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Abstract
Graphical continuous Lyapunov models offer a new perspective on modeling causally interpretable
dependence structure in multivariate data by treating each independent observation as a one-time
cross-sectional snapshot of a temporal process. Specifically, the models assume that the observa-
tions are cross-sections of independent multivariate Ornstein-Uhlenbeck processes in equilibrium.
The Gaussian equilibrium exists under a stability assumption on the drift matrix, and the equilib-
rium covariance matrix is determined by the continuous Lyapunov equation. Each graphical contin-
uous Lyapunov model assumes the drift matrix to be sparse, with a support determined by a directed
graph. A natural approach to model selection in this setting is to use an ℓ1-regularization technique
that, based on a given sample covariance matrix, seeks to find a sparse approximate solution to the
Lyapunov equation. We study the model selection properties of the resulting lasso technique to
arrive at a consistency result. Our detailed analysis reveals that the involved irrepresentability con-
dition is surprisingly difficult to satisfy. While this may prevent asymptotic consistency in model
selection, our numerical experiments indicate that even if the theoretical requirements for consis-
tency are not met, the lasso approach is able to recover relevant structure of the drift matrix and is
robust to aspects of model misspecification.
Keywords: Graphical models, ℓ1-regularization, Lyapunov equation, support recovery

1. Introduction

Directed graphical models are powerful tools for exploring cause-effect relationships in multivari-
ate data (Pearl, 2009; Spirtes et al., 2000; Peters et al., 2017). The causal aspect of the models is
built on the assumption that each variable is a function of parent variables and independent noise.
This approach is also known as structural causal modeling. For directed acyclic graphs (DAGs), the
resulting models have simple interpretations and statistically favorable density factorization prop-
erties that facilitate large-scale analyses (Maathuis et al., 2019). The situation is more complicated
when the graph is allowed to contain directed cycles, which represent feedback loops (Bongers
et al., 2021). Although a model can still be defined by solving structural equations, directed cycles
prevent density factorization, making it more difficult to perform tasks such as computation of max-
imum likelihood estimates (Drton et al., 2019) or model selection (S. Richardson, 1996; Améndola
et al., 2020), even in the case of linear models. Importantly, the interpretation of the models also
becomes more involved and typically appeals to dynamic processes in a post-hoc way. For example,
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Fisher (1970) provided an interpretation based on data averaged over time, while alternative inter-
pretations in terms of differential equations were suggested by Mooij et al. (2013) and Bongers and
Mooij (2018).

Fitch (2019) and Varando and Hansen (2020) proposed a different perspective, in which the
distribution of an observed sample X1, . . . , Xn ∈ Rp, independent and identically distributed, is
modeled through a temporal process in equilibrium. Specifically, each random vector Xi is as-
sumed to be a single cross-sectional observation of a multivariate Ornstein-Uhlenbeck process (a
multivariate continuous-time autoregressive process), which leads to Xi being multivariate normal.
We emphasize that the n observations are obtained from n independent processes. This setup is
suitable, in particular, for applications in biology where each of the n independent organisms may
live up to the time of measurement (e.g., for gene expression) but is sacrificed for the measurement.

The p-dimensional Ornstein-Uhlenbeck process is the solution to the stochastic differential
equation

dX(t) = M(X(t)− a) dt+D dW (t), (1.1)

where W (t) is a Wiener process, and a ∈ Rp and M,D ∈ Rp×p are non-singular parameter
matrices. The drift matrix M is the key object of interest in the work of Fitch (2019) and Varando
and Hansen (2020) as it determines the causal relations between the coordinates of the Ornstein-
Uhlenbeck process X(t); see also Mogensen et al. (2018). Provided M is stable (i.e., all eigenvalues
have a strictly negative real part), X(t) admits an equilibrium distribution that is multivariate normal
with a positive definite covariance matrix. This covariance matrix, denoted by Σ, is determined as
the unique matrix that solves the Lyapunov equation

MΣ+ ΣM⊤ + C = 0, (1.2)

where C = DD⊤. The vector a is the mean vector of the equilibrium distribution. Subsequently,
we will assume without loss of generality that a = 0, i.e., our observations are centered. Moreover,
we will focus on the case where the positive definite volatility matrix C is known up to a scalar
multiple. Since scaling (M,C) does not change the solution Σ in (1.2), this case can be studied by
reducing to the setting where C is fully known; see Remark B.1 for a further detailed discussion.

Our interest is now in the selection of models that postulate that the drift matrix M = (Mij) is
sparse. In other words, we consider the estimation of the sparsity pattern (or support) of the drift
matrix M . This support is naturally represented by a directed graph G = (V,E) with a vertex set
V = {1, . . . , p} and an edge set E that includes the edge i → j precisely when Mji ̸= 0. A stable
matrix M will have negative diagonal entries, and therefore the edge set E will always contain all
self-loops i → i. However, we will not draw the self-loops in figures showing graphs.

Example 1 The graph G = ({1, 2, 3}, {1 → 2, 2 → 3, 1 → 1, 2 → 2, 3 → 3}), shown in Figure 1,
corresponds to the support of the matrix

M =

m11 0 0
m21 m22 0
0 m32 m33

 .

We remark that Young et al. (2019) considered a related setup with discrete-time vector autore-
gressive (VAR) processes, which leads to the discrete Lyapunov equation.
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1 2 3

Figure 1: Directed graph on 3 nodes.

1.1. Support Recovery with the Direct Lyapunov Lasso

In this paper, we will study an ℓ1-regularization method to estimate the support of the drift matrix
M from an i.i.d. sample consisting of centered observations X1, . . . , Xn ∈ Rp. Let

Σ̂ = Σ̂(n) =
1

n

n∑
i=1

XiX
⊤
i (1.3)

be the sample covariance matrix. The Direct Lyapunov Lasso finds a sparse estimate of M as a
solution of the convex optimization problem

min
M∈Rp×p

1

2
∥M Σ̂ + Σ̂M⊤ + C∥2F + λ∥M∥1 (1.4)

with tuning parameter λ > 0. This method is considered in numerical experiments by Fitch (2019)
as well as by Varando and Hansen (2020) who additionally explore non-convex methods based on
regularizing Gaussian likelihood or a Frobenius loss. The Direct Lyapunov Lasso yields matrices
in Rp×p that can be non-stable. If a stable estimate is required in such a case, one can appeal to
projection onto the set of stable matrices; e.g., using techniques by Noferini and Poloni (2021).

1.2. Organization of the Paper

We connect the Direct Lyapunov Lasso to more standard lasso problems by vectorizing the Lya-
punov equation and describing the structure of the Hessian matrix for the smooth part of the Di-
rect Lyapunov Lasso objective (Section 2). In Section 3, we present a result of statistical consis-
tency (Theorem 2), where the solution M̂ of (1.4) is shown to converge in the max norm at a rate
∥M̂ −M∗∥∞ = O(

√
(dp)/n) with d being the number of nonzero entries in the true drift matrix

M∗. Theorem 2 only holds under an irrepresentability condition, which turns out to be more subtle
than in the classical lasso regression. As we explore in Section 4, the condition is highly dependent
on the structure of the graph associated with the true signal. In Section 5, we present large-scale
simulations (up to p = 50) where the performance of the Direct Lyapunov Lasso on synthetic data
is measured. Despite the theoretical requirements for consistency not being met, we observe perfor-
mance at useful levels across various metrics. Finally, in Section 6, we apply the Direct Lyapunov
Lasso to obtain an estimate of a protein signaling network that recovers important connections in a
network that was previously reported as a gold standard.

1.3. Motivating Example

Before developing a detailed analysis of the Direct Lyapunov Lasso, we present an example that
illustrates the behavior of estimates for growing sample size and highlights the impact of the irrep-
resentability condition. We defer some of the details of how the example is designed to Appendix A.
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Figure 2: Left: The graph G1, a path 1 to 5. Right: The graph G2, the 5-cycle.

Example 2 Let G1 be the directed path from 1 to 5, and let G2 be the 5-cycle obtained by adding
the edge 5 → 1; see Figure 2. For G1 we define a (well-conditioned) stable matrix M∗

1 by setting
the diagonal to (−2,−3,−4,−5,−6) and the four nonzero subdiagonal entries to 0.65. For G2,
we consider two cases. First, we add the fixed entry m15 = 0.65 to M∗

1 to obtain the matrix
M∗

2 . Second, we similarly include m15 but select it randomly (uniform on [0.5, 1]) in 100 instances.
Using the Lyapunov equation (1.2) with C = 2Ip, for each setting and each one of 6 different sample
sizes n we simulate 100 Gaussian datasets. We also consider n = ∞, i.e., taking the population
covariance matrices as input to the method. We calculate solutions to the Direct Lyapunov Lasso
(1.4) for 100 choices of the regularization parameter λ. From these solutions we compute the
maximum accuracy, the maximum F1-score, and the area under the ROC curve. Figure 3 plots the
performance measures, averaged over the 100 datasets in each pairing of setup and sample size.
There the blue curves refer to G1, the red curves to G2 with m15 = 0.65 fixed, and the green curves
to G2 with m15 chosen randomly. We observe that for every sample size and performance measure,
the Direct Lyapunov Lasso performs better for the path G1 than for the cycle G2. When the sample
size is n = 104, we observe an almost perfect recovery of G1. However, increasing the sample size
when recovering G2 does not result in perfect recovery. The choice of m15 = 0.65 is not particularly
unfortunate—averaging over various completions does not improve the metrics. We conclude that
while learning useful structure in either case, the Direct Lyapunov Lasso is consistent only for the
considered path. Our subsequent analysis explains this behavior, which is a consequence of the
failure of the irrepresentability condition in (3.1).

1.4. Notation

Let b ∈ [1,∞]. The ℓb-norm of v ∈ Rp is ∥v∥b = (
∑p

i=1 |vi|b)1/b, with ∥v∥∞ = max1≤i≤n |vi|.
We may apply this vector norm to a matrix A = (aij) ∈ Rp×p and obtain the norm ∥A∥b =
(
∑p

i=1

∑n
j=1 |aij |b)1/b. In particular, ∥A∥F := ∥A∥2 is the Frobenius norm. We denote the asso-

ciated operator norm by |||A|||b = max{∥Ax∥b : ∥x∥b = 1}. Specifically, we use |||A|||2 to denote
the spectral norm, given by the maximal singular value of A, and |||A|||∞ = max1≤i≤p

∑p
j=1 |aij |

to denote the maximum absolute row sum.
For an index set S, we write A·S for the submatrix of A = (aij) that is obtained by selecting the

columns indexed by S. The matrices AS· and ASS are defined analogously by selection of rows or
both rows and columns, respectively. The vec-operator stacks the columns of A, giving the vector
vec(A) = (a11, a21, . . . , ap1, . . . , a1p, . . . , app)

⊤ ∈ Rp2 . The diag-operator turns a vector v ∈ Rp

into the diagonal matrix diag(v) ∈ Rp×p that has vi as its i-th diagonal entry. The Kronecker
product of A and another matrix B = (buv) ∈ Rp×p is denoted by A⊗ B. It is a matrix in Rp2×p2
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Figure 3: Performance measures for sample sizes n = 101, . . . , 104,∞ and models given by the graphs
G1 and G2 from Figure 2, one choice of edgeweights for the path, one choice of edgeweights for the cycle
(Cycle fixed) and 100 random completions to the 5-cycle (Cycle random). Left: maximal accuracy, Middle:
maximal F1-score, Right: area under the ROC curve.

with the entries [A ⊗ B](i−1)p+j,(k−1)p+l = AikBjl. The commutation matrix in Rp2×p2 is the
permutation matrix K(p,p) such that K(p,p)vec(A) = vec(A⊤). See, e.g., Bernstein (2009).

Finally, we write Symp for the space of symmetric matrices in Rp×p. We use PDp to denote the
cone of p× p positive definite matrices. The set of stable matrices in Rp×p is denoted Stabp.

2. Gram Matrix of the Direct Lyapunov Lasso

In this section, we rewrite the smooth part of the objective of the Direct Lyapunov Lasso from (1.4)
in terms of the vectorized drift matrix and present the resulting Hessian matrix.

The Lyapunov equation from (1.2) is a linear matrix equation and may be rewritten as

A(Σ) vec(M) + vec(C) = 0, (2.1)

where the p2 × p2 matrix A(Σ) has its rows and columns indexed by pairs (i, j) ∈ {1, . . . , p}2 and
takes the form

A(Σ) = (Σ⊗ Ip) + (Ip ⊗ Σ)K(p,p). (2.2)

We have vec(MΣ) = (Σ⊗Ip)vec(M) and vec(ΣM⊤) = (Ip⊗Σ)K(p,p)vec(M). By the symmetry
of the Lyapunov equation, A(Σ) has two copies of each row corresponding to an off-diagonal entry
in the Lyapunov equation. Retaining this redundancy will be helpful for later arguments, as it
preserves the Kronecker product structure in (2.2). A display of the matrix A(Σ) is provided in
Example C.1 in the appendix. Define the Gram matrix

Γ(Σ) := A(Σ)⊤A(Σ) ∈ Rp2×p2 (2.3)

and the vector
g(Σ) := −A(Σ)vec(C) ∈ Rp2 . (2.4)

Omitting a constant from the objective function, the Direct Lyapunov Lasso problem from (1.4)
may be reformulated as

min
M∈Rp×p

1

2
vec(M)⊤Γ(Σ̂)vec(M)− g(Σ̂)⊤vec(M) + λ∥vec(M)∥1. (2.5)
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As noted in the introduction, one difficulty that arises in the analysis of the solution of (2.5) is
the fact that the Gram matrix has entries that are quadratic polynomials in Σ with p terms (i.e., the
number of terms scales with the size of the problem). This fact can be seen in the appearance of Σ2

in the following formula for the Gram matrix.

Lemma 1 The Gram matrix for a given covariance matrix Σ is equal to

Γ(Σ) = A(Σ)⊤A(Σ) = 2(Σ2 ⊗ Ip) + (Σ⊗ Σ)K(p,p) +K(p,p)(Σ⊗ Σ).

Proof Apply the rules (A ⊗ B)⊤ = (A⊤ ⊗ B⊤), (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and
K(p,p)(A⊗B)K(p,p) = B ⊗A to deduce that

A(Σ)⊤A(Σ) = [(Σ⊗ Ip) +K(p,p)(Ip ⊗ Σ)][(Σ⊗ Ip) + (Ip ⊗ Σ)K(p,p)]

= 2(Σ2 ⊗ Ip) + (Σ⊗ Σ)K(p,p) +K(p,p)(Σ⊗ Σ).

3. Consistent Support Recovery with the Direct Lyapunov Lasso

We now provide a probabilistic guarantee that the Direct Lyapunov Lasso is able to recover the
support of the true population drift matrix that defines the data-generating distribution. Let M∗

denote the true value of the drift matrix in (1.1), and let Σ∗ be the associated true covariance matrix
of the observations. We write M̂ for the solution of the Direct Lyapunov Lasso problem in (1.4).
The support of M∗ is the set of all indices of nonzero elements and is denoted by

S ≡ S(M∗) = {(j, k) : M∗
jk ̸= 0}.

We write d = |S| for the size of the support of M∗. The support set of the estimate M̂ is

Ŝ ≡ S(M̂) = {(j, k) : M̂jk ̸= 0}.

Let Γ̂ = Γ(Σ̂), Γ∗ = Γ(Σ∗), ĝ = g(Σ̂), g∗ = g(Σ∗). Furthermore, let ∆Γ = Γ̂ − Γ∗ and
∆g = ĝ − g∗, and define the quantities

cΓ∗ = |||(Γ∗
SS)

−1|||∞ and cM∗ = ∥vec(M∗)∥∞.

The definition of cΓ∗ requires Γ∗
SS to be invertible, which is an implicit assumption on the identifi-

ability of the parameters; see Remark B.2 in the Appendix. By suitably adapting work on structure
learning for undirected graphical models (Lin et al., 2016), one can derive a deterministic guarantee
for success of the Direct Lyapunov Lasso provided the estimation errors ∆Γ and ∆g are sufficiently
small (Theorem D.1 in the Appendix). This result leads to the following probabilistic result.

Theorem 2 Suppose that the data are generated as n i.i.d. draws from the Gaussian equilibrium
distribution of a p-dimensional Ornstein-Uhlenbeck process defined by a drift matrix M∗ ∈ Stabp
and a matrix C ∈ PDp. Let S be the support of M∗. Assume that Γ∗

SS is invertible and that the
irrepresentability condition

|||Γ∗
ScS(Γ

∗
SS)

−1|||∞ < 1− α (3.1)
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holds for α ∈ (0, 1]. Let cΣ∗ = |||Σ∗|||2, cC = ∥vec(C)∥2,

c̃ = max

{
4max{1, c2Σ∗}(4 + 8cΣ∗)2

c3
, 16c21c

2
Σ∗(4 + 8cΣ∗)2,

16max{1, c2Σ∗}c2C
c3

, 64c21c
2
Σ∗c2C

}
,

c∗ =
6

α
cΓ∗ ,

where {ci}3j=1 are universal constants (from Theorem E.4 below) with c1 > max{1, |||Σ∗|||2}. Sup-
pose the sample size satisfies n > τ1c̃dpmax{c2∗, 1/4} for τ1 > 1, and the regularization parameter
is chosen as

λ >
3cM∗(2− α)

α

√
τ1c̃dp

n
.

Then the following statements hold with probability at least 1− c2 exp (−τ1p):

a) The minimizer M̂ is unique, has its support included in the true support (Ŝ ⊂ S), and satisfies

∥M̂ −M∗∥∞ <
2cΓ∗

2− α
λ.

b) Furthermore, if

min
1≤j<k≤m

(j,k)∈S

|M∗
jk| >

2cΓ∗

2− α
λ,

then Ŝ = S and sign(M̂jk) = sign(M∗
jk) for all (j, k) ∈ S.

The reader may be surprised by the sample size requirement of n = Ω(dp); recall that d = |S|
is the size of the support of M∗. Since S includes the diagonal of M∗, we have d ≥ p. Under
sparsity, however, dp is not much larger than the number of unknown parameters p2.

This said, Ω(dp) is far larger than the sample size requirement a reader may be familiar with
from the glasso for learning undirected conditional independence, which is on the order of d2 log p
but with d being the maximum number of nonzero entries in any row of a true precision matrix
(Ravikumar et al., 2011). This allows for far higher-dimensional settings, but crucially relies on
the glasso having a Hessian that concentrates well entry-wise and a simple connection between the
covariance matrix and the sparse precision matrix. In contrast, the Lyapunov Lasso has a denser
Hessian/Gram matrix that includes entries that become heavier-tailed as the dimension p grows.

In order to prove Theorem 2, we combine the aforementioned deterministic analysis, stated in
Theorem D.1, with the concentration results we obtain in Section E. We defer the detailed proof to
Appendix F. Here, we present only a short sketch.

Proof [Sketch] Applying Theorem D.1 to obtain the probabilistic result in Theorem 2 requires
showing that a probability of the form P(|||(Γ(Σ̂) − Γ(Σ∗))·S |||∞ ≥ ϵ1) is small when the sample
size is sufficiently large. Representing Hessian Γ as Kronecker products of the covariance matrix Σ,
Lemma 1 permits to trace back the problem of deriving a concentration inequality for Γ to finding
concentration inequalities for Σ. Ultimately, this connection is made in Lemma E.6 securing that if

|||∆Σ|||2 = |||Σ̂− Σ∗|||2 < min

{
ϵ1√

d(4 + 8cΣ∗)
,
ϵ2
2cC

}
,
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then it holds that

|||(∆Γ)·S |||∞ < ϵ1 and ∥∆g∥∞ < ϵ2.

A known concentration result for Σ is given in Theorem E.4. Combining this with Lemma E.6 and
using the concentration result for Γ in Theorem D.1 yields Theorem 2.

Sample size aside, the crucial assumption for support recovery is the irrepresentability condition.
A detailed analysis of this condition is the subject of the next section.

4. Irrepresentability Condition

The irrepresentability condition is vital for Theorem 2. The condition is well known from the
standard lasso regression, but turns out to be much more subtle for the Direct Lyapunov Lasso. In
regression and in the Lyapunov model, the irrepresentability condition makes an assumption about
the Gram matrix in light of the signal. However, the Gram matrix in regression depends solely on
the predictors, whereas the Gram matrix for the Lyapunov model is obtained from the matrix A(Σ)
which depends on the signal itself (Example C.1).

We present an analysis of irrepresentability for the Direct Lyapunov Lasso under weak depen-
dence and find that the condition is very restrictive. Indeed, it leads to a restrictive ordering condition
on the diagonal of the drift matrix; in particular, the support must define a DAG. For cyclic graphs,
it seems difficult to construct general examples of irrepresentability. Simulations suggest that such
examples do exist, but are rare. We refer to Appendix G for details on cyclic graphs as well as a
discussion of a weaker notion of irrepresentability that is necessary for consistency.

In our study of the irrepresentability condition, we will consider the case where the volatility
matrix C is a multiple of identity; specifically, we assume C = 2Ip throughout this section. Other
diagonal matrices C would also be tractable for analysis and would yield analogous conclusions.
Before proceeding, we recall that a matrix M∗ ∈ Stabp with support S satisfies the irrepresentability
condition if

ρ(M∗) := ∥Γ∗
ScS(Γ

∗
SS)

−1∥∞ (4.1)

is strictly smaller than 1; the condition in (3.1) stated an explicit gap α > 0. In the following, we will
refer to the number ρ(M∗) as the irrepresentability constant of M∗. When drawing an analogy to
regression problems, Γ∗ corresponds to a covariance matrix of predictors and the irrepresentability
constant captures how well non-signals (here data-derived features that correspond to non-edges)
can be predicted from signals (here data-derived features that correspond to edges). In standard
lasso regression, the irrepresentability condition is fulfilled when each irrelevant predictor exhibits
little correlation with the active predictors. In particular, the condition would hold in a neighborhood
of a diagonal Gram matrix.

Example 3 Consider the graph G = (V,E) in Figure 1, a path on 3 nodes. For small e ∈ R,
we define two stable matrices M1(e) and M2(e) with support given by G. We set their diagonals
to diag(M1(e)) = (−1/2,−1,−3/2) and diag(M2(e)) = (−3/2,−1,−1/2), respectively, and
set all nonzero off-diagonal entries equal to e. Note that the diagonal of M2(e) is the reverse of
the diagonal of M1(e). In Figure 4, we plot the two irrepresentability constants ρ(M1(e)) and
ρ(M2(e)) as functions of the off-diagonal value e. We observe that irrepresentability holds in a
neighborhood of M1(0), but not around M2(0) .
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Figure 4: Values of the irrepresentability constants ρ(M1(e)) and ρ(M2(e)) for the two matrices from
Figure 1 plotted against the size of the off-diagonal entries e. Left: ρ(M1(e)) where diag(M1(e)) =
(−1/2,−1,−3/2). Right: ρ(M2(e)) where diag(M2(e)) = (−3/2,−1,−1/2).

In the example, the order of diagonal entries is seen to impact whether irrepresentability holds
near a diagonal matrix. As we prove in the theorem below, this fact is not a coincidence, but rather
a general phenomenon. Let S ⊆ {(i, j) : 1 ≤ i, j ≤ p} be a given support set. We say that the
irrepresentability condition for the support S holds uniformly over a set U ⊂ Stabp if there exists
α > 0 such that ρ(M∗) ≤ 1− α for all M∗ ∈ U with support S(M∗) = S. By our convention, the
edge set of a directed graph G = (V,E) determines the support set SG = {(j, i) : i → j ∈ E}.

Theorem 3 Let G = (V,E) be a graph with p nodes. Let M0 = diag(−d1, . . . ,−dp) be a
stable diagonal matrix. Then, the irrepresentability condition for support SG holds uniformly over
a neighborhood of M0 if and only if

di < dj for every edge i → j ∈ E.

In particular, it is necessary that the graph G is a DAG.

We give a proof and an illustrating example in Appendix G.1.

5. Simulation Studies

In this section, we present simulation studies that provide insight into the performance of the Direct
Lyapunov Lasso in seemingly unfavorable settings. First, most drift matrices do not satisfy the
irrepresentability condition; compare Section G.3 in the Appendix. Second, while our assumption
that C is fixed up to a scalar multiple is made similarly in the related case where actual time series
data is considered (Gaı̈ffas and Matulewicz, 2019), it is an assumption that may be overly simple for
many applications. Nevertheless, our simulations suggest robustness of the Direct Lyapunov Lasso
to the irrepresentability condition not being fulfilled and to mild misspecification of the volatility
matrix C, where by robustness we mean that a part of signal is being learned correctly.

For the simulations in this section, we use a similar setting as in Varando and Hansen (2020).
Each stable matrix M was generated with Mij = ωijϵij for i ̸= j and Mii = −

∑
j ̸=i |Mij | − |ϵii|

where ωij ∼ Bernoulli(d) and ϵij ∼ N(0, 1). Unlike in Varando and Hansen (2020), we consider
four different choices for C. The label in brackets corresponds to the one used in Figure 5.

1) We choose C = 2Ip (C ID).
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2) We choose C diagonal with Cii ∼ Unif[0.5, 4] (C Random Diag).

3) We choose C diagonal with Cii ∼ Unif[2, 4] (C Random Min Diag).

4) We choose C symmetric but non-diagonal. Let ω̃ij ∼ Bernoulli(2/p) and ϵ̃ij ∼ N(0, 1)
be independent random variables, i, j = 1, . . . , p. Then the off-diagonal entries of C are
set to Cij = ω̃ij ϵ̃ij + ω̃jiϵ̃ji and the diagonal entries to Cii =

∑
j ̸=i |Cij | + |ϵ̃ii| + 0.5

(C Random Full).

For each k ∈ {1, 2, 3, 4} and p = {10, 15, 20, 25, 30, 40, 50}, the edge probability is set as
d = k/p. For each choice of C, we generate 100 pairs of signals (M,C). We generate N =
1000 observations from a multivariate Gaussian distribution with covariance matrix solving the
Lyapunov equation for (M,C). Note that p2 > N for p = {40, 50} which corresponds to the high-
dimensional setting. Then we apply the Direct Lyapunov Lasso with C = 2Ip for model selection.
The results are calculated along the λ-grid:

0 <
λmax

104
= λ1 < · · · < λ100 = λmax,

with λmax being the minimal λ-value such that M is diagonal. We compute the maximum accuracy,
the maximum F1-score, the area under the ROC curve and the area under the precision curve; more
details on the metrics are given in Definition G.5. The metrics are averaged over the 4 different
sparsity levels k and the 100 randomly selected drift matrices M . The results are shown in Figure 5.

Choice 1) for C is used when applying Direct Lyapunov Lasso for model selection. Thus, it
is natural to expect the best results for this choice. Choices 2) and 3) allow for variability on the
diagonal. The second choice allows for larger differences (Unif[0.5, 4]) in the size of the diagonal
entries, while the third choice is more conservative (Unif[2, 4]). Choices 1) and 3) perform best in
our simulations. We observe that there are few differences in all metrics among the choices between
choice 1) and choice 3), indicating that the Direct Lyapunov Lasso with C = 2Ip possesses a
certain robustness to the exact diagonal matrix C of the data generating model. This is true for
all p ∈ {10, 15, 20, 25, 30, 40, 50}. For choice 2), we observe that the results in all metrics except
maximum accuracy fall with increasing p. For p = 40 and especially for p = 50, the results for
all metrics are similar to choice 4). Choice 4) allows for data generating models for which C is no
longer diagonal. For this choice, the worst results are to be expected as the matrix C used for data
generation is much different from the one used for estimation. Another interesting point revealed
by the simulations is that although the irrepresentability condition is not satisfied in almost any of
the signals, it is still possible to get estimates that recover much of the support of the drift matrix.
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Figure 5: The maximum accuracy (top left), maximum F1-score (top right), area under the ROC curve
(bottom left) and area under the precision curve (bottom right) in support recovery with the Direct Lyapunov
Lasso using parameter C = 2Ip. The data has been generated using the choices 1) C ID, 2) C Random Diag,
3) C Random Min Diag, and 4) C Random Full. The error bars are the estimated standard errors of the
average of a metric for a specific problem size over the 400 randomly generated drift matrices.

6. Real World Data Example

The data set collected and analyzed first by Sachs et al. (2005) has become a test bed for graph-
ical model selection algorithms. Some recent examples are the review paper on causal discovery
methods based on graphical models by Glymour et al. (2019), the application of classical struc-
ture equation models allowing for cycles by Améndola et al. (2020) or the application of Lyapunov
models and a specific model selection technique by Varando and Hansen (2020). The data set con-
sists of flow cytometry measurements of 11 phosphorylated proteins and phospholipids in human
T-cells captured under different experimental conditions, resulting in 14 independent data sets of
varying sizes (n = 707 to n = 927). When flow cytometry is applied, cells are destroyed during the
measurement process, and hence the measurements are collected at one point in time. Each sam-
ple consists of quantitative and simultaneous measurements of the 11 phosphorylated proteins and
phospholipids of single cells. The way in which the data set was collected matches the motivation
underlying the Lyapunov models. In presenting the experiments below, our goal is to exemplify
the fact that Lyapunov models concern cross-sectional data and not time series and to showcase the
use of the models in a widely studied data example. However, the Gaussianity of Lyapunov models
(as well as other aforementioned models) is clearly an oversimplification for the considered flow
cytometry data.

11524



DETTLING DRTON KOLAR

We apply the Direct Lyapunov Lasso (1.4) with C = 2Ip and with an adaptation of the extended
Bayesian Information Criterion (BIC) criterion for tuning parameter selection (Chen and Chen,
2008; Foygel and Drton, 2010). First, we standardize every column of the data by calculating
Xstd

·,i = (X·,i−µ)/σ where µ is the mean and σ the standard deviation of X·,i. We apply the Direct
Lyapunov Lasso to obtain estimates along the regularization path that is the logarithmic sequence

0 <
λmax

104
= λ1 < · · · < λ100 = λmax,

where λmax is the minimal λ-value such that the estimate is diagonal. Extracting the non-zero
structure, each estimate M̂j defines a directed graph Gj for j = 1, . . . , 100. To decide which graph
to select, we use the extended BIC. We first minimize the two times negative Gaussian log-likelihood

L(M) = n
[
log det

(
Σ(M, 2Ip)

)
+ tr

(
Σ̂(Σ(M, 2Ip))

−1
)]

(6.1)

for all 100 models obtained by restricting the support of M to Gj , j = 1, . . . , 100. We denote the
minima by L̂1, . . . , L̂100 and substitute these values into

EBICγ(Gj) = (|Ej |+ p) log n+ 4γ|Ej | log p+ L̂j , (6.2)

where Ej is the edge set of Gj . Selecting the graph with the lowest score yields the Lyapunov model
selected by the extended BIC criterion.

In Figure 6a) we present the graph estimate for the protein signaling network using data set 7.
A graph that shows conventionally accepted “ground truth” molecule interactions is given in Fig-
ure 6b) and it includes ambiguities for some connections (Ramsey and Andrews, 2018, Section 2).
The estimate has 17 edges and 11 connections when counting the 2-cycles only once, while the
ground truth has 20 edges with no 2-cycles. The red edges are the edges that are correctly recovered
by the estimate. The orange edges are the edges where the reversed edges are present in the ground
truth. Black edges are additional edges that are not present in the ground truth. Among the correctly
estimated connections are the direct enzyme-substrate relationships Raf → Mek and PIP3 → Pcl−γ.
The connections Pcl−γ → PIP2 and PKA → Raf are missing in Figure 6, but the Pcl−γ → PIP3
→ PIP2 and Pcl−γ → PIP3 → PIP2 pathways suggest the presence of these interactions. Only the
connection Mek → Erk is not present at all. In general, Direct Lyapunov Lasso with extended BIC
is an intuitive and easy-to-implement method that produces a sparse estimate with most edges (or
their reverse) present in the ground truth and even some additional edges such as Akt → Raf can be
interpreted as connecting pieces of meaningful pathways.

7. Conclusion

We investigated the model selection properties of the Direct Lyapunov Lasso when applied to data
distributed according to the graphical continuous Lyapunov model. Although the optimization prob-
lem that the Direct Lyapunov Lasso solves is similar to the lasso-penalized linear regression objec-
tive, there are several surprising differences. We established a reasonable bound on the sample
complexity by carefully investigating the Hessian matrix whose elements are sums of p products
of covariances. The irrepresentability condition is more subtle under the Lyapunov model than
it is in the linear regression setting. We formulated conditions under which the irrepresentability
condition is guaranteed to hold for DAGs based on the topological ordering of the nodes. Despite
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Figure 6: a) Estimated Sachs Network using the Direct Lyapunov Lasso and the EBIC criterion with γ = 1
for scoring (Dataset 7). b) Ground truth (consensus) network of Sachs et al. (2005).

the irrepresentability condition rarely being fulfilled for randomly selected drift matrices and the
problem of misspecification of the volatility matrix when applying the Direct Lyapunov Lasso, we
showed that the method is rather robust and is able to detect key features of sparse structures also in
seemingly unfavorable settings. Similarly, the combination of Direct Lyapunov Lasso and extended
BIC is quite intuitive and easy-to-implement, but still manages to recover important structures of a
protein-signaling network purely based on observational data.
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Appendix A. Supplementary Information for Example 2

Here, we give the exact choices of stable drift matrices and the estimation procedure for Example 2.

Let G1 be the path from 1 to 5, and let G2 be the 5-cycle obtained by adding the edge 5 → 1;
see Figure 2. For G1 we define a (well-conditioned) stable matrix M∗

1 by setting the diagonal to
(−2,−3,−4,−5,−6) and the four nonzero subdiagonal entries to 0.65. For G2, we consider two
cases. In the first case, we add the entry m15 = 0.65 to M∗

1 to obtain the matrix M∗
2 . We then

draw 100 samples of size n = 100, 200, 500, 1000, 5000, 104, 105,∞ from N(0,Σ∗
j ) for j = 1, 2,

where Σ∗
j is the covariance matrix obtained from M∗

j . When n = ∞, the population covariance
matrices are taken as input to the method. In the second case, we generate 100 stable matrices
M∗

2,1, . . . ,M
∗
2,100 from M∗

1 by selecting 100 entries m15 according to a uniform distribution on
[0.5, 1]. Let Σ∗

2,1, . . . ,Σ
∗
2,100 be the corresponding equilibrium covariance matrices. In the second

case, we generate one sample from N(0,Σ∗
j ), j = 1, (2, 1), . . . , (2, 100) for each of the sample

sizes given above. Direct Lyapunov Lasso is used for support recovery, with the penalty parameter
λ chosen on a grid λ1 = λmax/10

4, . . . , λ100 = λmax that is equidistant on the log-scale. The
value λmax is the minimal λ-value such that the estimate is diagonal. To implement the Direct
Lyapunov Lasso, we use the R package glmnet, which runs a coordinate descent algorithm for
fitting the Lasso, see Friedman et al. (2010). For each data set, we calculate the maximum accuracy,
the maximum F1-score and the area under the ROC curve. We give the details for the metrics in
Definition G.5.

Appendix B. Volatility Matrix and Identifiability

In this section, we provide more insight into the assumption that the volatility matrix C is known.
Based on this assumption, the question of parameter identifiability is solved for most graphs. This
property of a model is necessary to derive consistency results as we do in this work. We give the
basic idea of parameter identifiability and provide a reference.

Remark B.1 Purely from the covariance matrix Σ, it is not possible to determine whether the true
parameter pair is (M,C) or (γM, γC) with γ > 0, since the Lyapunov equation is scaling invari-
ant. Assuming that C is known is the best we can do when C is unknown up to a multiplicative
scalar γ > 0. This accommodates, in particular, the homoscedastic case with C = γ Ip, where Ip
denotes the identity matrix. From a practical perspective, the case C = 2Ip is the most useful, as
it mirrors the equal variance assumption for structural equation models, see Peters and Bühlmann
(2014). The assumption that C is known might seem to be restrictive, but it is also made in related
work on estimation of the drift matrix for data collected from a single time series Gaı̈ffas and Mat-
ulewicz (2019). Moreover, the above-mentioned identifiability theory needs to be further developed
to adequately address the case where C is unknown. However, we do think that this should be the
subject of further research.

Remark B.2 Even after reducing to the case of a known volatility matrix C, the drift matrix M is
not identifiable without exploiting further structure, such as sparsity. Indeed, the Lyapunov equa-
tion is a symmetric matrix equation with (p + 1)p/2 individual equations, whereas M contains p2

unknown parameters. However, M becomes identifiable when it is known to be suitably sparse.
For example, it can be shown that the Lyapunov equation for a given C never has two different
lower-triangular solutions. In particular, the matrix M from Example 1 can always be uniquely
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recovered from the Lyapunov equation when its graph/support is known. The work by Dettling et al.
(2023) proves that unique recovery of M is always possible for graphs that do not contain cycles
of length two. Many graphs with two-cycles permit almost sure unique recovery when the sparse
entries of the drift matrix are randomly selected according to a continuous distribution, although
here a concise sufficient condition has not been found.

Appendix C. Display of the Matrix A(Σ)

In this section, we present a display of the matrix A(Σ).

Example C.1 When p = 3, the matrix A(Σ) is a 9× 9 matrix and has the form

(1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) (1, 3) (2, 3) (3, 3)



(1, 1) 2Σ11 0 0 2Σ12 0 0 2Σ13 0 0
(1, 2) Σ21 Σ11 0 Σ22 Σ12 0 Σ23 Σ13 0
(1, 3) Σ31 0 Σ11 Σ23 0 Σ12 Σ33 0 Σ13

(2,1) Σ21 Σ11 0 Σ22 Σ12 0 Σ23 Σ13 0
(2, 2) 0 2Σ21 0 0 2Σ22 0 0 2Σ23 0
(2, 3) 0 Σ31 Σ21 0 Σ23 Σ22 0 Σ33 Σ23

(3,1) Σ31 0 Σ11 Σ23 0 Σ12 Σ33 0 Σ13

(3,2) 0 Σ31 Σ21 0 Σ23 Σ22 0 Σ33 Σ23

(3, 3) 0 0 2Σ31 0 0 2Σ23 0 0 2Σ33

.

Rows with an italicized index correspond to strictly upper triangular entries in the Lyapunov equa-
tion from (1.2).

Appendix D. Deterministic Result on Support Recovery

In this section, we provide the deterministic result that Theorem 2 is based on. We adapt The-
orem 1 by Lin et al. (2016) to arrive at our deterministic result. This requires resolving only a
few differences, as we describe in Remark D.2. The underlying construction for the proof is the
Primal-Dual-Witness (PDW) method (Wainwright, 2009).

Theorem D.1 Let M∗ ∈ Stabp be the true drift matrix, and let S be its support. Assume that Γ∗
SS

is invertible and that the irrepresentability condition

|||Γ∗
ScS(Γ

∗
SS)

−1|||∞ < 1− α (D.1)

holds with parameter α ∈ (0, 1]. Furthermore, assume that Γ̂ is a matrix such that

|||(∆Γ)·S |||∞ < ϵ1, ∥∆g∥∞ < ϵ2,

with ϵ1 ≤ α/(6cΓ∗). If

λ >
3(2− α)

α
max{cM∗ , ϵ1, ϵ2},

then the following statements hold:
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a) The LSGE M̂ is unique, has its support included in the true support (Ŝ ⊆ S), and satisfies

||M̂ −M∗||∞ <
2cΓ∗

2− α
λ.

b) If

min
1≤j<k≤m

(j,k)∈S

|M∗
jk| >

2cΓ∗

2− α
λ,

then Ŝ = S and sign(M̂jk) = sign(M∗
jk) for all (j, k) ∈ S.

Proof The proof is very similar to the proof of Theorem 1 in Lin et al. (2016). However, there are
a few subtle differences and missing explanations that we add in this proof. For all the calculations
that are already carried out in Lin et al. (2016), we refer to the original manuscript for these passages.

We use the PDW technique to prove the result. The estimate M̂ satisfies the KKT conditions

Γ̂vec(M̂)− ĝ + λẑ = 0, (D.2)

where ẑ ∈ ∂∥vec(M̂)∥1 is an element of the subdifferential of the ℓ1-norm, that is, the elements of
the vector ẑ ∈ Rp2 satisfy that elements

ẑ(i,j) =

{
sign(vec(M̂)(i,j)) if vec(M̂)(i,j) ̸= 0,

∈ [−1, 1] if vec(M̂)(i,j) = 0.

Here, we index ẑ by pairs (i, j) with 1 ≤ i, j ≤ p. The optimization problem in (2.5) is convex as Γ
is positive semidefinite by construction, and the KKT conditions are necessary and sufficient for a
solution to be optimal for the problem. The PDW technique constructs, in three steps, a primal-dual
pair (M̂, ẑ) that satisfies (D.2) and has the support of M̂ contained in S.

Since the true signal M∗ ∈ Stabp and C ∈ PDp, there exists a unique positive definite Σ∗

determined by the continuous Lyapunov equation in (1.2). As a result

Γ∗vec(M∗)− g∗ = 0,

and we can rewrite the KKT conditions in (D.2) in the following block form[
Γ∗
SS Γ∗

SSc

Γ∗
ScS Γ∗

ScSc

] [
(∆M )S
(∆M )Sc

]
+

[
(∆Γ)SS (∆Γ)SSc

(∆Γ)ScS (∆Γ)ScSc

] [
vec(M̂)S
vec(M̂)Sc

]
+

[
(∆g)S
(∆g)Sc

]
+ λ

[
ẑS
ẑSc

]
=

[
0
0

]
,

where ∆M = vec(M̂)− vec(M∗). We now construct a pair (M̂, ẑ) that satisfies the equation.
Step 1. We solve the restricted optimization problem

vec(M̃) = arg min
vec(M)Sc=0

1

2
vec(M)⊤Γ̂vec(M)− ĝ⊤vec(M) + λ∥vec(M)∥1. (D.3)
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Since Γ∗
SS is invertible, under our assumptions, Γ̂SS is also invertible. The matrix Γ̂SS can be

expressed as

Γ̂SS = Γ∗
SS + (Γ̂SS − Γ∗

SS) = Γ∗
SS + (∆Γ)SS

Factoring out Γ∗
SS , we obtain

Γ∗
SS + (∆Γ)SS = Γ∗

SS(I|S| + (Γ∗
SS)

−1(∆Γ)SS)

where I|S| denotes the identity matrix of size |S| × |S|. Then, the matrix Γ̂SS is invertible if

ρ((Γ∗
SS)

−1(∆Γ)SS) < 1.

This is true as the spectral norm is bounded by the maximum absolute row sum norm and

|||(Γ∗
SS)

−1(∆Γ)SS |||∞ ≤ |||(Γ∗
SS)

−1|||∞|||(∆Γ)SS |||∞ < 1

with the second inequality being true because of |||(∆Γ)SS |||∞ < ϵ1 < α/6cΓ∗ < 1/cΓ∗ and cΓ∗ =
|||(Γ∗

SS)
−1|||∞.

Therefore, the solution vec(M̃) is unique. Furthermore, we have

(vec(M̃))S = (Γ̂SS)
−1(ĝS − λsign((vec(M̃))S).

Let ∆̃M = vec(M̃)− vec(M∗). Following the proof of Theorem 1 in Lin et al. (2016), we have

∥∆̃M∥∞ ≤ cΓ∗

1− α/6
· 6− α

3(2− α)
λ =

2cΓ∗

2− α
λ. (D.4)

Step 2. Let z̃S = sign(vec(M̃)S). Then z̃S ∈ ∂∥vec(M̃)∥1.
Step 3. Let

z̃Sc =
1

λ

[
−Γ∗

ScS(Γ
∗
SS)

−1((∆Γ)SSvec(M̃)S + (∆g)S) + (∆Γ)ScSvec(M̃)S

+(∆g)Sc + λΓ∗
ScS(Γ

∗
SS)

−1sign(vec(M̃)S)
]
. (D.5)

We show that ∥z̃Sc∥1 < 1, which is a dual feasibility condition. Once this is shown, we have that
the pair (vec(M̃), z̃) satisfies (D.2) by construction, and (vec(M̂), ẑ) = (vec(M̃), z̃) is the solution
to the optimization problem in (2.5). Furthermore, Lemma 1 of Wainwright (2009) implies that the
strict dual feasibility implies that Ŝ ⊆ S. Following Theorem 1 in Lin et al. (2016), we have

∥z̃Sc∥∞ ≤ 2− α

λ
∥(∆Γ)·Svec(M∗)S∥∞︸ ︷︷ ︸

G1

+
2− α

λ
|||(∆Γ)·S |||∞∥∆S∥∞︸ ︷︷ ︸

G2

+
2− α

λ
∥∆g∥∞︸ ︷︷ ︸
G3

+(1− α).

For G1, we have that

G1 ≤
2− α

λ
|||(∆Γ)·S |||∞∥vec(M∗)∥∞ =

2− α

λ
cM∗ϵ1 ≤

α

3
.
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For G3, we have that

G3 =
2− α

λ
∥∆g∥∞ <

2− α

λ
ϵ2 ≤

α

3
.

Finally, for G2, we have that

G2 <
2− α

λ
· α

6cΓ∗
· ϵ1 ·

cΓ∗

1− α/6
· 6− α

3(2− α)
<

α

3
.

Combining these bounds, we have that ∥z̃Sc∥∞ < 1, which establishes the strict dual feasibility.
Finally, for any (j, k) ∈ S, we have that

|M̂jk| ≥ |M∗
jk| − |M̂jk −M∗

jk| > min
1≤j<k≤p
(j,k)∈S

|M∗
jk| − ∥vec(M̂)− vec(M∗)∥∞ > 0,

which shows that Ŝ = S.

Remark D.2 The distinction between Theorem D.1 and Theorem 1 of Lin et al. (2016) lies in
the steps of our analysis that involve the maximal absolute row sum norm in the bound for the
difference between the estimated Hessian Γ̂ and the true Hessian Γ⋆. In Lin et al. (2016), the bound
was based on the maximal entry. This difference requires adjustments in certain steps of the proof.
Consequently, our above proof also provides a more detailed explanation of certain arguments that
were omitted by Lin et al. (2016), but are of greater significance in our work. For example, we
address the issue of invertibility of Γ̂. We also indicate when parts of the proof by Lin et al. (2016)
are unaffected to ensure clarity and consistency.

Appendix E. Probabilistic Analysis

The Direct Lyapunov Lasso depends on the loss being sufficiently close to its population version in
the sense of ∆Γ = Γ̂− Γ∗ and ∆g = ĝ − g∗ being sufficiently small. In this section, we bound ∆Γ

and ∆g in terms of ∆Σ = Σ̂ − Σ∗ and, subsequently, use a concentration inequality for |||∆Σ|||2 to
probabilistically bound ∆Γ and ∆g.

Deriving an inequality for Γ̂ is most critical as the matrix contains sums of products of covari-
ances and a careful analysis is required to obtain a non-trivial requirement on the sample size. Let
Γ(Σ) = Γ1(Σ) + Γ2(Σ), where

Γ1(Σ) = 2(Σ2 ⊗ Ip) and Γ2(Σ) = (Σ⊗ Σ)K(p,p) +K(p,p)(Σ⊗ Σ).

Lemma E.1 Let cΣ∗ = |||Σ∗|||2. Then

|||Γ1(Σ̂)− Γ1(Σ
∗)|||2 ≤ 2|||∆Σ|||22 + 4cΣ∗ |||∆Σ|||2.

Proof Using that |||A⊗B|||2 = |||A|||2|||B|||2, we obtain that

|||Γ1(Σ̂)− Γ1(Σ
∗)|||2 = 2|||(Σ̂2 − (Σ∗)2)⊗ Ip)|||2

= 2|||Σ̂2 − (Σ∗)2)|||2
≤ 2|||∆Σ|||22 + 2|||∆ΣΣ

∗|||2 + 2|||Σ∗∆Σ|||2.

20533



ON THE LASSO FOR GRAPHICAL CONTINUOUS LYAPUNOV MODELS

Since the spectral norm of a symmetric matrix is the absolute maximal eigenvalue, and the eigen-
values of a squared matrix are the squared eigenvalues of the original matrix, we find as claimed
that

|||Γ1(Σ̂)− Γ1(Σ
∗)|||2 ≤ 2|||∆Σ|||22 + 4|||Σ∗|||2|||∆Σ|||2.

Lemma E.2 Let cΣ∗ = |||Σ∗|||2. Then

|||Γ2(Σ̂)− Γ2(Σ
∗)|||2 ≤ 2|||∆Σ|||22 + 4cΣ∗ |||∆Σ|||2.

Proof The commutation matrix K(p,p) is an orthonormal matrix. Therefore, |||K(p,p)|||2 = 1 and

|||K(p,p)(Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗)|||2 = |||(Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗)K(p,p)|||2 = |||Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗|||2.

We obtain that

|||Γ2(Σ̂)− Γ2(Σ
∗)|||2 ≤2|||Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗|||2

=2|||∆Σ ⊗∆Σ +∆Σ ⊗ Σ∗ +Σ∗ ⊗∆Σ +Σ∗ ⊗ Σ∗ − Σ∗ ⊗ Σ∗|||2
≤2|||∆Σ ⊗∆Σ|||2 + 2|||∆Σ ⊗ Σ∗|||2 + 2|||Σ∗ ⊗∆Σ|||2
≤2|||∆Σ|||22 + 4|||Σ∗|||2|||∆Σ|||2,

which was the claim.

For a matrix A ∈ Rp×d, it holds that |||A|||∞ ≤
√
d|||A|||2. Then it follows from Lemma E.1 and

Lemma E.2 that
|||(∆Γ)·S |||∞ ≤

√
d
(
4|||∆Σ|||22 + 8cΣ∗ |||∆Σ|||2

)
. (E.1)

We note that bounding |||(∆Γ)·S |||∞ using ∥(∆Γ)·S∥∞, as was done in Lin et al. (2016), leads to a
worse bound. While such an approach might seem simpler, it does not exploit the structure of the
Hessian Γ in Lemma 1.

We now provide a bound on ∥∆g∥∞.

Lemma E.3 We have ∥∆g∥∞ ≤ 2cC |||∆Σ|||2, where cC = ∥vec(C)∥2.

Proof Similar to the proof of Lemma E.1 and Lemma E.2, we have

∥∆g∥∞ ≤ ∥∆g∥2
≤ cC |||Σ∗ ⊗ Ip − (Ip ⊗ Σ∗)K(p,p) − Σ̂⊗ Ip + (Ip ⊗ Σ̂)K(p,p)|||2
≤ cC(|||Ip ⊗ (Σ̂− Σ∗)|||2 + |||(Σ̂− Σ∗)⊗ Ip|||2) (since |||K(p,p)|||2 = 1)

= 2cC |||∆Σ|||2.

The bounds in (E.1) and Lemma E.3 depend on the spectral norm of ∆Σ. We adapt Theorem
6.5 in Wainwright (2019) to our setting to upper bound |||∆Σ|||2 under the assumption that (xi)ni=1

are sub-Gaussian.
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Theorem E.4 (Theorem 6.5. in Wainwright (2019)) Suppose that (Xi)
n
i=1 are σ sub-Gaussian

random variables. Then the sample covariance matrix Σ̂ in (1.3) satisfies

P

(
|||Σ̂− Σ∗|||2

σ2
≥ c1

{√
p

n
+

p

n

}
+ δ

)
≤ c2 exp(−c3nmin{δ, δ2}) ∀δ ≥ 0,

where {cj}3j=0 are universal constants.

Corollary E.5 Let {cj}3j=1 be the universal constants from Theorem E.4, but ensuring that c1 >

max{1, 1/|||Σ∗|||2}. Let (Xi)
n
i=1 be Gaussian random variables. For any ϵ ∈ (4c1|||Σ∗|||2

√
p/n, 2),

we have

P
(
|||Σ̂− Σ∗|||2 ≥ ϵ

)
≤ c2 exp

(
− c3
4max(1, |||Σ∗|||22)

nϵ2
)
.

Proof A Gaussian random vector is sub-Gaussian with parameter σ = |||Σ∗|||2.
Set δ = min

(
ϵ

2|||Σ∗|||2 ,
ϵ
2

)
. Since p

n < ϵ2

16c21|||Σ∗|||22
, we have

|||Σ∗|||2
(
c1

{√
p

n
+

p

n

}
+ δ

)
< c1|||Σ∗|||2

{
ϵ

4c1|||Σ∗|||2
+

ϵ2

16c21|||Σ∗|||22

}
+

ϵ

2

=
ϵ

4
+

ϵ2

16c1|||Σ∗|||2
+

ϵ

2
<

ϵ

4
+

ϵ

4
+

ϵ

2
= ϵ.

Since δ < 1, it holds that δ2 < δ. Then

P
(
|||Σ̂− Σ∗|||2 ≥ ϵ

)
≤ P

(
|||Σ̂− Σ∗|||2 ≥ |||Σ∗|||2

(
c1

{√
p

n
+

p

n

}
+ δ

))
≤ c2 exp(−c3nδ

2) = c2 exp

(
− c3
4max(1, |||Σ∗|||22)

nϵ2
)
.

We finally have the following result.

Lemma E.6 In the event that

|||∆Σ|||2 = |||Σ̂− Σ∗|||2 < min

{
ϵ1√

d(4 + 8cΣ∗)
,
ϵ2
2cC

}
it holds that

|||(∆Γ)·S |||∞ < ϵ1 and ∥∆g∥∞ < ϵ2.

Proof The result follows directly from (E.1), where |||∆Σ|||22 ≤ |||∆Σ|||2, and Lemma E.3.
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Appendix F. Proof Probabilistic Guarantee on Support Recovery

Using the preparation in Appendix E, we prove the main result.

Proof [Proof of Theorem 2] We prove the result in three steps.

1) It has to hold that

ϵ√
d(4 + 8cΣ∗)

,
ϵ

2cC
∈
(
4c1|||Σ∗|||2

√
p/n, 2

)
.

2) Then Corollary E.5 gives us that

|||∆Σ|||2 < min

{
ϵ√

d(4 + 8cΣ∗)
,

ϵ

2cC

}
with probability at least 1 − c2 exp (−τ1p). Then |||(∆Γ)·S |||∞ < ϵ and ∥∆g∥∞ < ϵ, using
Lemma E.6.

3) We verify that ϵ ≤ α
6cΓ∗ under the assumption on the sample size. Then, the result follows

from Theorem D.1.

In the following, we go through the steps in detail.

1) Using the lower bound on the sample size, it holds that

ϵ√
d(4 + 8cΣ∗)

=

√
τ1c̃dp/n√

d(4 + 8cΣ∗)

<

√
τ1c̃dp/τ1c̃dpmax{c2∗, 1/4}√

d(4 + 8cΣ∗)

=

√
1/max{c2∗, 1/4}√
d(4 + 8cΣ∗)

≤
√
1/max{c2∗, 1/4}

≤
√
4 = 2.

Using τ1 ≥ 1, we obtain

ϵ√
d(4 + 8cΣ∗)

=

√
τ1c̃dp/n√

d(4 + 8cΣ∗)

>

√
c̃
√

p/n

(4 + 8cΣ∗)

≥

√
(4 + 8cΣ∗)216c21c

2
Σ∗

√
p/n

(4 + 8cΣ∗)

= 4c1cΣ∗
√

p/n.
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2) Using Corollary E.5 we obtain

P
(
|||∆Σ|||2 ≥

ϵ√
d(4 + 8cΣ∗)

)
≤c2 exp

(
− c3
4max(1, c2Σ∗)

n
τ1c̃dp/n

d(4 + 8cΣ∗)2

)
≤c2 exp

(
− c3c̃

4max(1, c2Σ∗)(4 + 8cΣ∗)2
τ1p

)
≤c2 exp (−τ1p)

3) We verify that ϵ ≤ α
6cΓ∗ under the assumption on the sample size.

ϵ =
√
τ1c̃dp/n

≤
√

τ1c̃dp/τ1c̃dpmax{c2∗, 1/4}

=
√

1/max{c2∗, 1/4}

≤ α

6cΓ∗

For the same choice of ϵ and ϵ/2cC steps 1) - 3) can be carried out analogously and we obtain

P
(
|||∆Σ|||2 ≥

ϵ

2cC

)
≤ c2 exp (−τ1dp) .

The result follows by applying Theorem D.1.

Appendix G. Irrepresentability Condition

This section is divided into four parts. First, we give the proof of Theorem 3 and provide an illustra-
tion. Second, we discuss a weaker notion of the irrepresentability condition (4.1) that is necessary
for the recovery of the support and is more often fulfilled. Third, we provide a detailed simulation
study comparing the fulfillment of the irrepresentability condition and its weaker notion. Finally,
we show that the impact of the weak irrepresentability condition is already dramatically increasing
the performance of the Direct Lyapunov Lasso.

G.1. Irrepresentability Proof and Example

Proof [Theorem 3] Let Σ0 = Σ(M0, C) be the covariance matrix associated to the drift matrix M0.
As we assume that C = 2Ip, we have

Σ0 = −(M0)−1 = diag(1/d1, . . . , 1/dp).

Writing Γ0 = Γ(Σ0) for the resulting Gram matrix, we define the local irrepresentability constant

ρ̃G(M
0) = |||Γ0

Sc
GSG

(Γ0
SGSG

)−1|||∞.
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If a small open ball around M0 contains a matrix M , then the ball also contains all matrices that
are obtained from M by negating one or more of the off-diagonal entries. Hence, by continuity, the
irrepresentability condition for support SG holds uniformly over a neighborhood of M0 if and only
if (i) the submatrix Γ0

SGSG
= (Γ0)SGSG

is invertible and (ii) ρ̃G(M0) < 1.
Since Σ0 is diagonal, plugging it into the coefficient matrix from (2.2) gives a symmetric matrix

with entries

A(Σ0)(i,j),(k,l) =


2/dl if i = j = k = l,

1/dl if i = k, j = l and k ̸= l,

1/dl if i = l, j = k and k ̸= l,

0 otherwise.

The entries of the Gram matrix Γ0 = Γ(Σ0) are the inner products of the columns of A(Σ0). That
is,

Γ0
(i,j),(k,l) =


4/d2l if i = j = k = l,

2/d2l if i = k, j = l and k ̸= l,

2/(dkdl) if i = l, j = k and k ̸= l,

0 otherwise.

Note that the only off-diagonal entries in Γ0 occur when the row index is (i, j) and the column
index is (j, i) with i ̸= j. We display the matrices A(Σ0) and Γ0 for a graph with p = 3 nodes in
Example G.1.

Case I: Graph contains a two-cycle. Suppose G contains a two-cycle, say k → l → k with
k ̸= l. The two edges on the cycle index two columns of A(Σ0) that are linearly dependent.
Indeed, the column indexed by (k, l) has only two nonzero entries in rows (k, l) and (l, k), both of
which are equal to dl, and the same holds for the column indexed (l, k) except that the common
value of its two nonzero entries is dk. The columns (k, l) and (l, k) of Γ0 are similarly linearly
dependent. Therefore, the submatrix Γ0

SGSG
fails to be invertible, if the graph G contains a two-

cycle. Consequently, the irrepresentability condition holds uniformly over a neighborhood of M0

only if G is free of two-cycles, in which case we call G simple.
Case II. Graph is simple. In the rest of the proof suppose that G is simple. In this case, the

submatrix Γ0
SGSG

is diagonal with entries

Γ0
(k,l),(k,l) =

{
4/d2l if k = l,

2/d2l if k ̸= l,

where l → k is an edge of G. The second submatrix of interest, Γ0
Sc
GSG

, also has only one nonzero
entry in each column. If l → k is an edge, indexing column (k, l), then the entry is

(Γ0
Sc
GSG

)(l,k),(k,l) = 2/(dkdl).
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Note that G being simple implies that k → l is not an edge of G. Multiplying the second submatrix
to the inverse of the first, we obtain that

(Γ0
Sc
GSG

(Γ0
SGSG

)−1)(i,j),(l,k)

=

{
dk/dl if (i, j) = (k, l) and (l, k) ∈ SG, (k, l) ∈ Sc

G,

0 otherwise.

Since ρ̃G(M
0) is obtained via the maximum absolute row sum, we have

ρ̃G(M
0) < 1 if and only if di/dj < 1 for all pairs (j, i) ∈ SG, or equivalently, all edges i → j ∈ E,

as the theorem claims. If G contains a cycle of at least length 3, there exists a sequence of edges in
E such that i1 → i2 → i3 → im → i1 with i1, . . . , im ∈ V . Then, we have ρ̃G(M

0) < 1 if and
only if

di1/di2 < 1, di2/di3 < 1, . . . dim−1/dim < 1, dim/di1 < 1.

Multiplying yields

di1/di2 · di2/di3 · . . . · dim−1/dim · dim/di1 = 1

which contradicts that all individual quotients are smaller than one.

We illustrate the matrix calculations in the proof of Theorem 3 for a graph on p = 3 nodes.

Example G.1 We consider the 3-chain G = (V,E) displayed in Figure 1, and the matrices

M0 = diag(−d1,−d2,−d3) and Σ0 = diag(1/d1, 1/d2, 1/d3).

Ordering rows as
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) and columns as
(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3), we find

A(Σ0) =



2/d1 0 0 0 0 0 0 0 0
0 1/d1 0 1/d2 0 0 0 0 0
0 0 1/d1 0 0 0 1/d3 0 0
0 1/d1 0 1/d2 0 0 0 0 0
0 0 0 0 2/d2 0 0 0 0
0 0 0 0 0 1/d2 0 1/d3 0
0 0 1/d1 0 0 0 1/d3 0 0
0 0 0 0 0 1/d2 0 1/d3 0
0 0 0 0 0 0 0 0 2/d3
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and for Γ0 using the labelling (1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3) both for
rows and columns we obtain

4/d21 0 0 0 0 0 0 0 0
0 2/d21 0 2/d1d2 0 0 0 0 0
0 0 2/d21 0 0 0 2/d1d3 0 0
0 2/d1d2 0 2/d22 0 0 0 0 0
0 0 0 0 4/d22 0 0 0 0
0 0 0 0 0 2/d22 0 2/d2d3 0
0 0 2/d1d3 0 0 0 2/d23 0 0
0 0 0 0 0 2/d2d3 0 2/d23 0
0 0 0 0 0 0 0 0 4/d23


.

Since

SG = {(1, 1), (2, 1), (2, 2), (3, 2), (3, 3)} and

Sc
G = {(3, 1), (1, 2), (1, 3), (2, 3)}

we obtain

(Γ0
SGSG

)−1 = diag(d21/4, d
2
1/2, d

2
2/4, d

2
2/2, d

2
3/4),

Γ0
Sc
GSG

=


0 0 0 0 0
0 2/d1d2 0 0 0
0 0 0 0 0
0 0 0 2/d2d3 0

 ,

and

Γ0
Sc
GSG

(Γ0
SGSG

)−1 =


0 0 0 0 0
0 d1/d2 0 0 0
0 0 0 0 0
0 0 0 d2/d3 0

 .

To have |||Γ0
Sc
GSG

(Γ0
SGSG

)−1|||∞ < 1, we need d1/d2 < 1 and d2/d3 < 1. With the edges 1 → 2 and
2 → 3 present in G, this requirement coincides with the statement of Theorem 3.

G.2. Necessity of the Weak Irrepresentability Condition

In Theorem 2 we show that the irrepresentability condition

|||Γ∗
ScS(Γ

∗
SS)

−1|||∞ ≤ (1− α), α ∈ (0, 1)

is sufficient for model selection consistency. As we show in the subsequent Proposition, a
weaker version of the condition is indeed necessary for model selection consistency.

Definition G.1 Let M∗ ∈ Stabp and S = S(M) its corresponding support set. Then, the weak
irrepresentability condition is fulfilled if

∥Γ∗
ScS(Γ

∗
SS)

−1sign(vec(M∗))S∥∞ ≤ 1. (G.1)
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If the slightly weaker condition (G.1) is violated and the entries in the drift matrix fulfill a
minimal signal strength condition, we cannot recover the correct support asymptotically.

Proposition G.2 Consider the setting of Corollary 2. Let M∗ ∈ Stabp with S = S(M∗) such that

min
1≤j<k≤p
(j,k)∈S

|M∗
jk| >

2cΓ∗

2− α
λ

holds and that the weak irrepresentability condition (G.1) is violated. For a fixed positive definite
matrix C, the equilibrium distribution for M∗ is given by N (0,Σ∗). Let X1, . . . , Xp ∈ Rp be an
i.i.d sample of centered observations and let

Σ̂n =
1

n

n∑
i=1

XiX
⊤
i

be the sample covariance. We denote the estimate obtained by the Direct Lyapunov Lasso (1.4)
using Σ̂n by M̂n. Then it holds that

P(S(M̂n) = S(M∗)) −→ 0 for n → ∞.

Proof The proof is based on the proof of Theorem D.1. Since the optimization problem (1.4) is
convex, the KKT - conditions

Γ̂nvec(M̂n)− ĝn + λẑn = 0, (G.2)

with

ẑn(i,j) =

{
sign(vec(M̂n)(i,j)) if vec(M̂n)(i,j) ̸= 0,

∈ [−1, 1] if vec(M̂n)(i,j) = 0,

are necessary and sufficient for optimality of M̂n. Assume that S(M̂n) = S(M∗). Then, M̂n is the
unique solution of the support restricted problem (D.3) and following the calculations in the proof
of Theorem D.1, the subgradient ẑnSc is given by

ẑnSc =
1

λ

[
−Γ∗

ScS(Γ
∗
SS)

−1((∆n
Γ)SSvec(M̂n)S + (∆n

g )S) + (∆n
Γ)ScSvec(M̂n)S

+(∆n
g )Sc + λΓ∗

ScS(Γ
∗
SS)

−1sign(vec(M̂n)S)
]
. (G.3)

We need ∥z̃nSc∥∞ ≤ 1 for M̂n to satisfy the KKT-condtions (G.2). Using Lemma E.6 together with

Corollary E.5, we obtain that ∆n
g

P→ 0 and that ∆n
Γ

P→ 0. Moreover, the inequality (D.4) holds for
n large enough for M̂n resulting in

∥vec(M̂n)S − vec(M∗)S∥∞ ≤ 2cΓ∗

2− α
λ.

Then, we obtain for the weak irrepresentability condition that

Γ∗
ScS(Γ

∗
SS)

−1sign(vec(M̂n)S) = Γ∗
ScS(Γ

∗
SS)

−1sign(vec(M∗)S).
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Therefore, we obtain

∥z̃nSc∥∞
P→ ∥Γ∗

ScS(Γ
∗
SS)

−1sign(vec(M∗))S)∥∞ > 1.

Asymptotically, the subgradient condition is violated for M̂n with S(M̂n) = S(M∗) and probabil-
ity 1. Hence,

P(S(M̂n) = S(M∗)) −→ 0

as the sample size n → ∞.

Remark G.3 It is also easily possible to construct drift matrices fulfilling the weak irrepresentabil-
ity condition (G.1). The same construction as in Theorem 3 can be used.

G.3. Simulation Studies: Irrepresentability Condition vs. Weak Irrepresentability Condition

In this section, we want to answer two urgent questions. We have shown that for every DAG there
exist non-trivial stable drift matrices such that the irrepresentability condition (3.1) holds. The same
is possible for the weak irrepresentability condition (G.1). These signals were constructed to be
in a neighborhood of diagonal matrices whose diagonal entries are ordered in accordance with the
topological ordering of the DAG. As the size of the graphs increases, this diagonal ordering becomes
more restrictive. Moreover, there might be signals that have a different diagonal ordering, but still
fulfill the irrepresentability condition. Therefore, the first question is how often the conditions are
fulfilled when selecting random drift matrices according to a predetermined distribution.

Given a graph G = (V,E), we generate signals M∗ ∈ Stabp(E) by drawing from the uniform
distribution on the subset of matrices in Stabp(E) that have all entries in [−1, 1]. The sampling is
carried out by rejection sampling, with rejection of matrices that are not stable.

We consider connected graphs with p = 2, 3, 4 nodes and at most p(p + 1)/2 edges. This
includes all DAGs but also many cyclic graphs. Furthermore, we only consider one labeling of ver-
tices for every graph. For every graph, we check for one million simulated signals M∗ if ρ(M∗) < 1
and store the signals that meet the irrepresentability condition (3.1). The frequency of signals that
meet the irrepresentability condition is shown in Figure G.4.

The frequency with which the irrepresentability condition is fulfilled decreases with increasing
number of edges. The decrease is not monotonic in the number of edges, since the restrictiveness is
tied to whether an edge adds a new condition on the quotient of the diagonal elements as presented
in Theorem 3. An investigation of the drift matrices in Figure G.1 shows that those who fulfill the
irrepresentability condition (3.1) all have a diagonal ordering according to our theoretical result.

Example G.2 Consider the graph shown in Figure G.2. The drift matrices supported on this graph
have the highest frequency of irrepresentability among the graphs with three edges in Figure G.1.
Since there is no edge between the nodes {1, 2, 3}, the only conditions on the diagonal are d1/d4 <
1, d2/d4 < 1 and d3/d4 < 1. Translated, this means that d4 has to be bigger than d1, d2, d3.

Following Theorem D.1, the conditions on the diagonal elements for the drift matrices supported
in Figure G.3 are d1/d2 < 1, d2/d3 < 1 and d3/d4 < 1. In particular, these conditions also contain
the requirement that d4 has to be bigger than d1, d2, d3. In addition, they contain the requirement
that d3 has to be bigger than d1, d2 and that d2 has to be bigger than d1.
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Figure G.1: Frequency of the irrepresentability condition (3.1) being met for one million simulated stable
matrices M∗ for DAGs up to 4 nodes. The number of edges is given by the coloring.

1 2

34

Figure G.2: The graph on three nodes with highest frequency of simulated signals satisfying irrepresentabil-
ity.

Another important observation is that the condition is extremely restrictive when selecting stable
drift matrices according to a uniform distribution. In Figure G.1 we observe that already if a graph
on 4 nodes has 3 or more edges, the irrepresentability condition is only fulfilled in less than 1
% of the cases. There even exist some graphs for which the irrepresentability condition is never
met. These graphs are displayed in Table 1. We tried to find stable drift matrices by applying the
above mentioned selection procedure ten million times to these critical graphs. For only two of the
graphs we were able to select drift matrices fulfilling the irrepresentability condition. Theorem 3
guarantees that there must exist stable drift matrices supported over the two remaining graphs. Using
Theorem 3, we put one choice for each of the two graphs in red in Table 1.
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1 2 3 4

Figure G.3: The path from 1 to 4.

Table 1: Left: The four graphs where none of the one million randomly selected drift matrices M fulfilled
the irrepresentability condition in Figure G.1. Right: Drawing another ten million drift matrices, we obtain
for the second and third graph drift matrices that fulfill the irrepresentability condition (black). For the first
and fourth graph, we use Theorem 3 to construct drift matrices that fulfill the irrepresentability condition
(red).

1 2

34


−0.5 0 0 0.05
0.05 −1 0.05 0.05
0.05 0 −0.75 0
0 0 0 −0.25



1 2

34


−0.584860503 0.03949857 0.0000000 −0.05605342
0.000000000 −0.35729470 0.0000000 −0.00303305
0.005031837 −0.08209815 −0.7782385 0.00000000
0.000000000 0.00000000 0.0000000 −0.22854795



1 2

34


−0.7388917 0.0000000 −0.1277403 0.01491351
−0.1184546 −0.9615896 0.0000000 −0.09631827
0.0000000 0.0000000 −0.4652617 0.04858871
0.0000000 0.0000000 0.0000000 −0.23807701



1 2

34


−1 0.05 0.05 0.05
0 −0.75 0.05 0.05
0 0 −0.5 0.05
0 0 0 −0.25



We also carried out the simulation study for simple cyclic graphs. None of the cyclic graphs on
4 nodes fulfilled the irrepresentability condition for ten million randomly selected drift matrices for
each graph structure. This is not a proof that the irrepresentability condition (3.1) is never met for
a cyclic graph, but at least a strong computational evidence. In a next step we carry out the same
sampling procedure for graphs on 4 nodes for the weak irrepresentability condition (G.1) than we
did previously for the irrepresentability condition (3.1). The results are displayed in Figure G.4.

Table 2: Left: All simple cyclic graphs with 4 nodes, up to relabelling of the nodes. Edges on cycles are
highlighted in red. Right: Specific choice of matrices M matching the graph on the left and fulfilling the
weak irrepresentability condition (G.1), all entries are rounded to 10 digits.

1 2

34


−0.0444620792 −0.5733500496 0.0000000000 0.0000000000
0.0000000000 −0.0153532191 0.0054622865 0.0000000000
0.8317033453 0.0000000000 −0.8824298000 0.0000000000
0.0000000000 0.0000000000 0.0000000000 −0.3405775614



1 2

34


−0.9780979650 0.1042322782 0.0000000000 0.3752107187
0.0000000000 −0.7998522464 −0.4260628200 0.0000000000
0.2079165080 0.0000000000 −0.6517819995 0.0000000000
0.0000000000 0.0000000000 0.0000000000 −0.8112314143
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1 2

34


−0.6792729949 −0.6022921619 0.0000000000 0.0000000000
0.0000000000 −0.1733464822 0.5762203289 0.0000000000
0.0383909321 0.0000000000 −0.1785332798 0.0000000000
0.2089620568 0.0000000000 0.0000000000 −0.6556593408



1 2

34


−0.5008390141 0.0000000000 −0.3301411900 0.0000000000
0.0000000000 −0.0754047022 0.0000000000 −0.2224099669
0.0000000000 0.9894780936 −0.8953534714 0.0000000000
−0.4568265276 0.0000000000 0.0000000000 −0.6545859827



1 2

34


−0.9852473154 0.0237436080 0.0000000000 −0.1801203806
0.0000000000 −0.9146776730 −0.6301784553 −0.3625553502
0.0314035588 0.0000000000 −0.7371845325 0.0000000000
0.0000000000 0.0000000000 0.0000000000 −0.2936787312



1 2

34


−0.6168078599 −0.4643970933 0.0000000000 0.0000000000
0.0000000000 −0.8265482867 0.0118716909 0.4726413568
0.3998511671 0.0000000000 −0.8792877044 0.0000000000
−0.5496377517 0.0000000000 0.0000000000 −0.7865214688



1 2

34


−0.2066421132 −0.0034684981 0.1383411973 0.0000000000
0.0000000000 −0.9617960961 0.0000000000 −0.7641737331
0.0000000000 −0.3169060163 −0.7561623598 0.0000000000
−0.7012514030 0.0000000000 0.0000000000 −0.2419070452



1 2

34


−0.8234110032 −0.6069790549 0.0000000000 0.0000000000
0.0000000000 −0.4768311884 0.0000000000 −0.5430481988
−0.1151224086 0.5541216009 −0.8947804412 0.0000000000
−0.1818817416 0.0000000000 0.0000000000 −0.6244826200



1 2

34


−0.7566250684 0.1517044385 0.0000000000 0.0068894741
0.0000000000 −0.9917302341 0.5077337530 0.3153799707
0.0895817326 0.0000000000 −0.7472212519 −0.1730670566
0.0000000000 0.0000000000 0.0000000000 −0.3600410065



1 2

34


−0.8680259003 0.4557597358 −0.0925138230 0.0000000000
0.0000000000 −0.9139470784 −0.1607573517 0.3138186112
0.0000000000 0.0000000000 −0.9212171654 −0.9521876550
−0.5101859323 0.0000000000 0.0000000000 −0.2475099666



1 2

34


−0.6688544271 0.0000000000 −0.7215559445 0.0000000000
−0.4272868899 −0.9967063963 0.0374428187 −0.8531300114
0.0000000000 0.0000000000 −0.6779836947 −0.5781906121
−0.6749138949 0.0000000000 0.0000000000 −0.5980373188



Comparing the results in Figure G.4 with those in Figure G.1, we observe that the weak irrepre-
sentability condition is fulfilled much more often than the irrepresentability condition. The reason
is that the sign vector in (G.1) enables fortunate cancellation. Moreover, this allows us to find a
suitable drift matrix for every simple cyclic graph on 4 nodes. In Table 2, we list all cyclic graphs
on 4 nodes together with examples of drift matrices that satisfy the irrepresentability condition. The
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Figure G.4: Frequency of the weak irrepresentability condition (G.1) being met for one million simulated
stable matrices M∗ for DAGs up to 4 nodes. The number of edges is given by the coloring.
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34

Figure G.5: 3-cycle in a four node setting.

selection of graphs includes all graphs that contain at least one directed cycle and are simple (i.e.,
do not contain a two-cycle).

Calculations are carried out with the statistical software R. A natural suspicion is that these very
few matrices were only selected due to numerical imprecision. In addition, one might wonder if
the 10 digits are really necessary. Example G.3 provides more insight using a representative from
Table 2.

Example G.3 For the graph in Figure G.5 (or first row of Table 2) the matrix

M =


−0.0444620792 −0.5733500496 0.0000000000 0.0000000000
0.0000000000 −0.0153532191 0.0054622865 0.0000000000
0.8317033453 0.0000000000 −0.8824298000 0.0000000000
0.0000000000 0.0000000000 0.0000000000 −0.3405775614


fulfills the weak irrepresentability condition. The margins to satisfy the weak irrepresentability
condition are thin. Rounding the entries of M potentially yields matrices M that do not satisfy the
weak irrepresentability condition. The matrix M displayed in this example results in a value for the
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left side of (G.1) of 0.9960339 while the 2 - digit version yields a value of 1.011801, i.e. the longer
version fulfills the weak irrepresentability condition while the shorter version does not. This is the
reason for the long displays in Table 2. However, for the matrix M in this Example, we are able to
rationalize the entries with a tolerance of 0.0001 to obtain

MR =


−2/45 −43/75 0 0

0 −1/65 1/183 0
84/101 0 −15/17 0

0 0 0 −31/91


fulfilling the weak irrepresentability condition with all calculations being carried out rationally in
Mathematica (Wolfram Research, Inc., 2022). This allays the concern that these matrices only
exist due to numerical imprecision in the calculations.

Summing up the situation for simple cyclic graphs, extensive computation was necessary to
present an example for every simple cyclic graph up to four nodes. We were unable to discern the
structure that would suggest how to construct such examples in general.

The last class of graphs that misses are the non-simple graphs. We omit discussing them in
detail, but the work by Dettling et al. (2023) suggests that there exist drift matrices M∗ supported
over non-simple graphs such that Γ∗

SS is invertible. This leaves the possibility for drift matrices
fulfilling the irrepresentability condition. We observed that the drift matrices that satisfy the weak
irrepresentability condition fulfill the diagonal ordering of Theorem D.1 for the “DAG part” of the
graph over which the drift matrix is supported.

G.4. Simulation Studies: Impact of the Weak Irrepresentability Condition

Corollary 2 ensures that if the irrepresentability condition (3.1) is fulfilled and some assumptions
about minimal signal strength and sample size hold, we are able to recover the support of a drift
matrix correctly when applying the Direct Lyapunov Lasso (1.4). We were not able to prove this for
the weak irrepresentability condition (G.1), only its necessity in Proposition G.2 in case a minimal
signal requirement is fulfilled. Nevertheless, the condition is quite close to the sufficient condition
and is fulfilled much more often, as we show in Section G.3. Therefore, we want to investigate the
impact of the fulfillment of the weak irrepresentability condition on support recovery. The positive
computational results in this section also translate to the irrepresentability condition as every drift
matrix fulfilling the irrepresentability condition also fulfills the weak irrepresentability condition.

For every DAG on 4 nodes, we select 10 drift matrices fulfilling the weak irrepresentability
condition. The selection procedure is the same that we use to obtain Figure G.4 (uniform distribution
of stable matrices with entries between -1 and 1). Furthermore, we select 100 stable drift matrices
supported over the DAGs that do no necessarily fulfill the irrepresentability condition. Based on
the drift matrices M∗ and the Lyapunov equation (1.2) with C = 2Ip, we calculate the equilibrium
covariance matrices Σ∗. We then sampled the data with n = 100 from the normal distributions
N (0,Σ∗). Then, we apply the Direct Lyapunov Lasso (1.4) along a regularization path

λ1 = λmax, . . . , λ100 =
λmax

104

where λmax is chosen on an initial grid such that M̂ is diagonal. For the estimates M̂1, . . . , M̂100

obtained along the regularization path, we calculate some basic metrics regarding support recovery
of the data generating M∗.
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Definition G.4 Let M̂ ∈ Rp×p be an estimate and let M∗ be the estimation target. Then, we define

tp = |{M̂ij : M̂ij ̸= 0 andM∗
ij ̸= 0}|,

fp = |{M̂ij : M̂ij ̸= 0 andM∗
ij = 0}|,

tn = |{M̂ij : M̂ij = 0 andM∗
ij = 0}|,

fn = |{M̂ij : M̂ij = 0 andM∗
ij ̸= 0}|.

While these metrics already provide some insights, there exist more refined metrics to evaluate the
performance of a structure learning algorithm.

Definition G.5 Let M̂ ∈ Rp×p be an estimate and let M∗ be the estimation target and let
tp, fp, tn, fn be defined as in Definition G.4. Then, we define

tpr (true positive rate) =
tp

tp+ fn
,

fpr (false positive rate) =
fp

fp+ tn
,

acc (accuracy) =
tp+ tn

tp+ tn+ fp+ fn
,

f1-score =
2tp

2tp+ fp+ fn
,

pr (precision) =
tp

tp+ fp
.

Calculating tpr and fpr for all regularization parameters, we define the roc curve as plotting tpr
vs. fpr with fpr ranging from 0 to 1 using interpolation and extrapolation if necessary. The auc
roc or just auc is then defined as the area under the roc curve. Calculating pr and tpr for all
regularization parameters, we define the pr curve as plotting pr vs. tpr with tpr ranging from 0 to 1
using interpolation and extrapolation if necessary. The aupr curve is then defined as the area under
the precision curve.

For the estimates M̂1, . . . , M̂100 obtained for each DAG and for each initial drift matrix M∗, we
calculate the metrics mean tpr, mean fpr and max acc, max f1-score. All metrics are then averaged
over the 10 drift matrices that satisfy the weak irrepresentability condition per DAG or over the 100
randomly selected drift matrices, respectively. The results are displayed in Figure G.6. The empty
triangles correspond to the average over the randomly selected drift matrices while the full triangles
correspond to the average over the drift matrices fulfilling the weak irrepresentability condition.

Generally, there are many subtleties to be discovered in the plots. For conciseness, we limit
our discussion to the key observation that across all metrics, the results for the signals that fulfill
the weak irrepresentability condition are almost perfect and much better than for randomly selected
ones. Of course, for graphs with fewer edges, more randomly selected drift matrices already fulfill
the weak irrepresentability condition, which explains why the difference is not severe.

Lastly, we present the results for the area under the roc curve (auc) using the exact same sim-
ulation setup as for Figure G.6. The auc is particularly insightful as the roc curve is obtained by
plotting the trade-off of tpr vs. fpr. An auc value of 0.5 means that the method applied performs
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Figure G.6: Four metrics measuring the quality of the estimate for DAGs with up to 4 nodes. The number
of edges is given by the coloring. Empty: irrepresentability condition in general not fulfilled, Full: weak
irrepresentability condition fulfilled.

badly (random guessing), while a value of 1 is optimal. For drift matrices fulfilling the weak ir-
representability condition, we observe that the auc is above 0.9 for almost all graphs that fulfill the
weak irrepresentability condition while the performance is very poor for randomly selected ones.

We do not include further simulations for cyclic graphs in the above setting, which is mainly
because we already struggle to find 10 drift matrices supported over cyclic graphs fulfilling the weak
irrepresentability condition. In particular, we struggle to find 10 “really different” drift matrices that
do not only differ by a small margin in the individual entries.
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Figure G.7: The auc values for DAGs with up to 4 nodes. The number of edges is given by the coloring.
Empty: irrepresentability condition in general not fulfilled, Full: weak irrepresentability condition fulfilled.
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