a) | x], Var(Yt(a) | x), and E[Yt(1) − Yt(0) | x]
as f(a, x), e(a, x), v(a, x), and θ0(x), respectively. Let f̂t(a, x) and êt(a, x) denote estimators of
f(a, x) and e(a, x) constructed from Ωt, respectively.1 We denote the ℓ2 norm of a function as
∥f∥22 =

∫
{f(x)}2 dP(x).

1. In general, f̂ can be any arbitrary estimator. In Theorem 2, we simply require f̂ to be consistent for f .

41036



SEMIPARAMETRIC EFFICIENT INFERENCE IN ADAPTIVE EXPERIMENTS

Adaptive Estimator: We denote the causal parameter of interest, the ATE, as θ0 = E(Y (1) −
Y (0)), where the subscript t is dropped to emphasize time invariance. In an experimental setting, the
treatment probabilities are known and the Inverse-Probability Weighted (IPW) estimator produces
an unbiased estimate of θ0. The Augmented IPW (AIPW) estimator extends the IPW estimator to
include regression estimates, which can reduce the variance of the estimator, while maintaining un-
biasedness (Robins et al., 1994; Chernozhukov et al., 2018). Recently, Kato et al. (2021) extended
the AIPW estimator to the setting of an adaptive experiment by defining the Adaptive AIPW estima-
tor (A2IPW). The key difference between the two estimators is the use of data-dependent propensity
scores πt, which can be updated at each time point t based on the accumulated data Ωt−1. The
A2IPW estimator, given that T subjects have been observed, is defined as θ̂A2IPW

T = 1
T

∑T
t=1 ht,

where

ht =

(
1[At = 1](Yt − f̂t−1(1, Xt))

πt(1 | Xt,Ωt−1)
−1[At = 0](Yt − f̂t−1(0, Xt))

πt(0 | Xt,Ωt−1)
+f̂t−1(1, Xt)− f̂t−1(0, Xt)

)
.

Hadad et al. (2021) presented a more general form of an adaptive AIPW estimator. In their def-
inition, the individual iterates are weighted by adaptive evaluation weights to guarantee asymptotic
normality of the weighted average. θ̂A2IPW

T can therefore be viewed as a special case in which the
evaluation weights are set to be equal.

Hahn et al. (2011) showed that the policy that minimizes the semiparametric lower bound of the
asymptotic variance for regular estimators of the ATE is πAIPW, defined as

πAIPW(1 | Xt) =

√
v(1, Xt)√

v(1, Xt) +
√
v(0, Xt)

.

Hahn et al. (2011) derived this lower bound in the context of a two-stage experimental design.
Armstrong (2022) showed that for estimating the ATE of a binary treatment, no further first-order
asymptotic efficiency gain is possible in a purely adaptive experiment. This policy depends on
unknown quantities of the underlying data generating process. The policy proposed in Kato et al.
(2021) estimates the unknown quantities from the observed data and is defined as

πA2IPW,Kato
t (1 | Xt,Ωt−1) =

√
v̂t−1(1, Xt)√

v̂t−1(1, Xt) +
√
v̂t−1(0, Xt)

,

where v̂t−1 denotes an estimate of v using the first t − 1 samples. For numerical stability, Kato
et al. (2021) mixed this policy with a non-adaptive policy that assigns treatment with probability
0.5. As the sample size grows, the mixing gradually assigns a greater weight to the estimated
optimal policy. This mixing scheme prevents noisy estimates of v from inducing high variance in
the observed (ht)

T
t=1 early in the experiment and does not affect the asymptotic properties of the

estimator. In a similar spirit, we explicitly define a truncation schedule for the propensity scores
generated by our policy. However, our truncation schedule is not only useful for improving finite
sample stability in practice; it is also a technical device that allows us to relax the assumptions
needed for our results below. We define our policy as

πA2IPW
t (1 | Xt,Ωt−1) =

(
πA2IPW,Kato
t (1 | Xt,Ωt−1) ∨

1

kt

)
∧
(
1− 1

kt

)
, (3)
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where kt ∈ [2,∞) is a user-chosen truncation parameter. Since our theorem below holds in a more
general setting, we can apply this truncation to arbitrary policies π̃t, denoting

πt =

(
π̃t ∨

1

kt

)
∧
(
1− 1

kt

)
. (4)

Note that setting kt = 2 results in πt(At = 0 | Xt,Ωt−1) = πt(At = 1 | Xt,Ωt−1) = 0.5, and
kt → ∞ results in the non-truncated policy π̃t. The policy truncation that we utilize is inspired
by Waudby-Smith et al. (2024), where truncation circumvents required knowledge of the maximal
importance weight in off-policy evaluation. Our empirical results show that truncation can improve
finite-sample performance for well-chosen kt, which aligns with the results in the preceding work.

2.3. Fixed-Time Confidence Intervals

We now turn to constructing CIs with asymptotic coverage guarantees. Kato et al. (2021) defined
zt = ht − θ0 and showed that {zt}Tt=1 forms a martingale difference sequence (MDS). They then
utilized a MDS central limit theorem to show θ̂A2IPW is asymptotically Gaussian. They further
showed that θ̂A2IPW is semiparametric efficient under the asymptotic policy. We provide the same
results under weaker assumptions, as elaborated after the theorem.

Theorem 2 (Asymptotic Distribution of θ̂A2IPW
T ) Assume {(Xt, At, Yt)}Tt=1 follow the data gen-

erating process described in Section 2.1. Let π̃t : A×X 7→ (0, 1) be an arbitrary sequence of poli-
cies, and let πt be the corresponding truncated policies as defined in (4). Assume 1

π(a|x) < C1 <∞
and v(a, x) < C2 < ∞ for all x ∈ X and a ∈ {0, 1} for some constants C1 and C2. As-
sume kt∥f̂t − f∥2 = oP(1) and kt∥πt − π∥2 = oP(1) for some policy π. Further, assume that
V ar(f̂ | Ωt−1) < C3 < ∞ and V ar(πt | Ωt−1) < C4 < ∞ for all x ∈ X , a ∈ {0, 1}, and
t ∈ {1, 2, . . . }, for some constants C3 and C4. Under these assumptions, we have

√
T (θ̂A2IPW

T − θ0)
d−→ N(0, σ2),

where σ2 is the semiparametric lower bound of the asymptotic variance for regular estimators of θ0
under the policy π(a | x), given by

σ2 = E

[
1∑

a=0

v(a,Xt)

π(a | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]
.

In particular, if we have π = πAIPW, then θ̂A2IPW
T is semiparametric efficient.

Proof is provided in Appendix A. Note that Kato et al. (2021) assumed that Yt and f̂t are uni-
formly bounded and that f̂t and πt converge pointwise. By contrast, we only assume that v(a, x) are
uniformly bounded, that f̂t and πt converge in ℓ2 norm, and that f̂t and πt have uniformly bounded
conditional variances. Kato et al. (2021) also assumed that πt is uniformly bounded away from
0, whereas we only make this assumption on π, the stationary policy which πt converges to. By
utilizing truncation, we can satisfy the assumption that the policies πt (at fixed times) are uniformly
bounded. However, truncation is still relevant to relax convergence assumptions. Our proof uses a
MDS central limit theorem given by Dvoretzky (1972), which is used in a similar fashion by Zhang
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et al. (2021). This form of a MDS central limit theorem states conditions based on the second
moment of zt conditional on Ωt−1, and lends itself directly to weakening pointwise convergence
assumptions on f̂ and πt.

In contrast to Kato et al. (2021), truncation plays a key role in our derivation of the asymptotic
distribution of θ̂A2IPW

T and, in turn, the conditions required of kt are of particular interest. If kt
increases to infinity, then as long as the non-truncated policy π̃t converges to some non-truncated
policy π̃, the truncated policy πt will also converge to π̃ (and the theorem would apply as long as
kt increased slowly enough that ktmax(∥f̂t − f∥2, ∥πt − π∥2) = oP(1)). If, instead, kt remains
constant or increases to a finite bound, then the truncated policy πt will converge to an appropriate
truncation of π̃, and the theorem would still apply as long as max(∥f̂t − f∥2, ∥πt − π∥2) = oP(1).
When we have π = πAIPW, we are implicitly assuming that we have independently selected kt
such that truncation becomes asymptotically inactive. Note that if π̃t were uniformly bounded away
from 0, as assumed in Kato et al. (2021), then we could simply set kt = 1/min(π̃t(x), 1 − π̃t(x))
so that π̃t = πt, meaning we never actively truncate π̃t. In that case, the conditions in (Kato et al.,
2021, Theorem 1) would imply the conditions in our theorem. The following remark alludes to how
selecting kt can lead us to semiparametric efficient inference with our proposed policy πA2IPW

t .

Remark 3 (Semiparametric Efficiency) Assume that we set kt such that limt→∞ kt > sup 1
πAIPW .

Assume that the estimated conditional variance function v̂t is consistent for v such that ∥πA2IPW
t −

πAIPW∥2 = oP(1). If kt grows at a rate such that kt∥πA2IPW
t − πAIPW∥2 = oP(1) and all other

assumptions of Theorem 2 hold, then θ̂A2IPW
T is semiparametric efficient.

In the final sentence of Theorem 2, we state that if πt converges to πAIPW, then the semipara-
metric lower bound is minimized with respect to π (Hahn et al., 2011). In order to make use of
this result, we require an adaptive policy that converges to πAIPW. Remark 3 states that πA2IPW

t

is such a policy as long as our estimates of v are consistent and our truncation does not vanish too
quickly. The rate at which kt is allowed to increase as per the conditions in Remark 3 depends on
the rate that v̂t converges to v. In practice this rate is unobservable, and it is worth acknowledging
this limitation. Addressing this limitation is an interesting direction for future research.

A t-statistic, along with an explicit CI, are defined in Appendix F.2. Although our interval is
the same as the one given in Kato et al. (2021), our relaxed assumptions make its use applicable in
more general settings, such as when the potential outcomes follow a distribution without bounded
support.

3. Anytime-Valid Inference in Adaptive Experiments

We now construct confidence sequences (CSs) for the ATE that utilize the A2IPW estimator. Kato
et al. (2021) developed such CSs via concentration inequalities based on the law of the iterated
logarithm (LIL) as derived in Balsubramani (2015) and Balsubramani and Ramdas (2016), which
are today known to be loose in constants (Howard et al., 2021). The concentration inequality derived
for θ̂A2IPW

T (Kato et al., 2021, Thm. 4) depends on the unknown treatment effect θ0, although we
believe it is probably a trivial extension to replace this with an estimate of θ0. Indeed, though their
derivation uses the true value θ0, their experiments use a running estimate for θ0 based on {ht}T−1

t=1 .
In contrast, we present CSs for the ATE based on more recent, state-of-the-art methods for

inference of means of random variables in sequential settings (Waudby-Smith and Ramdas, 2023;
Waudby-Smith et al., 2024). All our sequences are fully empirical, meaning they do not depend on
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unknown parameters. We will see that these these methods empirically yield much tighter intervals
than those previously derived. This section thus yields the first practically tight and theoretically
sound CSs for using the semiparametric efficient A2IPW estimator in adaptive experiments.

3.1. Betting Confidence Sequences

We first derive a CS using results from Waudby-Smith and Ramdas (2023) and Waudby-Smith et al.
(2024). Since these CSs do not require independence between observations, their use in the setting
of adaptive experimentation is natural. The approach is based on a set of capital processes, each
of which can be understood as the accumulated wealth of a gambler playing a game against nature.
More precisely, we construct one capital process for each θ′ ∈ Θ, the parameter space. At each time
t, the confidence set corresponds to the set of θ′ ∈ Θ such that the respective capital process has not
exceeded an improbable level of wealth for a fair game parameterized by θ′. By constructing the
capital process at θ0 to be a test martingale, the probability that the capital process ever exceeds the
value 1

α is bounded by α (Ville, 1939). This gives time-uniform type-1 error control, allowing the
analyst to reject any θ′ for which the respective capital process exceeds 1

α .

Theorem 4 (Hedged-CS [Hedged]) Assume we observe data following the data generating pro-
cess of Section 2.1. Assume Yt ∈ [0, 1] and πt(1 | Xt,Ωt−1) ∈ [ 1kt , 1 −

1
kt
] for all t ∈ 1, . . . , T . If

we define

K+
T (θ

′) :=
T∏
t=1

(1 + λt(θ
′)(ht − θ′)), K−

T (θ
′) :=

T∏
t=1

(1− λt(θ
′)(ht − θ′)),

MT (θ
′) :=

K+
T (θ

′) +K−
T (θ

′)

2
,

then

CHedged
T :=

⋂
t≤T

{
θ′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
,

forms a (1− α)-CS for θ0, where (λt(θ
′))Tt=1 ∈

(
−1

kt−θ′ ,
1

kt+θ′

)
is a predictable sequence that may

be interpreted as an analyst’s betting strategy.

Proof and other details can be found in Appendix C. Before providing intuition for the proof,
we note that although we assume Yt ∈ [0, 1], our result holds for any bounded Yt by rescaling.

K+
T (θ

′) and K−
T (θ

′) can be interpreted as capital processes for a gambler who is betting in favor
of θ0 > θ′ and θ0 < θ′ respectively. Since we wish to produce two-sided intervals, we take the
mean of these two process to form MT (θ

′). This is equivalent to a gambler partitioning their wealth
equally between two games. The analyst must choose a predictable betting strategy for each game,
λt(θ

′). In theory, this betting strategy could be different at each possible value of θ′. Moreso, apart
from a bounded range, the only restriction on λt(θ′) is that it is predictable, meaning that it cannot
depend on the current or any future observations. However, since our parameter space is continuous,
an exhaustive search over an infinite set of θ′ is not feasible. Waudby-Smith and Ramdas (2023)
propose a method to set λt to be quasi-convex in θ′ so that the confidence set forms an interval. With
quasi-convexity, it is sufficient to partition the parameter space and perform a grid-search; see their
paper for further details and a variety of settings of λt. For brevity, we defer the details of setting λt
to Appendix C.3.
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3.2. Empirical Bernstein Confidence Sequences

The confidence set produced by Theorem 4 can be computationally expensive, as a grid search is
performed over θ′ ∈ [−1, 1]. A significant drawback is a lack of closed-form presentation. In this
section we present a closed-form CS which has slight degradation in performance, but enjoys faster
computation. This CS is based on an empirical Bernstein-type process that is shown to be a test su-
permartingale (Waudby-Smith and Ramdas, 2023). Since this process inverts a test supermartingale,
the concentration inequality is a looser bound than those produced by test martingales.

Without loss of generality, assume that we observe Yt ∈ [0, 1], for all t ∈ 1, . . . , T , and that the
propensity scores, πt, are all truncated to fall in [ 1kt , 1 − 1

kt
]. Following a similar technique as in

Waudby-Smith et al. (2024), we define

ξt =
ht

kt + 1
, ξ̂t−1 =

(
1

t− 1

t−1∑
i=1

ξi

)
∧ 1

kt + 1
, and ψE(λ) = − log(1− λ)− λ. (5)

ξt can be viewed as a scaled version of ht. ξ̂t−1 is then a sample average of ξ up through observation
t−1. By only using previous observations, this value is predictable, whereas the quantity ξ̄t, defined
below in equation (7), uses the current observation and is therefore not predictable. The scaling in
ξt and truncation in ξ̂t−1 are necessary technical tools to construct a test supermartingale, as shown
by Waudby-Smith and Ramdas (2023).

Similarly to the Hedged-CS of Theorem 4, there are user-specified parameters, (λt)Tt=1, which
have an effect on the finite-sample performance of our forthcoming CS. (λt)Tt=1 can be any (0, 1)-
valued predictable process. Waudby-Smith et al. (2024) provide an empirically promising setting,
inspired by fixed-time empirical Bernstein CIs,

λt =

√
2 log(2/α)

σ̂2t−1t log(1 + t)
∧ c, where c = 0.5, (6)

σ̂2t =
σ20 +

∑t
i=1(ξi − ξ̄i)

2

t+ 1
, and ξ̄t =

(
1

t

t∑
i=1

ξi

)
∧ 1

kt + 1
. (7)

σ̂2t and ξ̄t can be interpreted as estimates of the mean and variance of ξ. The value σ20 can be
viewed as a prior guess for the variance of ξ, and setting σ20 = 1

4 is a reasonable choice. We are now
ready to present the CS.

Theorem 5 (Predictable Plug-In Empirical Bernstein CS [Pr-PI]) Assume we observe data fol-
lowing the data generating process of Section 2.1. Assume that Yt ∈ [0, 1] and πt(1 | Xt,Ωt−1) ∈
[ 1kt , 1−

1
kt
] for all t ∈ 1, . . . , T. Let ξt, ξ̂t−1, ψE(λ), λt, σ̂2t , and ξ̄t be defined as in (5), (6), and (7)

respectively. We have that

CPr−PI
T :=

∑T
t=1 λtξt∑T

t=1 λt/(kt + 1)
±

log(2/α) +
∑T

t=1

(
ξt − ξ̂t−1

)2
ψE(λt)∑T

t=1 λt/(kt + 1)
,

forms a (1− α) CS for θ0.

Proof is provided in Appendix D, and follows the truncation technique used in Waudby-Smith
et al. (2024). When kt does not grow quickly, meaning propensities are truncated more aggressively,
intervals tend to be narrower at small t. When kt grows quickly, then finite sample performance is
sacrificed for performance at large t. The effect of truncation is consistent with the Hedged-CS.
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3.3. Asymptotic Confidence Sequences

Because of their stronger time-uniform guarantees, the CSs in the preceding section produce inter-
vals that have larger widths than their fixed-time CI counterparts. In the fixed-time setting, exact
error coverage is not guaranteed, and the analyst must rely on asymptotic coverage guarantees.
Waudby-Smith et al. (2023) introduce the sequential analogue of asymptotic CIs, asymptotic CSs
(AsympCS), by defining a sequence of intervals which converges to some (unknown) CS. We now
define our AsympCS for θ0.

Theorem 6 (Asymptotic CS [AsympCS]) Assume {(Xt, At, Yt)}Tt=1 follow the data generating
process described in section 2.1. Furthermore, assume E(|Yt|2+δ) < ∞ for some δ > 0. Let σ̂2 be
an estimator of Var(ht), and ρ > 0 be a user-specified parameter. For all t ∈ 1, . . . , T , we have
that

CAsympCS
T :=

 1

T

T∑
t=1

ht ±

√√√√√2(T σ̂2Tρ
2 + 1)

T 2ρ2
log


√
T σ̂2Tρ

2 + 1

α


 ,

forms a (1 − α)-AsympCS for θ0. Further, the width of CAsympCS
T at time T can be (approximately)

minimized by setting

ρ =

√
−2 logα+ log(−2 logα+ 1)

T
.

Proof is provided in Appendix E. The value of ρ that minimizes interval width at a certain sample
size follows from Waudby-Smith et al. (2023, Appendix B.2). Although this interval does not yield
exact coverage, empirically most errors occur quite early during the experiment. Its applicability
for reasonable sample sizes provides a noticeable gain in power in comparison to the exact CSs.
The only user-specified parameter is ρ, a positive scalar which specifies at what intrinsic time the
AsympCS should be tightest, with lower values corresponding to tightness at earlier times. We set
this parameter to 0.5 in our simulations; for more details, see Waudby-Smith et al. (2023). We also
note that the theorem we make use of from Waudby-Smith et al. (2023) allows for time-varying
conditional means. This suggests that the results of Theorem 6 can be extended to time-varying
treatment effects, which we leave for future work.

4. Empirical Results

We empirically compare our methods to Kato et al. (2021, Thm. 4). We run two simulations with
1000 iterations each: one with Bernoulli outcomes, and one with continuous, bounded outcomes.
5000 total samples are collected for each iteration and intervals are constructed following each
sample. We employ sequential sample-splitting on f̂ and ê to avoid double-dipping and overfitting
(Waudby-Smith et al., 2023). Sequential sample-splitting permanently allocates each sample to one
of two data folds upon observation. We fit models for f̂ and ê separately on each fold, giving
four models in total. Predictions of f̂ and ê are produced from the model fit from the opposite
fold. For an individual observation, we estimate the conditional variance by setting v̂(a, x) =
ê(a, x) − (f̂(a, x))2. When determining πA2IPW

t , f̂ and ê are calculated by averaging predictions
of the models from both splits, as this calculation occurs prior to observing and assigning the data
point to a split. In our simulations, we clip v̂ to be no less than 0.01 to avoid division by zero
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Figure 2: Cumulative error probability (a, c) and power (b, d) as functions of sample size, of exper-
iments from Appendix F.3 and Appendix F.4. The first row corresponds to the experiment
with Bernoulli outcome, and the bottom row corresponds to the experiment with bounded,
continuous outcomes. Intervals based on the CLT (Theorem 2), AsympCS (Theorem 6),
Pr-PI (Theorem 5), Hedged (Theorem 4), and (Kato et al., 2021, Theorem 4) begin at
t = 50.

or negative values. During the first 100 samples, f̂(1, Xt) = 1, f̂(0, Xt) = 0, and πt = 0.5.
For policy truncation, we set kt = kt−1

0.999 where k1 = 2. Since the method of Kato et al. (2021)
does not utilize time-varying bounds (at least in its present form), using the worst-case bound for
the propensities is a conservative way to guarantee time-uniform validity of their CS. Using our
proposed truncation scheme can then make these CSs extremely wide. To remedy this, we observe
that setting kt = 5 works well for Kato et al. (2021, Thm. 4). Figure 2 shows results for these
simulations when a Random Forest is used for f̂ and ê, and are discussed in detail in the subsequent
subsections. Appendix F provides additional results using a k-Nearest Neighbors model.

4.1. Bernoulli Outcomes

In Figure 2, plots (a) and (b) show aggregated results across 1000 iterations of a simulation with
Bernoulli outcomes where the ATE = 0.1. Full details of the data generating process can be
found in Appendix F.3. Our methods provide significantly narrower intervals due to leveraging
tighter concentration inequalities, as well as using time-varying truncation. Performance between
our proposed CSs is inline with expectations from the CS literature. Specifically, the AsympCS
provides the narrowest interval, at the expense of higher miscoverage probabilities. Since we begin
constructing intervals at t = 50, we avoid experiencing severe interval miscoverage early in the
experiment, which prevents inflating the cumulative miscoverage rate. By doing so, we have em-
pirically controlled the time-uniform error probability at level α = 0.05. The Hedged-CS provides
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Figure 3: When πt is bounded in a narrower range, intervals produced by a Pr-PI CS are narrower
at smaller t.

tighter intervals than the closed form Pr-PI. This is because the Hedged-CS inverts a test martingale
instead of a test supermartingale. Waudby-Smith and Ramdas (2023) note that this removes a source
of conservatism in generating CSs; however, this comes at a higher computational cost.

4.2. Bounded Outcomes

Plots (c) and (d) in Figure 2 show aggregated results across 1000 iterations of a simulation with a
bounded, continuous outcomes where the ATE = 0.1. The data generating process can be found
in Appendix F.4. Results in this section follow an identical pattern to the results in the Bernoulli
experiment.

The data generating process yields data which is noticeably heteroskedastic. This implies that
πAIPW will produce values that are close to 0 and 1. However, when t is small, f̂ and ê can be noisy
estimates of the true, unobservable f and e. In this case, the truncation schedule plays an interesting
balance of preventing noisy estimates of f and e from inducing high variance in h̄t, while still
allowing πt to converge to the optimal policy at an appreciable rate.

4.3. Effect of Truncation Schemes

The policy studied in this work is deemed optimal because it minimizes the asymptotic variance
of an unbiased estimator, the A2IPW estimator. The width of a CI based on the CLT has a direct
dependence on the asymptotic variance of the estimator. Naturally, minimizing the asymptotic
variance leads to a sense of optimal inference, by minimizing the mean squared error (MSE). In our
proof of Theorem 2, we make use of kt to bound propensity scores away from 0 and 1. In turn,
we require that kt∥f̂t − f∥2 = oP(1) and kt∥πt − π∥2 = oP(1). The rate at which kt increases is
limited by the rates that ∥f̂t − f∥2

p−→ 0 and ∥πt − π∥2
p−→ 0. We also use truncation as a technical

tool when considering bounds on (λt)
T
t=1 in Theorem 4 and Theorem 5.

Our primary concern in this work lies in anytime-valid inference, and as such, greater attention
towards the width of the intervals produced by our CSs at fixed times is warranted. Since the propen-
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sity scores set by our policy appear in the denominator of θ̂A2IPW
T , propensity scores near 0 or 1 can

make ht arbitrarily large. The CSs with fixed-time error control considered in this paper make use
of the boundedness of ht. Particularly, the proofs make use of an underlying test (super)martingale,
which by construction is non-negative. For example, non-negativity is guaranteed by scaling λt(θ′)
such that λt(θ′)(ht − θ′) > −1 for the Hedged-CS. Temporarily subscribing to the betting analogy
of Waudby-Smith and Ramdas (2023), an inherent trade-off arises where the analyst must balance
the allowable size of their bet, λt(θ′), with the bounds of the evidence presented by nature, (ht−θ′).
The opportunity to observe large evidence comes at the cost of placing small bets.

This effect is noted explicitly by Waudby-Smith et al. (2024, Remark 2). In our setting, their
intuition implies that faster growth in kt will yield a smaller asymptotic variance at the cost of
having wider intervals at small t. In this section, we empirically show that a departure from our
optimal policy through truncation will yield narrower intervals at finite times.

We consider a simulation that follows a similar set up to that used in Section 4.2, where we
modify kt to be constant. Specifically we set kt = 1/πt,min and we vary πt,min ∈ {0.5, 0.45, 0.40,
0.30, 0.20, 0.10}. For an explicit data generating process, see Appendix F.5. We note that πAIPW,
can be close to 0 or 1, and as a result, we truncate the optimal policy. Results of a single iteration are
shown in Figure 3. More aggressive truncation (larger values of πt,min) leads to narrower intervals
for small t, however, once t is sufficiently large, less aggressive truncation (smaller values of πt,min)
provides narrower intervals. These results suggest that optimizing an adaptive policy for statistical
inference at finite times is an interesting direction for future work.

5. Conclusion

We have provided both confidence intervals (CIs) and confidence sequences (CSs) for the ATE in
adaptive experiments using the A2IPW estimator. The CI based on the CLT achieves the semipara-
metric lower bound of the asymptotic variance under weaker assumptions than in previous work.
The CSs with time-uniform error control surpass the performance of previous work considerably.
Our methods apply to arbitrary adaptive designs, but we also propose a particular policy trunca-
tion scheme that preserves the asymptotic efficiency of the A2IPW estimator while improving finite
sample performance. We emphasize that the inference tools (the CIs and CSs) and our proposed
policy are individual contributions which do not require the use of one another.

This work provides a clear framework for using the A2IPW estimator in adaptive experiments.
There are many interesting directions for further research. As mentioned in Section 4.3, the trun-
cation scheme used can have a considerable impact on finite sample performance. In the context
of bounded random variables, Shekhar and Ramdas (2023) derive lower bounds on the width of a
CS and show that betting-based confidence sets are nearly optimal. In our adaptive experiment, the
analyst sets the bounds of the observed random variable ht, and could explore minimizing the lower
bound of the width of our CSs using their results. Separately, our adaptive design focuses purely
on efficient statistical inference. In bandit experiments, an analyst may wish to minimize the regret,
so that patient welfare is maximized by treatment assignments. An interesting direction for future
work is incorporating a notion of regret in the treatment assignments, such as the scheme proposed
by Simchi-Levi and Wang (2023). Lastly, we have only considering performing inference on the
ATE. An interesting line of future work would be extending these results to other causal estimands.
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Appendix A. Proof of Theorem 2

A.1. High-Level Roadmap

Our proof follows a similar style to the proof of Kato et al. (2021). We consider a martingale
difference sequence (MDS) and apply a central limit theorem to find the asymptotic distribution of
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the sample mean of the MDS. The main departure of our proof from their proof is the statement of
the central limit theorem which is amenable to making assumptions standard in causal inference.

To outline the proof, first we state our assumptions. Next we establish that {zt}Tt=1, where
zt = ht − θ0, is a MDS. We then state the MDS central limit theorem by Dvoretzky (1972) and
show that {zt}Tt=1 satisfies the necessary conditions. For the sake of brevity, we defer much of the
tedious algebra to Appendix B. Since z̄T = T−1

∑T
t=1 zt = T−1

∑T
t=1(ht − θ0) = θ̂A2IPW

T − θ0,
this result allows us to characterize the asymptotic distribution of θ̂A2IPW

T .

A.2. Assumptions

• IID Contexts and Potential Outcomes : {Xt, Yt(0), Yt(1)}Tt=1 are independent and identically
distributed.

• Convergence of Regression : kt∥f̂t − f∥2 = oP(1)

• Convergence of Policy : kt∥πt − π∥2 = oP(1).

• π Bounded Away from 0 : 1
π < C1 for all x ∈ X , and a ∈ {0, 1}, where C1 is a constant such

that C1 <∞.

• Finite Conditional Variance : v(a, x) < C2 for all x ∈ X , and a ∈ {0, 1}, where C2 is a
constant such that C2 <∞.

• Finite Conditional Variance of Predictions : Var(f̂t−1(a,Xt) | Ωt−1) < C3 for some C3 <
∞ for all x ∈ X , a ∈ {0, 1}, and t ∈ {1, 2, . . . }.

• Finite Conditional Variance of Policy : Var(πt | Ωt−1) < C4 for some C4 < ∞ for all x ∈
X , a ∈ {0, 1}, and t ∈ {1, 2, . . . }.

A.3. zt is a MDS

Kato et al. (2021) show the first necessary condition, E(zt | Ωt−1) = 0. For completeness we
present this step here.

E
[
zt | Ωt−1

]
= E

[
1[At = 1]

(
Yt − f̂t−1(1, Xt)

)
πt(1 | Xt,Ωt−1)

−
1[At = k]

(
Yt − f̂t−1(0, Xt)

)
πt(0 | Xt,Ωt−1)

+ f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

∣∣∣∣∣ Ωt−1

]

= E

[
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

+ E

[
1[At = 1]

(
Yt − f̂t−1(1, Xt)

)
πt(1 | Xt,Ωt−1)

−
1[At = 0]

(
Yt − f̂t−1(0, Xt)

)
πt(0 | Xt,Ωt−1)

∣∣∣ Xt,Ωt−1

] ∣∣∣∣∣ Ωt−1

]
= E

[
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0 + f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

∣∣∣ Ωt−1

]
= 0.

The second required condition is E|zt| < ∞. By assumption E(z2t | Ωt−1) < M < ∞,
where M is some constant. This follows by uniformly bounded variance assumptions, since E(zt |
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Ωt−1) = 0. Since E(z2t ) = E(E(z2t | Ωt−1)), it follows that E(z2t ) <∞, since the expectation of a
uniformly bounded variable is bounded. This implies existence of the first moment.

A.4. MDS Central Limit Theorem

Kato et al. (2021) used a MDS CLT which requires (condition b) a finite 2 + δ moment (δ > 0)
for |zt|. Instead we use the MDS CLT as stated by Dvoretzky (1972). This statement contains a
Lindeberg type condition where we must only consider the second moment of |zt|. Since we do not
assume boundedness, we opt for this Lindeberg-type statement. For completeness, we present this
theorem as it is stated in Zhang et al. (2021, Theorem 2).

Theorem 7 (MDS Central Limit Theorem)
Let ZT (P)T≥1 be a sequence of random variables whose distributions are defined by some

P ∈ P and some nuisance component η. Moreover, let ZT (P)T≥1 be a martingale difference
sequence with respect to Ωt, meaning EP,η[Zt(P) | Ωt−1] = 0 for all t ≥ 1 and P ∈ P. If we
assume that,

1. 1
T

∑T
t=1 EP,η

[
z2t | Ωt−1

] p−→ σ2 uniformly over P ∈ P, where σ2 is a constant 0 < σ2 <∞,
and that,

2. for any ϵ > 0, 1
T

∑T
t=1 EP,η

[
zt(P)21 [|zt(P)| > ϵ] | Ωt−1]

] p−→ 0 uniformly over P ∈ P,

then
√
T (z̄t)

d−→ N(0, σ2) uniformly over P ∈ P.

Dropping the requirement of the conditions holding uniformly over P ∈ P recovers the original
result by Dvoretzky (1972). Below we show that these two conditions are satisfied. It follows that

√
T (z̄t) =

θ̂A2IPW − θ0√
T

d−→ N(0, σ2),

where

σ2 = E

[
1∑

a=0

v(a,Xt)

π(a | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]
.

A.4.1. CONDITION 1 (CONDITIONAL VARIANCE)

We wish to show that

1

T

T∑
t=1

E
[
z2t | Ωt−1

] p−→ σ2 = E

[
1∑

a=0

v
(
a,Xt

)
π(a | Xt)

+
(
f(1, Xt)− f(0, Xt)− θ0

)2]
.

This is equivalent to showing

1

T

T∑
t=1

(
E
[
z2t | Ωt−1

]
− σ2

) p−→ 0.
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To reduce notational clutter, let E(Xt | Ωt−1) be denoted as Et−1(Xt). Kato et al. (2021, Ap-
pendix B) show

E
[
z2t | Ωt−1

]
− σ2 = Et−1

[
(Yt(1)− f̂t−1(1, Xt))

2

πt(1 | Xt,Ωt−1)
+

(Yt(0)− f̂t−1(0, Xt))
2

πt(0 | Xt,Ωt−1)

+
(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
+ 2(f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt))(f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0)

]

− Et−1

[
(Yt(1)− f(1, Xt))

2

π(1 | Xt)
+

(Yt(0)− f(0, Xt))
2

π(0 | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]

=

1∑
a=0

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 (8)

+ 2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
(9)

+ Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
. (10)

We now consider terms (8), (9) and (10) individually. We make use of auxiliary lemmas and de-
fer proofs to Appendix B. In all of the lemmas below, we keep all assumptions from Appendix A.2.

Lemma 8 (Convergence of (8)) Under the assumptions of Theorem 2, we have

1∑
a=0

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 = oP(1).

Lemma 9 (Convergence of (9)) Under the assumptions of Theorem 2, we have

2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
= oP(1).

Lemma 10 (Convergence of (10)) Under the assumptions of Theorem 2, we have

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= oP(1).

Given Lemmas 8, 9, and 10, convergence in probability to zero for each term is established,
and therefore so is the convergence of the sum. Convergence of the conditional variance of the
MDS is then established. So far we have shown that Et−1

[
z2t
] p−→ σ2, but we wish to show that

1
T

∑T
t=1

(
Et−1

[
z2t
]
− σ2

) p−→ 0.
Let at = Et−1

[
z2t
]

and a = σ2. It follows that E[at] = E[|at|] < M < ∞ for all t, where
the equality holds since at > 0. This uniform boundedness implies that at is uniformly integrable.
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Since it is also true that at
p−→ a, then by the LR convergence theorem, we have that at → a in L1,

which implies E
[
|Et−1[z2t ]− σ2|

]
→ 0 (Loève, 1977).

Kato et al. (2021) show through Markov’s inequality that 1
T

∑T
t=1

(
Et−1

[
z2t
]
− σ2

) p−→ 0 if
E
[
|Et−1[z2t ]− σ2|

]
→ 0. So condition 1 is satisfied.

A.4.2. CONDITION 2 (CONDITIONAL LINDEBERG)

We seek to show that for any δ > 0,

1

T

T∑
t=1

E
(
z2t 1

[
|zt| > δ

√
T
] ∣∣∣ Ωt−1

)
p−→ 0.

Define bt = z2t 1(|zt| > δ
√
T ). Then bt = z2t w.p. P(|zt| > δ

√
T ) and 0 otherwise. By

Chebyshev’s inequality,

P(|zt| > δ
√
T ) ≤ Var(zt)

δ2T
.

We note that Var(zt) = E(z2t ) <∞. This gives

lim
T→∞

Var(zt)
δ2T

= 0,

which implies that bt
p−→ 0, and bt

d−→ 0.
Note that |bt| ≤ z2t , and E(z2t ) <∞. By the dominated convergence theorem, limT→∞ E(bt) =

E(limT→∞ bt) = 0. Hence, we have

1

T

T∑
t=1

E
(
z2t 1

[
|zt| > δ

√
T
] ∣∣∣ Ωt−1

)
p−→ 0.

Appendix B. Auxiliary Lemmas and Proofs

This appendix shows proofs for auxiliary lemmas used in Appendix A. The proofs involve tedious
algebra and are included in full detail for completeness.

B.1. Proof of Lemma 8

The term considered in Lemma 8, specifically term (8), involves a summation over the potential
treatments, we choose to focus on a single arbitrary treatment, a, and show that the term for an
individual treatment converges to zero in probability, and hence, so does the sum.

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)


= Et−1


(
Yt(a)− f̂t−1(a,Xt) + f(a,Xt)− f(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 (11)

191051



COOK MISHLER RAMDAS

= Et−1


(
(Yt(a)− f(a,Xt)) +

(
f(a,Xt)− f̂t−1(a,Xt)

))2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)


(12)

= Et−1

[
(Yt(a)− f(a,Xt))

2

πt(a | Xt,Ωt−1)
+

2 (Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

(13)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

]

= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(14)

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

 .
Above, (11) simultaneously adds and subtracts f(a,Xt), while (12) and (13) square the bino-

mial term. In equation (14), we factor (Yt(a)− f(a,Xt))
2 from the first and final terms, and utilize

linearity of expectation. Continuing,

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)


≤ Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(15)

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ Et−1

[
kt

(
f(a,Xt)− f̂t−1(a,Xt)

)2]

= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(16)

+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
.

Inequality (15) follows since our policy is truncated within [ 1kt , 1 − 1
kt
]. Equation (16) uses norm

notation in the final term so that we may reference our assumptions further in the proof. We now
turn our focus to simplifying the middle term of equation (16),

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
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+ 2Et−1

(Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(17)

+ 2

(
Et−1

[
Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2]
− Et−1

[
f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2])
+ kt

(
∥f̂(a)− f(a))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ 2

(
Et−1

[
E
[

Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2 ∣∣∣ Xt,Ωt−1

]]
(18)

− Et−1

[
E
[

f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2 ∣∣∣ Xt,Ωt−1

]])
(19)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
,

where equation (17) expands the term of interest, and terms (18) and (19) apply the law of iterated
expectation. Conditioning on Xt, the only non-constant term in terms (18) and (19) is Yt(a),
whose conditional expectation on Xt is f(a,Xt). Therefore, the terms (18) and (19) reduce to 0.
Simplifying, we have

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ 2

(
Et−1

[
E
[

Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2 ∣∣∣ Xt,Ωt−1

]]

− Et−1

[
E
[

f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2 ∣∣∣ Xt,Ωt−1

]])
+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(20)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
.

By assumption, kt∥f̂(a,Xt)−f(a,Xt)∥2 = oP(1). It follows then that kt
(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
=

oP(1). Equation (20) can be further simplified to

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
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= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ oP(1)

= E
[
E
[
π(a | Xt)− πt(a | Xt,Ωt−1)

π(a | Xt)πt(a | Xt,Ωt−1)
(Yt(a)− f(a,Xt))

2
∣∣∣ Xt,Ωt−1

] ∣∣∣ Ωt−1

]
+ oP(1) (21)

= E
[
π(a | Xt)− πt(a | Xt,Ωt−1)

π(a | Xt)πt(a | Xt,Ωt−1)
E
[
(Yt(a)− f(a,Xt))

2
∣∣∣ Xt,Ωt−1

] ∣∣∣ Ωt−1

]
+ oP(1) (22)

≤ C1C2ktEt−1 [π(a | Xt)− πt(a | Xt,Ωt−1)] + oP(1) = oP(1). (23)

Equation (21) follows from the law of total expectation. In equation (22) πt(a | Xt,Ωt−1) given Xt

and Ωt−1 is constant, and can be moved out of the inner expectation, away from (Yt(a)−f(a,Xt))
2.

The bound (23) then utilizes our policy truncation and our assumption that 1
π is uniformly bounded

by C1. We are able to bound the denominator with a constant, and move this constant outside of
the expectation. Simultaneously, we note that the inner expectation is by definition v(a, x). By
assumption, v(a, x) is bounded uniformly by C2 < ∞. The bound 23 reduces to oP(1), since
convergence in ℓ2 implies convergence in ℓ1, and the Lemma is proved.

B.2. Proof of Lemma 9

We look to prove that

2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
= oP(1).

For simplicity, we temporarily ignore the constant. Continuing,

Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
= Et−1

[(
f(1, Xt)− f̂t−1(1, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
(24)

+ Et−1
[(
f(0, Xt)− f̂(0, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
≤

√
Et−1

[(
f(1, Xt)− f̂t−1(1, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

(25)

+

√
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]
,

where equation (24) separates terms from different treatments and utilizes the linearity of expec-
tation. Bound (25) then follows from applying the Cauchy-Schwarz inequality. We conclude by
showing√

Et−1

[(
f(1, Xt)− f̂t−1(1, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

+

√
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

= ∥f̂ − f∥2
√

Et−1
[
(f(1, Xt)− f(0, Xt)− θ0)

2
]
+ ∥f̂ − f∥2

√
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]
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= oP(1).

Using norm notation and applying the assumption of convergence of regression in ℓ2-norm, conver-
gence is established, and the lemma is proved.

B.3. Proof of Lemma 10

We wish to prove that

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= oP(1).

We begin by expanding this term,

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= Et−1

[((
f̂(1, Xt)− f̂(0, Xt)− θ0

)
+ (f(1, Xt)− f(0, Xt)− θ0)

)
(26)

×
((
f̂(1, Xt)− f̂(0, Xt)− θ0

)
− (f(1, Xt)− f(0, Xt)− θ0)

)]

= Et−1

[(
(f̂(1, Xt) + f(1, Xt))− (f(0, Xt) + f̂(0, Xt))− 2θ0

)
(27)

×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
.

Equation (26) arises from the fact that a2− b2 = (a+ b)(a− b) for real numbers a, b. Equation (27)
then collapses θ0 to a single term. We now add and subtract f(1, Xt) and f(0, Xt) to the first term
of equation (27), giving

Et−1

[(
(f̂(1, Xt) + f(1, Xt))− (f(0, Xt) + f̂(0, Xt))− 2θ0

)
×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]

= Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt)) + 2 (f(1, Xt)− f(0, Xt)− θ0)

)
(28)

×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
.

Equation (28) completes this step, and rearranges terms so that we may use the assumption of
convergence of regression.
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Next, distributing the second term in equation (28), along with the use of the linearity of expec-
tation gives

Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt)) + 2 (f(1, Xt)− f(0, Xt)− θ0)

)
×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]

= Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt))

)2 ]

+ 2Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
.

(29)

The first term in equation (29) converges in probability by assumption. For the second term, we
distribute f(1, Xt)− f(0, Xt)− θ0) yielding

Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt))

)2 ]
(30)

+ 2Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))
= Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(1, Xt)− f̂(1, Xt)

)]
(31)

+ Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(0, Xt)− f̂(0, Xt)

)]
+ oP(1). (32)

Applying the Cauchy-Schwarz inequality to each term in equation (32) gives

Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(1, Xt)− f̂(1, Xt)

)]
(33)

+ Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(0, Xt)− f̂(0, Xt)

)]
+ oP(1)

≤

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
Et−1

[(
f(1, Xt)− f̂(1, Xt)

)2]
(34)

+

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
+ oP(1)

=

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
∥f̂ − f∥2 (35)

+

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
∥f̂ − f∥2 + oP(1).

Equation (35) follows from the bound (34) by definition. Since ∥f̂−f∥2 = oP(1), Equation (35)
reduces to oP(1), and the lemma is proved.
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Appendix C. Proof of Theorem 4

C.1. Proof Outline

The proof adapts the proof of Waudby-Smith et al. (2024, Theorem 1) to our problem setting. The
only departure in our proof is that our parameter space and (λt)

T
t=1 are not strictly non-negative.

We include this proof to demonstrate how our bounds on λt originate as well as showing how our
proof does not make use of the mirroring technique to form a (1 − α)-upper CS. Although these
adjustments are immediate and obvious to those familiar with the anytime-valid inference literature,
we include this proof for completeness. We begin by stating and proving a lemma that demonstrates
how to construct an arbitrary (1 − α) Betting-CS for our problem setting. We then construct a
Hedged-CS, where we specify the capital process, the convex combination, relevant user-specified
parameters and invoke our adapted lemma.

C.2. Constructing a (1− α) Betting-CS

Lemma 11 Assume we observe data following the data generating process of Section 2.1. Assume
that Yt ∈ [0, 1] ∀t ∈ 1, . . . , T. Suppose that πt(1 | Xt,Ωt−1) ∈ [ 1kt , 1 − 1

kt
] for all t ∈ 1, . . . , T,

then

CBetting
T :=

⋂
t≤T

{
θ
′ ∈ [−1, 1] :

T∏
t=1

(
1 + λt(θ

′
)(ht − θ

′
)
)
<

1

α

}
,

forms a (1− α) CS for θ0, where λt is a predictable sequence.

Proof Note that πt(a | Xt,Ωt−1) ∈ [ 1kt , 1 −
1
kt
] and consequently ht ∈ [−kt, kt]. Inspired by the

truncation technique used by (Waudby-Smith et al., 2024, Theorem 1), we show that MT (θ0) in
Equation (36) is a test martingale,

MT (θ0) :=
T∏
t=1

(1 + λt(θ0)(ht − θ0)) . (36)

For MT (θ0) to be a test martingale, we must show M0(θ0) = 1, {MT (θ0)}Tt=1 is non-negative, and
that ET−1 (MT (θ0)) =MT−1(θ0).

MT (θ0) is non-negative if (1 + λt(θ0)(ht − θ0)) > 0 ∀t ∈ 1, . . . , T . Waudby-Smith and Ram-
das (2023) state this condition in their Proposition 3 as requiring λt(θ0) (ht − θ0) > −1. Consider
the case when (ht − θ0) < 0. We have that

1 + λt(θ0)(ht − θ0) ≥ 1 + λt(θ0)(−kt − θ0).

In this case, λt(θ0) ∈ (−∞, 1
kt+θ0

) will give

1 + λt(θ0)(−kt − θ0) > 1 +
−kt − θ0
kt + θ0

= 0.

Next consider when (ht−θ0) > 0, then setting λt(θ0) ∈
(

−1
kt+θ0

)
guarantees λt(θ0)(ht−θ0) >

−1. Taking the union of these sets gives λt(θ0) ∈
(

−1
kt−θ0

, 1
kt+θ0

)
, and we conclude that MT (θ0) is

non-negative.
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Next, we check the condition on the conditional expectation,

ET−1 (MT (θ0)) = ET−1 (MT−1(θ0)× (1 + λT (θ0)(hT − θ0))

=MT−1(θ0)(1 + λT (θ0)ET−1(hT − θ0)

=MT−1(θ0)(1 + λT (θ0)× 0) =MT−1(θ0).

MT (θ0) is therefore a test martingale. By Ville’s inequality for non-negative supermartingales,

P
(
∃T ∈ N+,MT (θ0) ≥

1

α

)
≤ α.

It follows that the set

C
Betting
T :=

{
θ
′ ∈ [−1, 1] :

T∏
t=1

(
1 + λt(θ

′
)(ht − θ

′
)
)
<

1

α

}
,

forms a (1− α) confidence set.

C.3. Hedged-CS

Following suggested values from Waudby-Smith and Ramdas (2023), we set

λt =

√
2 log(2/α)

σ̂2t−1t log(1 + t)
∧ c, where c = 0.5, (37)

θ̂t =
1
2 +

∑t−1
i=1 hi

t
,

σ̂2t =
1
4 +

∑t
i=1(hi − θ̂)2

t
.

We define

K+
T (θ

′) :=

T∏
t=1

(1 + λt(θ
′)(ht − θ′)), K−

T (θ
′) :=

T∏
t=1

(1− λt(θ
′)(ht − θ′)),

MT (θ
′) := mK+

T (θ
′) + (1−m)K−

T (θ
′),

where m = 0.5 (in general, m ∈ [0, 1]). Letting λt(θ′) = λt as defined in Equation (37), and
truncated to fall within

(
−1

kt−θ′ ,
1

kt+θ′

)
, both K+

T (θ
′) and K−

T (θ
′) are test martingales when θ′ = θ0.

It follows that MT (θ
′) is also a test martingale when θ′ = θ0 (Waudby-Smith and Ramdas, 2023,

Theorem 3). By Lemma 11,

C
Hedged
T :=

⋂
t≤T

{
θ
′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
,

forms a valid (1− α)-CS. We now focus computing CHedged
T .
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If λt does not depend on θ
′

(apart from truncating the domain), Waudby-Smith and Ramdas
(2023) show that, empirically, CHedged

T forms an interval at each time T . We can then search over a
grid of possible values of θ

′ ∈ [−1, 1], and set lower and upper bounds as

L
Hedged
T = sup

t∈{1,...,T}
inf
T

{
θ
′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
,

U
Hedged
T = inf

t∈{1,...,T}
sup
T

{
θ
′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
.

As a result, [LHedged
T , U

Hedged
T ] forms a (1− α)-CS for θ0.

Appendix D. Proof of Theorem 5

Proof Note that ξt − ξ̂t−1 > −1. Given this fact, Waudby-Smith et al. (2024, Lemma 1) show that
the process

MT = exp

{
T∑
t=1

λt

(
ξt −

θ0
kt + 1

)
−

T∑
t=1

(
ξt − ξ̂t−1

)2
ψE(λt)

}
, (38)

is a test supermartingale. Using Ville’s inequality, they invert Mt to form a (1 − α)-lower CS. We
define an (1−α)-Upper CS by defining ξt = −ht

kt+1 , and apply a union bound, which gives the result.

Appendix E. Proof of Theorem 6

Proof Outline (ht)
T
t=1 is recognized to be a sequence of random variables with conditional mean

θ0 and conditional variance σ2. This allows us to invoke Theorem 2.5 from Waudby-Smith et al.
(2023). In order to do so, we must verify three assumptions.

Assumption 1 (Cumulative variance diverges almost surely) This assumption is satisfied in
Appendix A where we establish that the average conditional variance of zt (which equals the average
conditional variance of ht) does not vanish. It follows that their sum diverges.

Assumption 2 (Lindeberg-type uniform integrability) We mush show that there exists some
0 < κ < 1 such that

∞∑
t=1

E
[
(ht − θ0)

2
1
(
(ht − θ0)

2 > V κ
t

)
| Ωt−1

]
V κ
t

<∞ almost surely,

where Vt =
∑t

i=1 σ
2
i .

As is noted in Waudby-Smith et al. (2023), this equation is satisfied if 1/K ≤ E |ht−θ0|q < K
a.s. for all t ≥ 1 and for some constant K > 0. Without loss of generality, assume q = 2 + δ. We
have that

E|ht − θ0|q ≤ E(|ht|q) + E(|θ0|q).

Note that E(|ht|q) ∝ E(|Yt|q) <∞. Then pick K∗ = K + E(|ht|q) and the condition holds.
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Assumption 3 (Consistent variance estimation) We must show that the estimator, σ̂2t , of σ̃2t
satisfies

σ̂2t
σ̃2t

a.s.−−→ 1.

Our estimator is the sample average of the variances estimated thus far. We note that zt is
a square-integrable MDS. Hence, we utilize the Strong Law of Large Numbers for a MDS, and
we can establish that the sample average of the squared deviations converges almost surely to the
variance of zt. We establish that σ̂2(zt) = σ̂2(ht) by showing

σ̂2(zt) =
1

T

T∑
t=1

(zt − z̄t)
2

=
1

T

T∑
t=1

(
ht − θ0 −

1

T

T∑
t=1

(ht − θ0)

)2

=
1

T

T∑
t=1

(
ht − θ0 + θ0 − h̄T

)2
= σ̂2(ht).

By the SLLN, σ̂2(ht) = σ̂2(zt)
a.s.−−→ Var(zt) = Var(ht).

Appendix F. Implementation Details

F.1. Performance Metrics

We explicitly define “Cumulative Error Probability” and “Power”, the performance metrics shown
in Figures 2, 4, and 5. These are both functions of the sample size.

At time T , the Cumulative Error Probability (Error) is defined as

Error(T ) := P(∃t ∈ {50, . . . , T} s.t. θ0 ̸∈ [Lt, Ut]).

We can empirically estimate this probability over 1000 repetitions of our simulation. For each
iteration, we construct confidence sets at each time. We denote the confidence set at time T for
iteration i as [Li,T , Ui,T ]. We define our estimate as

Êrror(T ) :=
1

1000

1000∑
i=1

1[∃t ∈ {50, . . . , T} s.t. θ0 ̸∈ [Li,t, Ui,t]].

In Figure 2, we denote the null hypothesis as θH0 = 0. At time T , we denote the power as

Power(T ) := P(∃t ∈ {50, . . . , T} s.t. θH0 ̸∈ [Lt, Ut]).

Our empirical estimate of this function is

P̂ower(T ) :=
1

1000

1000∑
i=1

1[∃t ∈ {50, . . . , T} s.t. θH0 ̸∈ [Li,t, Ui,t]].
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F.2. θ̂A2IPW T-Statistic

In Section 2.3, Theorem 2 gives an asymptotic distribution for the θ̂A2IPW estimator which depends
on σ2. In practice, we typically do not have access to σ2 and we must estimate this quantity, denoted
as σ̂2. With σ̂2

p−→ σ2, we may invoke Slutsky’s Theorem, and use σ̂2 in place of σ2. Similarly to
Kato et al. (2021), we call this our t-statistic,

√
T (θ̂A2IPW − θ0)

σ̂2
d−→ N(0, 1).

In Assumption 3 of Appendix E, we show that our variance estimator converges almost surely,
implying convergence in probability. Our asymptotic CI is

CT := h̄t ± z1−α
2

σ̂2√
T
,

where σ̂2 = 1
T

∑T
t=1

(
ht − h̄T

)2
.

F.3. Bernoulli Outcome Simulation

In Section 4.1 and Figure 2 plots (a) and (b), we simulate (Xt, At, Yt)
T=5000
t=1 , where

Xt ∼ N([03], I3),

βT =
[
−2,−3, 5

]
,

πt =

( √
v̂t−1(1,Xt)√

v̂t−1(1,Xt) +
√
v̂t−1(0,Xt)

)
,

kt =
kt−1

.999
, k1 = 2 if method not Kato, else kt = 5,

At ∼ Bernoulli
((

πt ∨
1

kt

)
∧ (1− 1

kt
)

)
,

pt = 0.9× logit (0.5 +Xtβ) + 0.1At,

Yt ∼ Bernoulli (p = pt) .

With the data generating process above, θ0 = 0.1. We ran two separate simulations, where one
used k-Nearest Neighbors Regressor (kNN) and the other used Random Forest Regressor (RF) for
f̂ and ê. We employ sample-splitting and cross-fitting in an effort to avoid over fitting. For the first
50 samples, we let πt(1 | Xt,Ωt− 1) = 0.5 while sufficient samples are collected to give reliable
regression estimates. For the regression estimates used in ht, we use sample means conditioned on
At until t = 50. We ran 1000 iterations using the DGP above, results for the simulation when RF is
used are shown in Figure 2. We provide results for the simulation using kNN in Figure 4.
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Figure 4: Utilizing a kNN regressor for the protocol used in Figure 2. The policy used for Pr-PI is
modified to be truncated within [0.2, 0.8].

F.4. Bounded Continuous Outcomes Simulation

We now consider simulations with a continuous response, as described in Section 4.2 and shown in
Figure 2, plots (c) and (d). Data was simulated as

Xi ∼ Uniform(0, 1), for i ∈ {1, 2, 3},

πt =

( √
v̂t−1(1,Xt)√

v̂t−1(1,Xt) +
√
v̂t−1(0,Xt)

)
,

kt =
kt−1

.999
, k1 = 2 if method not Kato, else kt = 5,

At ∼ Bernoulli
((

πt ∨
1

kt

)
∧ (1− 1

kt
)

)
,

βT = [−0.04,−0.01, 0.05],

ϵ0 ∼ Uniform(−0.05, 0.05, )

Y0 = 0.4 +Xβ + ϵ0,

ϵ1 ∼ Uniform(−4.5Xβ, 4.5Xβ),

Y1 = 0.4 +Xβ + θ0 + ϵ1.

In our simulations we set θ0 = 0.1. Again, we use kNN and random forest (RF) regressors to
estimate f̂ and ê. Similarly, we employ sample-splitting and cross-fitting. For the first 50 samples,
we again let πt(1 | Xt,Ωt− 1) = 0.5. For the regression estimates used in ht, we use sample
means conditioned on At until t = 50. We ran 1000 iterations using the DGP above, results for the
simulation when RF is used are shown in Figure 2. We provide results for the simulation using kNN
in Figure 5.
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Figure 5: Results for simulation described in Appendix F.4 using a k-Nearest Neighbor regressor.

Figure 6: Power curves for AsympCSs constructed using different values of ρ. Curves are based on
256 iterations of the simulation setup described in Appendix F.3.
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F.5. Effect of Truncation on Inference

Although the modifications made to the DGP in Appendix F.3 are only minor made to the simulation
described in Section 4.3 and shown in Figure 3, we provide an explicit DGP for completeness. We
assume that we have oracle access to v, allowing us to calculate πAIPW. We set kt to be a constant.
The DGP is

Xt ∼ N([03], I3),

βT =
[
−2,−3, 5

]
,

πt =

( √
v(1,Xt)√

v(1,Xt) +
√
v(0,Xt)

)
,

kt =
1

πt,min
,

At ∼ Bernoulli
((

πt ∨
1

kt

)
∧ (1− 1

kt
)

)
,

pt = 0.1× logit (0.5 +Xtβ) + 0.4At,

Yt ∼ Bernoulli (p = pt) .

F.6. Selecting ρ for an AsympCS

When constructing an AsympCS, the analyst must select a value for ρ. If the analyst wishes to
minimize width of the interval produced at a specific sample size, T , then the analyst can accomplish
this by setting

ρ =

√
−2 logα+ log(−2 logα+ 1)

T
.

In practice, the analyst may not have prior knowledge of the effect size magnitude or may not know
how long the experiment could last. In this case, it may not be clear for which T ρ should be tuned
to. In our simulations we begin constructing CSs at a sample size of T = 50. For the sake of
simplicity in presentation, we chose to set ρ = 0.5 across all experiments. Setting ρ = 0.5 yields
an AsympCS with tight intervals approximately at the start of inference. To understand the effect of
setting ρ = 0.5 on the performance of the AsympCS, we performed 256 iterations of the Bernoulli
outcome simulation described in Appendix F.3 while varying ρ. We found that setting ρ = 0.5
for this scenario is a reasonable choice and the resulting AsympCS produces intervals with widths
that allow for high power early in the experiment. Figure 6 shows power curves of the AsympCSs
constructed using different levels of ρ.
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