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Abstract
Synthetic control (SC) methods have gained rapid popularity in economics recently, where they
have been applied in the context of inferring the effects of treatments on standard continuous out-
comes assuming linear input-output relations. In medical applications, conversely, survival out-
comes are often of primary interest, a setup in which both commonly assumed data-generating pro-
cesses (DGPs) and target parameters are different. In this paper, we therefore investigate whether
and when SCs could serve as an alternative to matching methods in survival analyses. We find
that, because SCs rely on a linearity assumption, they will generally be biased for the true expected
survival time in commonly assumed survival DGPs – even when taking into account the possibility
of linearity on another scale as in accelerated failure time models. Additionally, we find that, be-
cause SC units follow distributions with lower variance than real control units, summaries of their
distributions, such as survival curves, will be biased for the parameters of interest in many survival
analyses. Nonetheless, we also highlight that using SCs can still improve upon matching whenever
the biases described above are outweighed by extrapolation biases exhibited by imperfect matches,
and investigate the use of regularization to trade off the shortcomings of both approaches.
Keywords: Synthetic control methods, Matching, Survival analysis, Synthetic control group

1. Introduction

The availability of a suitable control group for evaluating the effectiveness of a treatment, policy or
other intervention is the backbone of empirical causal inference. Consider the common scenario in
which an analyst has access to a small sample of treated instances – e.g. a single state that experi-
enced a policy shock in economic applications, or a small group that received a novel treatment in an
early stage clinical trial – as well as to a much larger observational sample of potential controls that
did not experience the intervention of interest (Rosenbaum and Rubin, 1985b). A popular approach
to use such observational samples to create a control group tailored to the treated group at hand has
been to rely on matching (Rubin, 1973; Stuart, 2010): pairing each treated unit with the closest con-
trol unit in terms of (a summary of) its observed characteristics. While an intuitively appealing ap-
proach, success requires close matches for all units (Rosenbaum and Rubin, 1985a), which becomes
challenging when the dimensionality of characteristics grows only moderately large (Stuart, 2010).
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As an alternative to matching, synthetic control (SC) methods (Abadie and Gardeazabal, 2003;
Abadie et al., 2010; Abadie, 2021) have gained rapid popularity in the economic policy evaluation
literature recently (Athey and Imbens, 2017). These methods, instead of matching to a single real
control unit, construct synthetic units that are a weighted average of multiple existing control units,
and as such may be able to match the pre-treatment characteristics of the treated units much more
closely. Importantly, the literature on these methods has, to the best of our knowledge, focused
exclusively on continuous outcomes assumed linear in inputs – such as GDP per capita (Abadie and
Gardeazabal, 2003; Pinotti, 2015), consumption (Abadie et al., 2010), crime rates (Donohue et al.,
2019; Cunningham and Shah, 2018) or stock returns (Acemoglu et al., 2016) – because these are
usually of primary interest in economic applications.

The outcome of interest in many medical applications, on the other hand, is a so-called time-
to-event or survival outcome (Austin and Stuart, 2015), which measures the time elapsed until oc-
currence of an event (for example, disease progression, an adverse side-effect, or even death). Such
survival outcomes are often assumed to follow different data-generating processes (DGPs) than stan-
dard continuous outcomes – instead of linear relationships between characteristics and outcomes
directly, relationships are assumed to be more likely on the log-time scale (as in accelerated failure
time models (Wei, 1992)) or log-hazard scale (as in proportional hazards models (Cox, 1972)). Fur-
ther, the target parameters of interest in survival analyses are often also different: instead of only
considering differences in expected average survival times due to treatment, other summaries of the
survival distribution, relating to the difference of survival curves or ratios of hazards, are of primary
interest in many medical studies (Clark et al., 2003).

Contributions. In this paper, we investigate whether and when synthetic controls could serve
as an alternative to matching methods in applications where time-to-event outcomes are of interest;
to the best of our knowledge, this is the first work to consider this question. Through our theoretical
investigation, we discover multiple obstacles that prohibit the desirable properties that SCs exhibit
for standard outcomes to carry over smoothly to the survival context. In particular, we come across
two main obstacles: we find that (i) in commonly assumed survival DGPs, SCs will generally be
biased for the true expected survival time (even when taking into account the possibility of linearity
on another scale in accelerated failure time models) [Section 4] and (ii) even if they were unbiased
for the mean survival time, SCs follow distributions with lower variance than real control units –
which is why other summaries of their distribution, such as survival curves, will usually be biased
for the true parameters [Section 5]. Nonetheless, we also show that using SCs can still improve
upon the use of matching whenever the biases incurred above are outweighed by extrapolation
biases exhibited by imperfect matches. Finally, we therefore investigate the use of regularization
schemes trading off the shortcomings of both approaches [Section 6] and illustrate how some of the
theoretical arguments translate to real data [Section 7].

Remark: Note that the goal of this paper is not to promote the use of any specific method, but
rather to start a discussion on the general applicability of SC-inspired methods in survival analyses
due to their importance in medicine. As such, we present first analyses and illustrations of problems
arising in this context, with the hope of encouraging future methodological work in this space.

2. Background: Synthetic Control in the standard outcome setting

Assume a single individual with pre-treatment characteristics X∗ ∈ Rd is exposed to a treatment
A∗ = 1, and we observe their outcome Y∗(1) ∈ R; this is the so-called treated unit. We also have
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access to characteristics Xj and outcomes Yj(0) ∈ R of m individuals that were not exposed to
treatment (Aj = 0); this is the pool of control units at our disposal. The aim of synthetic control
methods is to infer the effect of the treatment by comparing the treated outcome Y∗(1) to that of a
synthetic control unit Ŷ SC

∗ for the treated unit – capturing what would have happened to the treated
unit had they not been exposed to treatment, i.e. what would have been their potential outcome
Y∗(0). Such synthetic controls (SCs) are constructed from the outcomes from the control group as
a weighted average

Ŷ SC
∗ =

∑m
j=1wjYj(0) (1)

where 0 ≤ wj ≤ 1 and
∑m

j=1wj = 1, with the goal that this synthetic control unit approximates the
expected outcome without treatment, µ0(x) = E[Y (0)|X = x], well, i.e. that E[Ŷ SC

∗ ] ≈ µ0(X∗).
The canonical synthetic control method (Abadie and Gardeazabal, 2003; Abadie et al., 2010;

Abadie, 2021) aims to reconstruct the pre-treatment characteristics of the treated units perfectly, i.e.
to choose w = (w1, . . . , wm) such that

∑m
j=1wjXj = X∗. As this solution is not always part of

the convex hull of observed controls (or even feasible at all), they instead solve

argminw ||X∗ −
∑m

j=1wjXj ||2 subject to 0 ≤ wj ≤ 1,
∑m

j=1wj = 1 (2)

Throughout, we will refer to synthetic controls that fulfill
∑m

j=1wjXj = X∗ exactly as perfect.
Underlying assumptions. Under a selection on observables assumption ensuring Y (0) |= A|X

and an overlap assumption ensuring that X|A = 1 is contained in the support of X|A = 0, the
expected untreated outcome is identified and can be estimated using estimators of the form (1), as
discussed in e.g. Kellogg et al. (2021)1. Then, the SC approach of Eq. (2) is well-motivated in
settings where µ0(x) is linear in x, because then2 we have (for perfect synthetic control units) that

E[Ŷ SC
∗ ] =

∑m
j=1wjE[Yj(0)|Xj ] =

∑m
j=1wjµ0(Xj) = µ0(

∑m
j=1wjXj) = µ0(X∗) (3)

Clearly, Eq. (3) holds for linear models Yi(0) = Xiβ + ϵ with mean-zero independent errors ϵ.
Further, Abadie et al. (2010) show that when X includes pre-treatment outcomes, Eq. (3) also holds
for linear factor models allowing for some shared unobserved factors in the DGP3.

Alternative: Nearest neighbor matching. A matching estimator can also be written in the
form of Eq. (1), but assigns all weight to a single unit j∗ satisfying argminj∈[m] ||X∗ −Xj || – i.e.
the control unit that is X∗’s nearest neighbor (NN) in terms of observed characteristics (sometimes
also coarsened summaries thereof, e.g. the propensity score (Rosenbaum and Rubin, 1985b)). This
outputs Ŷ match

∗ = Yj∗(0) =
∑m

j=1wjYj(0) with wj∗ = 1 and wj = 0 for j ̸= j∗. Unless there is a
perfect match among the control units, we will have that ||X∗ −Xj∗ || > 0 and therefore matching
estimators will have to extrapolate. In the case of a linear model for a continuous outcome, they
would thus incur bias (X∗−Xj∗)β directly proportional to the distance to the match in input space.

3. Problem setup: Survival outcomes and analyses

To consider how SC methods could be applied in the survival context in the remainder of the paper,
we first introduce the problem setup of interest. Survival analyses are concerned with modelling

1. Recent work (Shi et al., 2021, 2022; Zeitler et al., 2023) also investigates other identification assumptions for SCs.
2. Shi et al. (2022) show that linearity assumptions can sometimes be circumvented by instead assuming a more fine-

grained model, which, as we discuss in detail in Appendix A, is not applicable in the survival setting we study.
3. The fact that the inclusion of pre-treatment outcomes could correct for some forms of unobserved confounding in

this way may be a major contributing factor to the popularity of SC methods in economics.
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time-to-event outcomes – this could be the time T elapsed until death, disease progression or another
adverse event occurs. In addition to estimating standard quantities like the expected potential time
T (A) until an event occurs under assignment of different treatments A and given different patient
characteristics X (i.e. estimating µa(x) = E[T (a)|X = x]), survival analyses are often interested
in modelling quantities capturing more of the distribution of survival times (e.g. contrasts of the
survival functions Sa(t;x) = P(T (a) > t|X = x) or hazard functions ha(t;x) = P(T (a) =
t|T (a) ≥ t,X = x)) to assess the effects of treatments in this context.

Assumptions. As in the standard setup discussed above, we assume we have access to a control
sample {Xj , Tj(0)}mj=1 (having received treatment Aj = 0), and rely on the overlap assumption and
an unconfoundedness assumption (ensuring here that T (0) |= A|X). Further, we restrict our focus
to control time-to-event outcomes generated from commonly considered accelerated failure time
(AFT) models which assume event times are generated from models of the form

log Ti(0) = Xiβ + ϵi (4)

where the ϵi are i.i.d. random variables generated from some common distribution (Wei, 1992)
that then determines the shape of survival functions. A log-normal AFT has ϵi ∼N (0, σ2); other
popular distributions for ϵi include the logistic distribution and extreme-value distributions, which
encompass also the Weibull survival model as a special case.

Remark: Censored outcomes. In survival analyses, observations are often censored (i.e. lost to
follow-up) before any event can be observed. Then, we would only observe T−= min(T,C) the
smaller of event time T and censoring time C. For ease of exposition, we disregard censoring in the
discussion below. Under the standard, commonly adopted, censoring-at-random (CAR) assumption
(van der Laan and Robins, 2003), which requires that censoring and event times are independent
when conditioning on observed covariates X and treatment A (or equivalently, that censoring time C
is not correlated with the noise term ϵ in Eq. (4)), the discussion below also directly applies to anal-
yses with censored data, where SC units can then be constructed from uncensored controls only4.

Remark: Absence of repeated outcomes. Unlike economic applications where outcomes are
often recorded in repeated panel data structures, outcomes in survival analyses are often terminal
(e.g. time to death). Therefore, X would usually not include pre-treatment outcomes in the survival
context, and hence SCs cannot account for unobserved factors in the same way they are sometimes
assumed to in economic panel models. Note, however, that much of the recent methodological
literature on SC methods (Abadie and L’hour, 2021; Kellogg et al., 2021) considers a general setup
identical to ours, differing only in what kind of information could (not) be included in X in spirit.

4. Obstacles for Synthetic Controls in Survival Analyses (Part 1): Nonlinearity and
biases in estimating expected survival time

In this section, we begin our investigation by considering which biases arise in the canonical syn-
thetic control problem of estimating expected outcomes for a single treated unit X∗ as a consequence

4. To see why this is true, let δ = 1{C < T} be a binary indicator for whether an individual‘s survival time was
observed; if δ = 0 their time was censored. Then, we can construct synthetic control units from only uncensored
control units and write them as T̂SC,δ=1

∗ =
∑m

j=1 w
δ
jT

−
j where wδ

j = 0 for all δj = 0. Note that the CAR
assumption implies that E[T (0)|X = x, δ = 0] = E[T (0)|X = x, δ = 1] = E[T (0)|X = x] = µ0(X), thus
we will have that E[T̂SC,δ=1] =

∑
j:δj=1 w

δ
jE[T (0)|X = Xj , δ = 1] =

∑
j:δj=1 w

δ
jµ0(Xj). Thus, also in the

presence of CAR-censoring, the bias of our synthetic control estimate is determined by the quality of the synthetic
match (i.e. the distance of

∑
j:δj=1 w

δ
jXj from X∗) and the linearity of µ0(x), as in the absence of censoring.
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(a) Interpolation bias is high on the non-
linear part of the exponential.

(b) Interpolation bias is negligible on the
approximately linear part of the ex-
ponential.

Figure 1: Stylized illustration of interpolation and extrapolation biases using a noise-free AFT
model (T = exp(X)).

of switching from simple linear DGPs often assumed for outcomes in economics to time-to-event
outcomes generated from AFT models. We then consider issues relating to the distribution of syn-
thetic controls and targeting of other parameters of interest in Section 5.

4.1. Interpolation Biases of Synthetic Control in AFT models

The AFT assumption implies that Ti = exp(Xiβ + ϵ) – thus, even for perfect synthetic controls
there will likely be substantial bias as µ0(x) is not linear in x. Why is that? In the context of
standard continuous outcomes, Kellogg et al. (2021) noted that the bias of any estimators of the
form Eq. (1) can always be written as

µ0(X∗)−
∑m

j=1wjµ0(Xj) = [µ0(X∗)− µ0(
∑m

j=1wjXj)]︸ ︷︷ ︸
Extrapolation Bias

+ [µ0(
∑m

j=1wjXj)−
∑m

j=1wjµ0(Xj)]︸ ︷︷ ︸
Interpolation Bias

Further, Kellogg et al. (2021) highlight that synthetic control estimators minimize extrapolation
biases (as X∗ ≈

∑m
j=1wjXj), but might suffer from interpolation biases if µ0(

∑m
j=1wjXj) ̸=∑m

j=1wjµ0(Xj) – i.e. if µ0(x) is nonlinear in x. A matching estimator, conversely, which assigns
all weight to the single closest control unit j∗ and thus uses wj∗ = 1, will suffer from some extrap-
olation biases whenever there is no perfect match but has no interpolation bias by construction.

Can we quantify this interpolation bias of perfect synthetic controls in AFT models? Assume
the simplest setting where there is no noise, i.e. all ϵi = 0. Then, E[T∗(0)]−E[T̂SC

∗ ] = exp(X∗β)−∑m
j=1wj exp(Xjβ) ≤ 0 and synthetic controls will overestimate the expected outcome; this bias

will be substantial if the Xjβ > 1. This possibility for interpolation bias is also illustrated in Fig. 1,
where we see that the relative bias incurred due to interpolation versus extrapolation indeed depends
on where on the exponential the treated unit and the control units are located.

4.2. Does constructing synthetic controls on the log-time scale overcome this bias?

It is obvious that the source of interpolation bias here is a result of the AFT assumption: T is not
linear in X – but log(T ) is! It is thus a natural next step to consider whether we can exploit this
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assumption, and apply synthetic control weights to log-time instead. Indeed, for perfect synthetic
control weights we have that

̂log(T∗)
SC

=
∑m

j=1wj log(Tj(0)) =
∑m

j=1wj(Xjβ + ϵj) = X∗β +
∑m

j=1wjϵj (5)

and further, because the ϵj are i.i.d. by assumption and
∑m

j=1wj = 1

E[ ̂log(T∗)
SC

] = X∗β +
m∑
j=1

wjE[ϵj ] = X∗β + E[ϵ∗]
m∑
j=1

wj = X∗β + E[ϵ∗] = E[log(T∗(0)] (6)

Thus, under AFT assumptions, SCs can be used to obtain unbiased estimates of log-survival times.
Is this all we needed to make SCs fit for use in survival analyses? Unfortunately, no – unless log-

time is the outcome of interest! If, however, the quantity of interest is the time on the original scale,

we might be tempted to simply consider T̂∗
log−SC

= exp( ̂log(T∗)
SC

) = exp(
∑m

j=1wj log(Tj)).
Unfortunately, this will not necessarily lead to unbiased estimates of T∗(0) because for two random
variables A and B, E[A] = E[B] does not generally imply E[f(A)] = E[f(B)] for nonlinear
functions f . In particular, if we were to consider a simple log-normal AFT with log(Ti(0)) ∼
N (µi, σ

2), then E[Ti(0)] = exp(µi +
σ2

2 ) – thus matching the expected value µi of log-time alone
clearly is not enough. Instead, more of the distribution – in this case also the variance – of true
control units would need to be matched. Below, we thus investigate the distribution of synthetic
controls further and return to the question of the bias of T̂∗

log−SC
in Section 5.2.

5. Obstacles for Synthetic Controls in Survival Analyses (Part 2): Distributional
mismatches between synthetic & real controls and their consequences

Next, we consider the distribution of synthetic control units beyond just their mean. In Section 5.1,
we begin by highlighting that synthetic control units will generally have substantially lower variance
than real units. In Section 5.2, we show what this means for the bias of synthetic controls constructed
on log-scale (as discussed in Section 4.2 above). In Section 5.3 we then discuss how differences in
distribution between synthetic and real units will bias the estimation of survival curves.

5.1. Aside: On the variance of synthetic controls

Clearly, Eq. (6) can be generalized to any model in which an invertible transformation of f of the
random variable Yi follows a linear model f(Yi) = Xiβ + ϵi with independent error terms ϵi with
equal expected value E[ϵi] = µϵ: In any such model, for a perfect synthetic control unit

E[f̂(Y∗)
SC

] = E[
∑m

j=1wjf(Yj)] = X∗β + µϵ
∑m

j=1wj = E[f(Y∗)] (7)

Thus, the expected value can always be matched on the f -scale. What about the variance of
such perfect synthetic controls? As synthetic controls are simply weighted averages, it is easy to
see that, for independently generated homoskedastic error-terms with variance σ2

ϵ ,

Var(f̂(Y∗)
SC

) = Var(
∑m

j=1wjϵj) = σ2
ϵ

∑m
j=1w

2
j (8)

Further, because synthetic control weights are restricted to the convex hull of the data (thus all
0 ≤ wj ≤ 1 and

∑m
j=1wj = 1), we have that min(

∑m
j=1w

2
j ) = 1

m and max(
∑m

j=1w
2
j ) = 1,
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(a) σ = 0 (b) σ = 1 (c) σ = 2.5

Figure 2: Illustration of the effect of error variance on bias of different estimators for a log-
normal AFT with log(T ) = X + ϵ and ϵ ∼ N (0, σ).

which are attained at wj = 1
m (the sample average) and wj = 1{j = k} (for k the index of a

single control unit), respectively. Thus, Var(f̂(Y∗)
SC

) ≤ Var(f(Y∗)), and the variance of synthetic

control units f̂(Y∗)
SC

is strictly smaller than that of real outcomes f(Y∗) whenever there is more
than one contributor (which would generally be the case unless there is a perfect match for X∗ in
the control sample). Note that his observation holds generally for synthetic controls, including the
standard synthetic control setting where f is the identity function.

5.2. Bias of log-time synthetic controls for the expected survival time in log-normal AFT
models (ct’d from Section 4.2)

For the special case of log-normal AFT models, we can use Eq. (8) to deduce the bias of perfect

synthetic controls T̂∗
log−SC

= exp( ̂log(T∗)
SC

) constructed on log-scale. In particular, due to

the properties of the normal distribution, we know that ̂log(T∗)
SC

∼ N (µ∗, σ
2
ϵ

∑m
j=1w

2
j ), where

µ∗=E[log(T∗)]=X∗β + E[ϵ]. Therefore, using properties of log-normals, E[T̂∗
log−SC

]=exp(µ∗ +
σ2
ϵ
2

∑m
j=1w

2
j ), which is a biased estimator for T∗(0) whenever there is more than one contributor

because then
∑m

j=1w
2
j < 1 while the true expected value of T∗(0) is E[T∗(0)] = exp(µ∗ +

σ2
ϵ
2 ).5

The estimator T̂∗
log−SC

= exp( ̂log(T∗)
SC

) will thus generally underestimate the expected
(mean) survival time, and this bias will be more severe a) the larger the error variance is relative to
µ∗ (i.e. the lower the signal-to-noise ratio) and b) the more contributors there are (this is because∑m

j=1w
2
j becomes smaller as the wj become more uniform and less sparse). We illustrate the bias

induced by variance-mismatches for a simple log-normal AFT in Fig. 2.
In Fig. 2, we also observe that the relative performance of a nearest neighbor match and the

standard synthetic control is unaffected by the error variance, while the relative performance of
synthetic control constructed at log-time scale greatly deteriorates as the variance increases. Further
insight on this special case can therefore be gained by considering explicit expressions for the bias:

5. Note that, if time is assumed log-normal and σϵ can be estimated or is known, T̂ log−SC
∗ could therefore in principle

be debiased by multiplying it by a factor exp(σ2
ϵ/2)

exp(σ2
ϵ/2

∑m
j=1 wj)

. We do not investigate this avenue further because

usability of this specific debiased estimator in practice requires both i) availability of a perfect synthetic control unit
(as otherwise the mean µ∗ is also not matched) and ii) log-normality of the true time (as different AFT models would
require different correction factors depending on the underlying relationship between the distributions of log-time
and time), which is a very strong assumption and unlikely to hold in many applications.
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E[T∗(0)]− E[exp( ̂log(T∗)
SC

)] =

(
exp(σ

2

2 )− exp(
σ2

∑m
j=1 w

2
j

2 )

)
︸ ︷︷ ︸

always ≥0

exp(X∗β) (9)

E[T∗(0)]− E[T̂SC
∗ ] = exp(

σ2

2
)
(
exp(X∗β)−

∑m
j=1wj exp(Xjβ)

)
︸ ︷︷ ︸

always ≤0 as exp(·) is convex

(10)

E[T∗(0)]− E[T̂match
∗ ] = exp(

σ2

2
) (exp(X∗β)− exp(Xmatchβ))︸ ︷︷ ︸

≤≥0 depending on exponents

(11)

Thus, for log-normal AFTs, a standard synthetic control estimator will overestimate the ex-
pected time while a synthetic control constructed at log-time scale will underestimate the expected
time. Further, the relative performance of standard synthetic control and matching is determined
by the distance of the individual selected control units from the treated unit X∗, while the bias of a
(perfect) synthetic control constructed at log-time scale is entirely driven by differences in variance
due to multiple contributors. More generally, regardless of whether T (0) actually follows any AFT

model, we always have T̂∗
log−SC

=exp(
∑m

j=1wj log(Tj(0))) ≤ exp(log
∑m

j=1wj(Tj(0))) = T̂SC
∗

because of concavity of the log. That is, a log-time synthetic control will always output an estimate
of time that is lower than the standard synthetic control estimate.

Remark: Over- vs underestimation. Comparing standard and log-time synthetic controls, a
natural question that arises is thus whether one would prefer an estimator that overestimates or one
that underestimates expected survival time. While neither is ideal, the answer may be application-
dependent: if the observational bias one is trying to correct for is that the control sample overall has
lower outcomes already (e.g. because less healthy individuals are less likely to receive a promising
yet invasive treatment), using an estimator that may systematically underestimate time will likely
exacerbate this bias and may therefore be less desirable (and vice versa).

5.3. Bias in survival curve estimation

Finally, we now consider biases in estimating other summaries of the survival distribution for a
control sample – e.g. marginal survival curves S0(t) = P(T∗(0) > t) (marginalised over the distri-
bution of covariates X∗ among the treated). To do so, we move beyond finding matches for single
units and consider creation of an entire synthetic control group by creating individual synthetic
control units for the outcomes Tk∗(0) of an entire cohort of n treated units for which we have ac-
cess to {Xk∗, Tk∗(1)}nk=1. This setup is motivated by, for example, the problem of constructing a
virtual (external) control arm for a one-armed clinical trial (Thorlund et al., 2020; Mishra-Kalyani
et al., 2022), which is often tackled either by matching or by weighting observed control units in
downstream analyses. Here, we are therefore interested in understanding whether one could create
synthetic units to be used in such downstream analyses instead.

Exaggerated concentration around the mean survival time. To illustrate challenges with this
approach even in the simplest of settings, we now assume that time indeed follows a simple linear
model Ti(0) = Xiβ+ ϵi so that even standard synthetic control is unbiased for the expected (mean)
survival time. However, when the goal is to estimate entire survival functions from the constructed
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cohorts, the full implied distribution of survival times – and not just their means – matters. In partic-
ular, because – as we have shown in Section 5.1 – the variance of synthetic control units is smaller
than that of real units, the synthetic survival times will be too concentrated around their mean, which
means that survival curves constructed from such synthetic cohorts will likely both i) underestimate
the probability of early events (i.e. underestimate P (T∗(0) < t1) for t1 small) and ii) underesti-
mate the probability of surviving for long times (i.e. underestimate P (T∗(0) > t2) for t2 large).

Figure 3: Stylized illustration
of biases in survival
curve estimation.

We illustrate this for a very simple example in Fig. 3. We
revisit the stylized setup from the previous figures with x∗ = 2
and two control units x1 = 1.5 and x2 = 3 but let survival
time be linear T (0) = 3+x+ ϵ, ϵ ∼ N (0, 22) to illustrate that
issues arise even in this setting. We generate 1000 examples at
each datapoint, and can thus construct the survival curves from
1000 mutually independent nearest neighbor matches and syn-
thetic control units, respectively. Fig. 3 clearly illustrates the
anticipated issues with the survival curve of the synthetic con-
trol cohort (orange, dotted): while the mean of the true sur-
vival times (blue, solid) is matched well, the estimated survival
curve does not perform well for low and high survival times. The survival curve created through
matching (green, dashed), on the other hand, is shifted to the left due to imperfect matching but
captures the shape of the true survival curve well.

Dependence between synthetic control units. A final issue that arises once we move from indi-
vidual synthetic control units to constructing a full control group to be used in downstream analyses
is that – if some synthetic units share donors – they are no longer independent. In particular, for any
two synthetic control units we have

Cov(Ŷ SC
k∗ , Ŷ SC

l∗ ) = Cov(
∑m

j=1wjkYj(0),
∑m

j=1wjlYj(0)) = σ2
∑m

j=1wjkwjl (12)

Thus, the larger
∑m

j=1wjkwjl, the higher the correlation between synthetic control units, which
will also lead to underestimation of the spread of the survival distribution (as survival times will
be artificially close across units). Note that even matching estimators – which have only a single
contributor j that gets weight wjk = 1 (and hence do not underestimate the individual variance) –
can encounter this issue if matches are chosen with replacement (Stuart, 2010).

6. Towards Overcoming Obstacles: Penalizing deviations from real distributions

In the preceding sections, we highlighted that the use of synthetic controls for survival analyses can
lead to bias because their distribution will likely differ from real control units – depending on the
behaviour of the weight vectors wk = (w1k, . . . , wmk) for each synthetic unit k. Motivated by the
discussions above, it is therefore a natural next step to consider whether one can trade off the quality
of the synthetic match with implied deviations from the true distribution by penalizing the wk.

Here, we consider doing so by trading off the fit in input space (i.e. extrapolation bias) with
bias incurred due to artificially low variance of synthetic control units by maximising ||w∗||2 (or
equivalently, minimizing −||w∗||2) which maximises the variance of the synthetic control outcome.
For a single synthetic unit, this gives rise to the following penalized objective:

w∗ = argminw:0≤wi≤1,
∑

i wi=1 ||X∗ −
∑m

j=1wjXj ||2 − λvar||w||2 (13)
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Note that – because ||w∗||2 is maximised when all weight is given to a single donor unit – this
objective essentially interpolates between a perfect synthetic control (when λvar = 0) and a nearest
neighbor matching estimator (when λvar → ∞) at its extremes6. Because ||w∗||2 grows as weight
is assigned less uniformly, this objective may encourage more sparsity in the weights at intermediate
values – which, as a side effect, thus also leads to less interpolation bias. While we do not investigate
this further here, we note that if the goal was to also correct for (i.e. minimize) the covariance
between units, Eq. (12) suggests that this can be achieved by minimizing wT

k wl for l ̸= k, i.e.
adding a term +λcov

∑n
k=1

∑
l>k w

T
k wl, which will reduce overlap between donor units.

Remark: Initialisation. Whenever the size of the donor pool is large relative to the number
of features, the minimizer of the synthetic control objective will not necessarily be unique. In our
experiments (see Fig. 7), we found that initialising w at the nearest neighbor solution leads to much
better performance than initialising it with random donors; this initialisation scheme also naturally
encourages solutions with large ||w∗||2.

Remark: Hyperparameter choice. Hyperparameters in synthetic control methods are usually
chosen by cross-validation on i) pre-intervention outcomes of the treated or ii) post-intervention
outcomes of the untreated (Abadie and L’hour, 2021). In our context, where no pre-treatment out-
comes are available, only option ii) is feasible. We would thus suggest choosing hyperparameters
through performing cross-validation among the controls only by constructing synthetic control out-
comes for held-out out controls which can then be compared to their real outcomes. The used
validation metric should depend on the goal of the downstream analysis: this could either be pre-
diction metrics (e.g. the mean absolute error as in our experiments) if getting the individual survival
times right is of greater importance, or metrics capturing the realism of the distribution of survival
times (e.g. a Kolmogorov-Smirnov statistic as in our experiments) if that aligns better with the final
goal of the analysis.

7. Empirical illustrations

Figure 4: Kaplan-Meier Sur-
vival Curves by
Treatment.

Finally, we illustrate some of the theoretical discussion pre-
sented above on real data. We use the Rotterdam breast can-
cer dataset (Foekens et al., 2000; Royston and Altman, 2013)7,
which contains 2982 female breast cancer patients of the Rotter-
dam tumour bank. It provides information on patient character-
istics (age, menopausal status, tumor size, tumor differentiation
grades, number of positive lymph nodes, progesterone receptors
and estrogen receptors), information on treatment (whether hor-
mone therapy and/or chemotherapy was received) and informa-
tion on a survival outcome (the time from primary surgery to
death or censoring). We plot the marginal survival curves by treatment in Fig. 4. Throughout, we
focus on survival within the first 10 years to ensure sufficient samples with follow-up.

6. This behaviour is similar to the penalized objectives of Kellogg et al. (2021) and Abadie and L’hour (2021), which are
derived with the explicit goal of interpolating between nearest neighbor and synthetic control estimator and therefore
use a penalty term +λ

∑m
j=1 wj ||X∗−Xj ||2 instead of our term −λvar||w||2 that is motivated from concerns about

variance.
7. Retrieved from the R package survival (Therneau, 2023).
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7.1. Experiment 1: Evaluating relative performance through biased resampling of real data

In this section, we use the data of the n = 2091 patients that received neither treatment to eval-
uate the performance of the different approaches. Inspired by negative control outcome methods
(Lipsitch et al., 2010; Shi et al., 2020), we create biased subsets (“treatment groups”) of this data
and evaluate methods based on their ability to reduce bias that we induced ourselves in a setting
where we know there is no effect at all (all patients actually received the same treatment!). In par-
ticular, as we detail further in Appendix B, we sample a “target group” of size ≈ .05n with higher
expected survival time (estimated using a Cox model) than the average patient. While unadjusted
comparisons will thus find better survival in this target group compared to the remaining “controls”,
correctly adjusting for patient characteristics should lead to the conclusion that target and control
group have the same expected survival. Note that, because the remaining control donor pool is
still quite large, very close neighbors for most samples in the target group exist in the control pool.
To gain more interesting insights on the effects of inter-and extrapolation biases, we therefore also
investigate the performance of the different methods when we remove observations within δmin

average squared Euclidean distance across all features to any of the samples in the target group.

Figure 5: Illustrating censoring
bias. Kaplan-Meier
curves for δmin = 0.1.

• Handling censoring. Unlike the setup considered in the
preceding theoretical sections, there is censoring in the Rot-
terdam data. While this would not be problematic if the CAR
assumption was fulfilled, it seems that censoring is actually not
at random here, because longer times are naturally more likely
to be censored as follow-up is limited (indeed, only 50-70%
of individuals experience an event by 120 months). Construct-
ing matched survival curves from only uncensored individuals,
be it through matching or through synthetic control, therefore
leads to downward bias as we can see in Fig. 5. Instead, we
therefore apply the synthetic control weights to both the cen-
sored times T−

j = min(T,C) and the event indicators Ej = 1{T < C} and heuristically censor
synthetic control units with

∑m
j=1wjEj < 0.5. In Fig. 5 we observe that this clearly improves upon

using uncensored individuals only, so we use this approach throughout the section.

Figure 6: Illustrating differences in shapes of (Kaplan-
Meier) control survival curves.

• The shapes of survival curves.
In Fig. 6 we illustrate the effect of
the different approaches when used to
create marginal survival curves. We
make multiple interesting observa-
tions: First, when there are very close
matches in the control data (δmin =
0, left panel), all methods essentially
perform the same – this because there
are nearest neighbor matches that are
simultaneously an (almost) perfect synthetic control unit. When not (δmin = 0.1, right panel), we
observe that, as expected, standard SC tends to overestimate time more often while log-time SC
tends to underestimate. Also, both versions of SC result in survival curve shapes that are qualita-
tively less close to the target distribution in shape than matching – as expected, both SC distributions
underestimate the occurence of early events.
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Figure 7: SC Initialization
effects. Kaplan-
Meier curves for
δmin = 0.1.

• The effect of initialisation. In Fig. 7, we illustrate that this
effect is exacerbated when we change the initialisation scheme to
initialise SC with random weights: in this case, because solutions
are not unique, SC tends to converge to a solution with many more
contributors, so that survival times are indeed much too concen-
trated around their mean as expected. Throughout, we therefore
initialise SCs from the nearest neighbor (NN) match.

• Trade-off between performance in terms of time prediction
and survival curve estimation. In Fig. 8, we now compare SC and
matching more quantitatively in terms of (a) a metric for how close
the survival curve is to the target survival curve (we use the Komolgoriv-Smirnov (KS) statistic for
this) and (b) a metric capturing how close the individual predictions of survival time are (we use the
mean absolute error (MAE) of predicting the Restricted Mean Survival Time (RMST) for this). We
find that, as expected, NN matching does better at mimicking the survival curve shape – but SC can
do better at predicting the individual times. We also find that log-time SC does substantially worse
than standard SC here, which might be due to any of the following reasons: i) underestimation of
times exacerbates the exisiting observational bias here, ii) the signal-to-noise ratio might be low and
iii) the true survival time might not actually follow an AFT model.

• Effects of regularization. Finally, we investigate whether incorporating weight penalty λvar

can help with the observation above. In Fig. 8, we find that using small regularization penalties
indeed leads to control cohorts with properties between the extremes of NN matching and SC: they
perform better in terms of distribution metrics than SC, and better in terms of prediction metrics
than matching – but not as good as the best at either. This indicates that the best strategy to use
in practice depends on the objective: If getting the individual time predictions right is of most
importance and there are no close matches in the data, then one may want to rely on synthetic
control methods directly. If only the marginal distribution is of interest, then using matching alone
may suffice. If, however, a practitioner is interested in trading off the two objectives, then the use of
the regularization penalty can allow to find a place on the Pareto frontier between the two extremes.

(a) KS statistic (b) MAE of predicting RMST

Figure 8: Performance of different methods by δmin. Averaged over 20 experiments, 2SEs shaded.

7.2. Experiment 2: Exploratory analyses of different treatment groups in real data

Plotting marginal survival in the real data as in Fig. 4 appears to – counter-intuitively – show that, on
average, individuals who received a hormonal treatment or chemotherapy have shorter survival than
those patients that received neither. We now investigate whether this unexpected observation can
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(a) Chemotherapy (b) Hormonal Treatment

Figure 9: Exploratory results adjusting for biases in real data. Kaplan-Meier survival curves for
the original treated patients and control cohorts created using different methods.

be explained away by adjusting for observed differences between the two cohorts through creating
real and synthetic matches in Fig. 9. For both treatments, we observe that creating matched cohorts
through either NN-matching or standard SCs (we drop log-time SC here due to consistently worse
performance in Section 7.1) leads to qualitatively the same conclusion and indeed results in reversal
of the originally counterintuitive finding: once we create a control group more aligned with the
treated group, treated individuals indeed no longer seem to live shorter – to the contrary, there
now appears to be some evidence that treatment increases the expected survival time. This shift in
survival curves once patient characteristics are adjusted for is entirely expected – only node positive
patients actually received either therapy in the data (Foekens et al., 2000) – and the evidence for
treatment benefit, once groups are more matched in terms of patient characteristics, is in line with
the original findings of the study where therapy indeed had a positive effect on survival (Royston
and Altman, 2013).

8. Conclusion

In this paper, we investigated the possibility of using synthetic control methods in survival analyses,
and discovered multiple biases arising uniquely in this context. We showed that these are rooted in
differences in both (i) commonly assumed DGPs and target parameters of interest in survival anal-
yses relative to standard settings in economics, and (ii) differences in distributions of real and syn-
thetic control units. We also highlighted that regularization schemes interpolating between matching
and synthetic control methods may constitute a promising avenue to control some of these biases.

We hope that future methodological work will build upon this initial evidence to develop more
sophisticated approaches to overcome the challenges investigated in this paper. Further, we put our
focus on a specific family of survival models (AFT models) in the theoretical part of this paper. It
would therefore be another interesting avenue for future research to investigate whether our analyses
can be extended to the proportional hazards family of survival models. Finally, we chose to focus
on comparing synthetic controls to matching, but did not investigate the possibility of imputing
missing counterfactual outcomes in other ways, e.g. using model-based approaches. Additionally
comparing to model-based imputation of control survival times, using e.g. AFT- or Cox-regression
models fitted using the control data, will add the potential for model misspecification as another
dimension to the comparison, and may thus lead to further interesting tradeoffs (in addition to
trading off interpolation and extrapolation biases as in the current comparison). Investigating the
(dis)advantages of synthetic control methods relative to other possible approaches in the survival
context could thus also be a fruitful direction to explore in future work.
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Appendix A. On the necessity of linearity assumptions for synthetic control methods

In this section, we briefly discuss whether linearity assumptions on the outcome-generating process,
as in Eq. (3), can sometimes be circumvented while retaining the ability of synthetic control methods
to succeed. Indeed, Shi et al. (2022) show that linearity assumptions on the outcome-generating
process are not strictly necessary for synthetic control methods if one makes a different assumption
on the DGP (which, as we discuss at the end of this section, is not applicable in our survival setting).

Shi et al. (2022) make use of a more fine-grained model assumption than is usually the case in
the synthetic control literature. Where classical synthetic control settings usually just assume the
goal to estimate µj,t for units j and times t, Shi et al. (2022) make the additional assumption that
every macro-unit j is an average of individual units l, i.e. that µj,t = Ei[µl,j,t]. In this case, they
show that “linearity is a consequence of the fact that expectation is a linear operator” (Shi et al.,
2022, p.2) – i.e. linearity is an automatic feature of the DGP of the aggregate units even if the
DGP of the individual units is not linear. They conclude that this is why synthetic control applied
to aggregate units can work even if the DGP of the individual units are nonlinear. Conversely, they
show that even within this setting, if the aggregation across individuals is not linear (e.g. if using
the group median instead of the group mean to construct aggregate units from the individual units),
synthetic controls will be biased. Further, they also discuss that, if one wanted to include covariates
beyond lagged outcomes, the “use of auxiliary covariates requires us to assume that the underlying
data generating process is linear” (Shi et al., 2022, p. 7). In summary, Shi et al. (2022) thus show
that one may sometimes be able to remove the (parametric) linearity assumption usually used in
synthetic control papers by instead assuming a fine-grained data-generating model that linearly
aggregates unobserved individual units into macro-units by averaging them. That is, some form of
assumed linearity appears to remain crucial for successful application of synthetic control methods.

Why the fine-grained model is less applicable in survival analyses. The additional assumption
on the decomposition of aggregate units into individuals made in the fine-grained model of Shi et al.
(2022) can be very reasonable within the economic applications considered in most of the original
synthetic control literature: in such applications, one is often analyzing macro-level data from e.g.
states or countries, which are indeed usually reported in aggregated form across counties, cities or
even individuals. In our medical setting, however, the fine-grained model is not appropriate, as the
final outcomes we consider are patient-level survival outcomes which are by construction already at
an individual level; no further disaggregation is possible. Thus, the arguments of Shi et al. (2022),
which rely on linear aggregation across individual units in the generation of observed outcomes, do
not apply to our setting and can hence not help in mitigating the biases arising due to non-linearity
present in survival DGPs.

Appendix B. Experimental details

Sampling scheme. For the experiments in Section 7.1, the target and control groups are con-
structed from the real data through the following biased sampling scheme: We first fit a cox pro-
portional hazards model using all covariates on the full n = 2091 patients, and use it to predict the
expected median survival time Tmed

i (Xi) of each patient, which we normalize across the sample
to give one value Zi = normalize(Tmed

i (Xi)) per patient. Second, we then split the n patients
randomly into two samples: with probability .1 they become part of the target pool It, and with
probability .9 they become part of the control pool Ic. Third, from the target pool It, we then create
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a biased target sample with higher expected survival times by sampling patients into the sample St

with probability pi = expit(3 ∗Zi). Finally, when δmin > 0, we then remove all close neighbors of
patients in St from Ic to create the control sample Sc, where the squared distance for each patient
j in the control sample for each patient k∗ in the target sample is calculated from the normalized
d-dimensional covariate vectors as δjk∗ = 1

d

∑D
d=1(X

d
j −Xd

k∗
)2.

Metrics. The Komolgorov-Smirnov statistic measures the distance between two CDFs F (x) and
G(x) as supx|F (x) − G(x)|. We approximate this from the target samples and the different con-
trol groups by first computing the empirical survival functions Ŝt and Ŝc using the Kaplan-Meier
estimator, and then computing maxT∈St |Ŝt(T )− Ŝc(T )|.

The restricted mean survival time (RMST) relative to time tend = 120 months is defined as
TRMST
i = min(Ti, tend). To evaluate individual predictions, we compute the mean absolute error

between predicted and observed RMST for each unit in the target sample, where we can only use
individuals i for which both observed and predicted time are not censored before tend :

MAE =

∑
i∈St

1{i : (Ej = 1|T−
j > tend)&(Êj = 1|T̂−

j > tend)}| ˆTRMST
j − TRMST

j |∑
i∈St

1{i : (Ej = 1|T−
j > tend)&(Êj = 1|T̂−

j > tend)}
(14)
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