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Abstract
We study the data-generating mechanism for reconstructive SSL to shed light on its effectiveness.
With an infinite amount of labeled samples, we provide a sufficient and necessary condition for
perfect linear approximation. The condition reveals a full-rank component that preserves the la-
bel classes of Y , along with a redundant component. Motivated by the condition, we propose to
approximate the redundant component by a low-rank factorization and measure the approximation
quality by introducing a new quantity εs, parameterized by the rank of factorization s. We incorpo-
rate εs into the excess risk analysis under both linear regression and ridge regression settings, where
the latter regularization approach is to handle scenarios when the dimension of the learned features
is much larger than the number of labeled samples n for downstream tasks. We design three styl-
ized experiments to compare SSL with supervised learning under different settings to support our
theoretical findings.
Keywords: Self-supervised learning, redundancy, low-rank approximation, ridge regression.

1. Introduction

Reconstructive self-supervised learning (SSL) has been highly successful in various fields (Pathak
et al., 2016; Vincent et al., 2010; Radford et al., 2018; Devlin et al., 2018), where the theme is to
extract representations from unlabeled data that are potentially useful for downstream tasks. One
of the major advantages of SSL is its significantly reduced dependency on labeled data. Despite
abundant empirical evidence, the theoretical understanding of the performance of SSL under limited
labeled data is still insufficient.

In reconstructive SSL, a pretext task is designed to predict a target X2 with input features X1,
which yields the learned representation ψ(X1). Then, the downstream task is to predict the target
Y using ψ(X1). Whether the learned representation is useful for the downstream task relies on
the connections between the pretext and downstream tasks. To bridge the pretext and downstream
tasks, the conditional independence (CI) assumption, namely X1 ⊥⊥ X2 |Y , has been studied in
the seminal work (Lee et al., 2021). For the classification setting, they show that CI is a sufficient
condition for a linear predictor to be optimal for the downstream task, that is, ψ(X1) can linearly
predict Y perfectly with an infinite number of samples available for the task. Motivated by this key
observation, they provide theoretical guarantees showing the superior sample complexity of SSL
under general approximate conditional independence settings. However, a fundamental theoretical
question for understanding reconstructive SSL still remains:
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What is the sufficient and necessary condition on (X1, X2, Y ), in the classification setting, for a
linear predictor to be optimal for the downstream task?

To address this question, it is helpful to express X2 as X2 = h(X1, Y ) +N , where (X1, Y ) is
for an arbitrary supervised learning task andN := X2−E[X2|X1, Y ]. With this expression, roughly
speaking, the target Y can be decoded from X2 if h is invertible in some sense. We formalize this
notion of invertibility by focusing on classification problems. Our formulation allows for general
dependency between X2 and X1 when conditioning on Y . Thus there are features in the learned
representation ψ(X1) that are redundant for the prediction of Y . For instance, for image classifi-
cation problems, the redundant features may come from the background in the image; if the object
of interest is surrounded by other objects in the background, a pretext task of predicting blocked
patches of the image may mistakenly extract too many features from the background (Pathak et al.,
2016). Without any constraints, a large percentage of redundant features can potentially make SSL
fail. To this end, we introduce a quantity εs, indexed by rank s, for a low-rank approximation of the
redundancy in the learned representation. We show how εs affects the performance of SSL through
both of our theoretical analysis and experiments.

Our main contributions are summarized below.
1. Under the classification setting, we characterize in Section 3 a sufficient and necessary con-

dition for a linear predictor to be optimal in the downstream task.
2. In Section 4, we introduce a low-rank approximation quantity to characterize the redundancy

in the learned representation.
3. Based on the low-rank approximation quantity, we derive finite sample bounds on the ex-

cess risk and the corresponding sample complexity for both ordinary least squares and ridge
regression estimators in Section 5.

4. In Section 6.1, we design a simulation setting to demonstrate the effectiveness of the low-
rank approximation. Our sufficient and necessary condition is partially verified through two
computer vision tasks in Section 6.2.

1.1. Related work

Reconstructive SSL is focused on recovering deliberately concealed information in the data. In
computer vision, examples include the prediction of blocked patches (Pathak et al., 2016), recov-
ering the color (Zhang et al., 2016), denoising (Vincent et al., 2010), and identifying the rotated
angle (Gidaris et al., 2018), while the simple scheme of next word prediction is widely adopted in
NLP (Radford et al., 2018; Devlin et al., 2018). From the theoretical perspective, (Saunshi et al.,
2020) and (Wei et al., 2021) study how pre-trained language models yield useful representation for
downstream tasks. For computer vision tasks, (Pathak et al., 2016) provides a theoretical under-
standing of features learned by auto-encoders under a multi-view data assumption. Under a general
formulation of reconstructive SSL, (Lee et al., 2021) shows that CI is sufficient for a linear predictor
to be optimal in the downstream task and provides finite sample analysis. Since CI often fails to
hold in practical settings, (Teng et al., 2022) proposes to modify the unlabeled data to make CI hold.
Their theoretical analysis suggests that the modification is hurtful rather than helpful for the perfor-
mance of SSL. The other popular type of SSL is called contrastive SSL, where the goal is to learn
representations that make different views of the same data point closer. The CI assumption has been
adopted in (Arora et al., 2019; Tosh et al., 2021) to provide theoretical guarantees for contrastive
learning. In the context of contrastive SSL, CI is a natural assumption since, ideally, two views are
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expected to share less information given the label. The literature on SSL is vast and we refer the
readers to (Gui et al., 2023; Ozbulak et al., 2023) for detailed reviews.

1.2. Notation

Throughout the paper, ∥·∥ denotes the l2 norm for vectors or Frobenius norm for matrices. We use
0 and 1 to denote vectors or matrices of zeros and ones, respectively. For a full (column) rank
matrix A ∈ Rm×n with n < m, we use A† to denote its (left) pseudoinverse. Let Cov(X) denote
the covariance matrix of a random vector X and Cov(X1, X2) denote that of two random vectors
X1 and X2. We use Õ to hide log factors and ≲ to hide constants in inequalities. We use Id to
denote the identity matrix of size d× d. A random vector X ∈ Rd is said to be σ2-sub-Gaussian if

E[X] = 0 and E[etu
⊤X ] ≤ e

t2σ2

2 for any t ∈ R and u ∈ Rd such that ∥u∥ = 1.

2. Problem Formulation: Reconstructive SSL

Consider (X1, X2, Y ) ∈ X1 × X2 × Y where X2 ∈ Rd2 and Y are the target variables for the
pretext and downstream tasks, respectively, and X1 ∈ Rd1 is a vector of features shared by the
two prediction tasks. We focus on the classification setting for the downstream task, i.e., Y is
categorical. For regression problems, one can consider the continuous target variable being dis-
cretized to a set of values. We use Ȳ ∈ Ȳ = {y1, . . . , yp+1} to denote the original label variable
and Y = (1Ȳ=y1 , . . . ,1Ȳ=yp)

⊤ to denote its one-hot encoding with one class excluded to avoid
multicolinearity as

∑p+1
i=1 1Ȳ=yi

= 1, and we will simply refer to Y as the one-hot encoding of Ȳ
throughout this work. We assume p < d2 throughout the work. For simplicity, we assume that the
optimal predictors for different classes of Y are not linearly dependent, i.e., Cov(E[Y |X1]) has full
rank; otherwise, certain classes of Y can be hidden to make it hold.

Concretely, we consider the following reconstructive SSL procedure.

1. Pretext task: Given unlabeled data, predict X2 using X1 under some function class Ψ, i.e.,
estimate ψ∗ := argminψ∈Ψ E[∥X2 − ψ(X1)∥2].

2. Downstream task: Given n labeled data, regress Y on the learned representation ψ∗(X1)
using simple regression functions such as linear or ridge regression.

Since there is often a large amount of unlabeled data and one can adopt deep neural networks
to achieve universal approximation, we fix ψ∗(x) := E[X2|X1 = x] and focus on analyzing the
downstream task. Due to the nature of the small (labeled) sample size of SSL, the function class
for the downstream task is often assumed to have lower complexity compared to Ψ (e.g., smaller
parameter space). For theoretical analysis, we consider the class of all linear functions for the
downstream task similarly as in (Lee et al., 2021). In practice, the advantage of SSL over supervised
learning (SL) is more significant when the labeled sample size n is relatively small, in which case the
dimension of ψ∗ can be larger than n. To avoid the downstream task being ill-posed, we adopt the
ridge estimator. To measure the gap between the SSL prediction and the optimal predictor E[Y |X1]
in infinite and finite samples, respectively, we define the approximation error and excess risk.

Definition 1 Define the approximation error of SSL as error∗apx := minβ errorapx(β), where

errorapx(β) := E
[
∥E[Y |X1]− βψ∗(X1)∥2

]
(1)
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with ψ∗(x) = E[X2|X1 = x], the optimal predictor of X2 given X1.

Note that ψ∗(x) = E[X2|X1 = x] can be ensured by a function class with universal approximation
power such as deep neural networks.

Definition 2 We say there is an exact matching between Y and X2 given X1 if error∗apx = 0.

For simplicity, we will omit the intercept b(β) := E[Y ] − β E[X2] throughout the work. The
performance of the downstream task is usually quantified through the so-called excess risk defined
with respect to the finite sample analysis. Denote X := ψ∗(X1) = E[X2|X1]. Let X1 ∈ Rn×d1
and Y ∈ Yn×p be the labeled data, and X := ψ∗(X1) ∈ Rn×d2 denote the learned representation
from pretraining. For the downstream task and λ ≥ 0, let

β̂λ := argmin
β

1

n
∥Y −Xβ⊤∥2 + λ∥β∥2 = Y ⊤X(X⊤X + λnId2)

−1.

Definition 3 The excess risk induced by the estimator β̂λ is defined as R(β̂λ) := errorapx(β̂λ).

The term “matching” can be viewed in the following sense: (1) the form of nonlinearity in
E[Y |X1] should be captured by E[X2|X1]; (2) the “redundant” nonlinearity in E[X2|X1] should
be linearly dependent so that they can be removed through a linear transform. As a toy example,
consider E[Y |X1] = X2

1 and E[X2|X1] = (−X2
1 + sin(X1), 0.5 sin(X1))

⊤ and note they share
the same quadratic term X2

1 , while the sine functions in E[X2|X1] are redundant for predicting
Y . Observe that SSL with β = (−1, 2)⊤ extracts the quadratic term while eliminating the sine
functions. In contrast, E[X2|X1] = (X1, 0.5 cos(X1))

⊤ will not lead to an exact matching.

Remark 4 This notion of predicting a subset of X can be helpful for predicting Y is not limited
to reconstructive SSL. For instance, in a series of recent papers Du and Xiang (2022, 2023a,b),
the authors have explored a similar direction from an invariance perspective for multi-environment
domain adaption, which has partially motivated this study.

3. Necessary and Sufficient Condition for Exact Matching

In an attempt to demystify the matching between the pretext and downstream tasks, we propose to
identify the conditions on the generating mechanism of (X1, X2, Y ) that enable an exact match-
ing. The generating mechanism of (X1, Y ) in a supervised learning task is often complicated, and
thus we make no assumptions on how (X1, Y ) is generated and focus on the interactions between
(X1, Y ) and X2. Without loss of generality, we can write X2 in the following form

X2 = h(X1, Y ) +N, (2)

where h(X1, Y ) := E[X2|X1, Y ] is the regression function of X2 on (X1, Y ) and therefore the
residual variable N := X2 − h(X1, Y ) satisfies E[N |X1, Y ] = 0. The function h captures how the
label Y and feature X1 are encoded into X2.

Equation (2) can be viewed from a causal perspective through a general structural causal model
(SCM) (Pearl, 2009), X2 = f(X1, Y, ε), where ε is a vector of exogenous variables independent of
(X1, Y ). Since this general SCM suffers from identifiability issues, we focus on (2), observing that
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h(X1, Y ) := E[X2|X1, Y ] = E[f(X1, Y, ε)|X1, Y ]. It is important to note that (2) is valid even
when there is no underlying causal graph over (X1, X2, Y ).

Recall that Y is the one-hot encoding of Ȳ . Observe that an arbitrary function h : (X ,Y) → Rd
can be equivalently written as

h(X,Y ) =

p∑
j=1

h(X, ej)1Ȳ=yj
=

p∑
j=1

h(X, ej)e
⊤
j Y := Ch(X)Y, (3)

where we use the fact that 1Ȳ=yj
= e⊤j Y . This simple derivation implies a one-to-one correspon-

dence between h and Ch, meaning that the general function model (2) can be expressed as

X2 = h(X1, Y ) +N = Ch(X1)Y +N, (4)

with Ch : X1 → Rd2×p. The role of the latent random matrix Ch(X1) is to encode the label
variable Y into X2, thus we call Ch the encoding function. The expression in (4) implies the
identity E[X2|X1] = Ch(X1)E[Y |X1], which is equivalent to

E[X2|X1] = (Ch(X1) +O(X1))E[Y |X1] := C̄h(X1)E[Y |X1], (5)

for anyO : X1 → Rd2×p such thatO(X1)E[Y |X1] = 0. In words, the rows ofO(x) are orthogonal
to E[Y |X1 = x] for ∀x ∈ X1. We call suchO(x) an orthogonal term. For instance, the orthogonality
holds when E[Y |X1] = (X1, X

2
1 )

⊤ and each row of O(X1) is (−X1, 1). Equation (5) defines an
equivalent class of encoding functions C = {C̄h} that results in the same pretext representation
ψ∗(X1) = E[X2|X1]. This shows that such orthogonal terms do not affect the analysis of SSL, and
thus we use .

= to hide the orthogonal term (added to Ch) in equations throughout the paper.

Proposition 5 The exact matching in Definition 2 holds if and only if βCh(x) .
= Ip, for ∀x ∈ X1

and some β ∈ Rp×d2 .

Therefore, in this formulation, finding an exact matching is equivalent to inverting the encoding
function Ch. Proposition 5 implies that the full rank of Ch(x) for every x ∈ X1 is a necessary
condition for the exact matching. In the following lemma, we provide a sufficient and necessary
condition for the exact matching through a full characterization of the invertibility of Ch.

Lemma 6 (sufficient and necessary condition for exact matching) There is an exact matching be-
tween Y and X2 given X1 if and only if

Ch(x)
.
= A

[
Ip
R(x)

]
for ∀x ∈ X1, (6)

for some invertible matrix A ∈ Rd2×d2 , an arbitrary matrix function R : X1 → R(d2−p)×p.

The identity mapping Ip fully preserves each class of Y , and R(x) represents the redundancy
encoded intoX2. It is worth noting that redundancy refers to the features extracted fromX1 that are
predictive for X2, but redundant for the prediction of Y (given the optimal predictor E[Y |X1]). In
our stylized MNIST experiment in Section 6.2.2, the dash pattern in the background is redundancy
since it is useful for predicting the image orientation (i.e., X2), but it contains no information about
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the label. In contrast, the dot pattern is not redundant, since it is independent of both the image
orientation and the label. The lemma above reveals that the label Y should be encoded into X2

through an invertible linear mixture (i.e., A) of the full label information and some redundancy.
When A is an identity matrix, the first p rows of ψ∗(X1) = E[X2|X1] capture the full label infor-
mation, thus the downstream task has a sparse solution β∗ = [Ip, 0]. However, the solutions to the
downstream task may not be sparse in general, and we handle this challenge in Section 4. Below
are two examples with explicit forms of Ch.

Example 1 An important special case of model (4) is X2 = C̃Y +N , where Ch ≡ C̃ is a constant
function. In this case, the necessary and sufficient condition simplifies to the condition that C̃ has
full rank. Observe that E[X2|X1] = C̃ E[Y |X1] implies errorapx(C̃

†) = 0.

In Appendix A, we show that model X2 = C̃Y +N is equivalent to E[X2|X1, Y ] = E[X2|Y ],
which we call conditional mean independence, which is weaker than CI, i.e., X1 ⊥⊥ X2 |Y . The
setting in Example 1 has been studied in (Lee et al., 2021) under CI. Despite the simplicity of con-
ditional mean independence, it can be unrealistic in practical settings, since it requires that the label
Y is fully encoded into X2 with no redundant information (depending on X1) as if the pretext and
downstream tasks are two equivalent prediction tasks. Even though approximate conditional inde-
pendence has been studied in (Lee et al., 2021), it is unclear if the approximation provides sufficient
insights into explaining why and when SSL works (or fails), since conditional independence (or
constant Ch) is not a necessary condition for exact matching.

Example 2 (partially linear model) Define an invertible matrix A ∈ Rd2×d2 with a column parti-
tion as A = [A1|A2|A3], where A1 has p columns, A2 has k columns such that 1 ≤ k ≤ d2 − p,
and A3 has the rest of the columns. Let X2 = A1Y + A2a(X1) + N , where a : X1 → Rk satis-
fies E[a(X1)] = 0. Its encoding function is Ch(X1) = A1 + A2a(X1)1

⊤ as derived below. The
sufficient and necessary condition is immediately satisfied with A and R(x) = [1a⊤(x),0]⊤, where
R(x) has d2 − p− k all zero rows.

h(X1, Y ) =

p∑
j=1

(A2a(X1) +A1ej)e
⊤
j Y =

(
A2a(X1)

∑
j

e⊤j +A1

∑
j

eje
⊤
j

)
Y := Ch(X1)Y.

Even though conditional independence fails to hold sinceCh is not constant, according to Lemma 6,
there is still an exact matching.

4. Structural Redundancy

The pretext representation ψ∗(X1) is typically high-dimensional, designed to capture abundant in-
formation for various downstream tasks. Given limited labeled samples (n ≪ d2 in our notation),
the downstream task is a high-dimensional linear regression problem. Without any assumptions
such as sparsity of the true coefficients (Tibshirani, 1996; Candes and Tao, 2007) or low effective
dimension of the features (Zhang, 2005; Hsu et al., 2012), SSL may not perform well even if the ex-
act matching holds. Since the true coefficients are not necessarily sparse as discussed in Section 3,
we explore how low-rank structures in the redundancy (i.e., R(X1)) naturally lead to a low effective
dimension. In particular, we adopt the definition of effective dimension from (Hsu et al., 2012) in
the context of ridge regression (see details below); a closely related notion is called effective degrees
of freedom (Efron, 1986; Hastie et al., 2009). Roughly speaking, the effective dimension measures
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the number of features that are not linearly correlated; when it is low, a small number of labeled
samples can be sufficient for reliable estimation

To simplify the notation, denote X := ψ∗(X1) with covariance matrix Σ := Cov(X). Let
{λj}d2j=1 denote the eigenvalues of Σ. The population ridge estimator is given by

βλ = argmin
β

E
[
∥Y −Xβ∥2

]
+ λ∥β∥2 = (Σ + λId2)

−1 E[XY ⊤].

Implicitly dimension reduction is performed in ridge regression when some appropriate shrinkage
parameter λ is chosen. The reduced dimension for a chosen λ can be quantified by the effective
dimension, defined as dλ =

∑d
j=1

λj
λj+λ

for X ∈ Rd. Note that the bias of the ridge estimator
increases monotonically as λ increases. When Σ has exactly s nonzero eigenvalues, dλ is upper
bounded by s for any λ ≥ 0. Besides this special case, a low effective dimension can be achieved
under a weak penalty (i.e., small λ) when there is a large percentage of small eigenvalues.

In the next subsection, we demonstrate that a low effective dimension is naturally attained when
the redundancy R(X1) can be approximated by a low-rank decomposition. Our finite sample anal-
ysis on the high-dimensional setting, presented in Section 5, relies on an upper bound of the low
effective dimension, utilizing a measure of the low-rank approximation introduced in the following
subsection (Lemma 16). When d2 < n, dλ with λ = 0 offers an interpretation of our upper bound
on the excess risk and sample complexity (see details in Theorem 9 and Remark 10).

4.1. Low-rank Approximation of Redundancy

Recall, redundancy refers to information in X1 useful for predicting X2 but not for the label Y . For
instance, in computer vision tasks, consider a label Y determined by the object of interest within a
surrounding background. Redundancy arises when the pretext task captures background informa-
tion unrelated to the label. If the background features simple patterns, such as sky, grassland, or
beach, this redundancy can be considered low-rank. Consequently, it is relatively easy to eliminate
such redundancy in downstream tasks (recall the cancellation of sine functions below Definition 3).
In the following, we present the technical details of the low-rank approximation of redundancy.

Denote C̃ := E[Ch(X1)] and recall that Ch(X1) reduces to C̃ under conditional mean indepen-
dence. Assume that the necessary and sufficient condition in Lemma 6 is satisfied,

X = Ch(X1)E[Y |X1] =
(
C̃ +A

[
0 R(X1)− R̃

])
E[Y |X1]

= (C̃ +Ap+1:d2(R(X1)− R̃)))E[Y |X1],

where R̃ := E[R(X1)] and Ap+1:d2 ∈ Rd2×(d2−p) denotes the last d2 − p columns of A. If the
(centered) redundancy R(X1) − R̃ admits a low-rank decomposition, i.e., R(X1) − R̃ = Bg(X1)
for some B ∈ R(d2−p)×s and g : X1 → Rs×p, where s≪ d2, we get

X = (C̃ +Ap+1:d2Bg(X1))E[Y |X1], (7)

which has at most p+s linearly independent components, as rank(C̃) ≤ p and rank(Ap+1:d2B) ≤ s.
This shows that the effective dimension of X is bounded by p+ s for any λ ≥ 0.

Since the low-rank decomposition may not hold exactly for a chosen s, we identify X̂ of the
form (C̃ + Bg(X))E[Y |X1] that best approximates X . Specifically, for any fixed s s.t. 1 ≤ s ≤
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d2 − p, we consider B ∈ Rd2×s, g : X1 → Rs×p, and define

εs := min
X̂

1

d2
E

[∥∥∥X − X̂
∥∥∥2] = min

B,g

1

d2
E

[∥∥∥(Ch(X1)− C̃ −Bg(X1)
)
E[Y |X1]

∥∥∥2] , (8)

with minimizers {(B∗, g∗)} and we use the shorthand X̃ := (C̃ +B∗g∗(X1))E[Y |X1] for any pair
of optimizer (B∗, g∗). Without loss of generality, we normalize g(X1) and assume E[∥g(X1)∥] =
1. The low-rank approximation error is averaged so that εs does not grow with d2. A challenge
for analyzing εs is that the minimizers do not have closed-form expressions. When (X1, X2, Y )
follows a Gaussian distribution, we show (8) reduces to a weighted low-rank approximation problem
(with no randomness) in Appendix E. However, these weighted problems do not have closed-form
expressions in general (Srebro and Jaakkola, 2003; Dutta and Li, 2017). Therefore, we leave the
further investigations of εs for future work. For s = 0, we simply define

ε0 :=
1

d2
E

[∥∥∥(Ch(X1)− C̃
)
E[Y |X1]

∥∥∥2] ,
which measures how approximately conditional mean independence (i.e., Ch = C̃) holds. There is
a tradeoff between the effective dimension of X̃ (which are no greater than s) and the approximation
quality, as the approximation level εs is non-increasing as s increases. An important special case of
the low-rank approximation is when the encoding functions are smooth.

Example 3 (smooth encoding function) Consider a binary classification problem with a scalar
predictor X1, i.e., p = d1 = 1, assume that the encoding function Ch : R → Rd2 is twice
continuously differentiable, then its second-order Taylor expansion at a ∈ R is given by

Ch(x) = Ch(a) +
[
dCh

dx

∣∣
x=a

d2Ch

dx2

∣∣
x=a

] [
x− a (x− a)2

]⊤
+O((x− a)3),

where we can choose a so that Ch(a) = C̃. This provides a rank-two approximation for Ch(x)− C̃
such that εs = O((x − a)3), where s = 2. This example can be generalized to high-order, multi-
class, and multivariate cases, and we provide the details in Appendix D.

To understand the impact of the size of εs on how approximately the matching holds (or how
small the approximation error is), we derive the following upper bound via a ridge-type estima-
tor. Unlike ridge-type estimators used in practice, the parameter εs that restricts the size of the
coefficients is determined by the generating mechanism of (X1, X2, Y ).

Lemma 7 Consider B∗ and g∗ corresponding to εs, we have

min
β

errorapx(β) ≤ 2(p+ E[∥N∥2])min
β

(
∥Ip − βC̃∥2 + ∥βB∗∥2 + εs||β∥2

)
,

where the minimum of the RHS is attained at βs := (C̃⊤C̃ + (B∗)⊤B∗ + εsI)
−1C̃. The equality

holds with the RHS being zero when εs = 0.
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5. Finite Sample Analysis

Let β∗ ∈ argminβ errorapx(β) be a fixed true parameter for the downstream task. Recall that the
excess risk is defined as R(β̂λ) = E[∥E[Y |X1]− β̂λX)∥2]. Under conditional mean independence,
observe thatX = E[X2|X1] = C̃ E[Y |X1] is a feature vector with at most p (out of d2) features that
are linearly independent. Since the number of classes p is often much smaller than the dimension
of the learned representation d2, the design matrix X for the downstream task is of low rank. This
enables a finite-sample bound on the excessive risk Õ( pnσ

2) with sample complexity Õ(p) (Lee
et al., 2021), where the bound is independent of the dimension d2. In the following, we provide a
finite-sample analysis of SSL in the general setting when conditional independence can be violated,
based on the low-rank approximation defined in (8).

First, we introduce a few technical assumptions. Let Σ, Σ̃, and Σ̄ denote the covariance matrix
of X , X̃ , and X̄ := X̃ −X , respectively.

Assumption 1 We assume N := Y − E[Y |X1] is σ2-sub-Gaussian, and the whitened feature
vectors Σ̃−1/2X̃ and Σ̄−1/2X̄ are ρ2-sub-Gaussian. 1

Assumption 2 There exists b̃, b̄ ≥ 0 s.t. the following holds almost surely,

• ∥Σ̃−1/2X̃(E[Y |X1]− β∗X])⊤∥ ≤ b̃
√
p+ s ;

• ∥Σ̄−1/2X̄(E[Y |X1]− β∗X])⊤∥ ≤ b̄
√
d2 .

Remark 8 A similar assumption has been made in (Lee et al., 2021, Assumption 3.3), which is
motivated by (Hsu et al., 2012, Condition 4).

Let λmax(A) denote the largest eigenvalue of a symmetric real matrix A such that A ̸= 0,
λmin̸=0(A) denote its smallest nonzero eigenvalue, and {λi(A)} denote the set of all its eigenvalues.
When X̃ is good approximates ofX , we expect Σ̃−Σ and Σ̄ to be close to zero matrices. Therefore,
we consider restricting the largest eigenvalues of the two matrices, respectively. A generic bound
is provided in (Wolkowicz and Styan, 1980), that is λmax(A) ≤ tr(A)

d +
√
d− 1 · s(A), where

s(A) := tr(A2)
d − tr2(A)

d2
is the variance of {λi(A)}. The equality holds when the d − 1 smallest

eigenvalues are equal. However, this bound can be quite loose when d is large. Instead, we make
the following assumption.

Assumption 3 For some universal constants c1 ≥ 0 and c2 ≥ 0,

• λmax(Σ̃− Σ) ≤ c1
1
d2

· |tr(Σ̃− Σ)| ;

• λmax(Σ̄) ≤ c2
1
d2

· tr(Σ̄) .

Both inequalities require that the average eigenvalue is comparable to the largest eigenvalue.
The assumption can be unrealistic when Σ̃ − Σ or Σ̄ has mostly zero eigenvalues but a few large
positive eigenvalues. We explain why such a case will not happen when s ≪ d2. Case I: When
rank(Σ) ≪ d2, there exists s = rank(Σ) such that X̃ = X and X̄ = 0, in which case the
inequalities are satisfied with c1 = c2 = 0. Case II: In settings when rank(Σ) is comparable to d2

1. When Σ̃ or Σ̄ is not invertible, the whitened feature vector is defined through the generalized inverse.
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(i.e., rank(Σ) is a fraction of d2), X̃ satisfies rank(Σ̃) ≤ p + s ≪ d2, and thus the rank of Σ̃ − Σ
should be greater than d2 − p − s, meaning that most of eigenvalues are nonzero. Similarly, X̄ =
X− X̃ should have at least d2−p−s linearly independent components, i.e., rank(Σ̄) ≥ d2−p−s.
Given that X̃ serves as an approximation for X with a lower effective dimension, we make the
following technical assumption on the rank.

Assumption 4 rank(Σ̃) ≤ rank(Σ) and rank(Σ̄) ≤ rank(Σ).

Since X has rank(Σ) linearly independent components while X̃ is introduced to approximate
rank(Σ̃) independent components out of them, X̄ = X − X̃ is expected to have less independent
components than X .

Theorem 9 Under Assumptions 1— 4, for and any δ ∈ (0, 1), if n ≫ ρ4(d2 + log 1
δ ), the excess

risk of the downstream task induced by β̂0 is upper bounded, with probability at least 1− δ, by

R(β̂0) ≤ error∗apx + Õ
(
(1 + εs)

p+ s

n
σ2 + εs

d2
n
σ2

)
.

Remark 10 When εs = 0, if n≫ ρ4(p+ s+ log 1
δ ), we have R(β̂0) ≤ Õ

(p+s
n σ2

)
.

The proof of Theorem 9 follows a similar idea to that of (Lee et al., 2021, Theorem 3.5); a subtle
yet important difference is that we consider approximation errors due to the violations of the exact
matching while they consider approximation errors due to choices of the function class Ψ. When
εs = 0, the dominating rate of R(β̂0) is p+s

n σ2, which shows that SSL enjoys a similar sample
complexity as shown in (Lee et al., 2021) even when conditional independence is violated. We have
demonstrated in Lemma 7 how the approximation error errorapx(β

∗) depends on the approximation
level εs. We also provide the bound with respect to β̂λ, stated below. The proof is largely followed
from (Hsu et al., 2012, Theorem 16) and we only outline the main steps in Appendix H.

Corollary 11 (Informal) Under suitable assumptions, the excess risk of the downstream task in-
duced by β̂λ can be upper bounded by

R(β̂λ) ≤ error∗apx + E[∥(βλ − β∗)X∥2] +O
(
p+ s

n

(
1 +

εs
λ

)
σ̃2

)
,

with high probability, where σ̃2 := errorapx(βλ) + E[∥(βλ − β∗)X∥2] + σ2.

For simplicity, the parameters that depend on the choice of λ are omitted. The bound requires
p+ s≪ n even though n < d2, thus an approximation (8) with lower rank is expected in this more
challenging setting. The term E[∥(βλ − β∗)X∥2] relies on the difference between βλ and β∗, as
well as the choice of λ. When βλ = β∗ and εs = 0, the dominating rate p+s

n σ2 is the same as that
in Remark 10. This shows that low-rank structures enable SSL to share a similar excess risk upper
bound and sample complexity in low- and high-dimensional settings.

6. Experiments

We propose a synthetic dataset and two computer vision tasks to examine the importance of the full
rank condition on Ch(x) and the low-rank approximation quality. Recall that a necessary condition
for the exact matching is that Ch(x) has full rank for every x ∈ X1. For the synthetic dataset,
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we ensure that Ch(x) is of full rank and focus on the low-rank approximation. For image data,
since Ch is a latent matrix function, it is not straightforward to test whether Ch(x) has full rank in
general. To this end, we design images of simple geometric shapes, that can be seen as abstractions
of real images and show how some geometric properties make the rank condition hold or fail. To
further understand the importance of the low-rank approximation, we add background patterns to
the MNIST dataset and show that certain patterns can lead to poor low-rank approximation. See
more details of the experiments in Appendixes I, J, and K. SSL approaches have achieved superior
performance on large benchmark datasets, while the function class for downstream tasks is often
much larger than linear models (e.g., MLPs), which is beyond the scope of our theoretical analysis.
The implementation of our experiments is provided at https://github.com/dukang4655/
reconstructive_ssl.

6.1. Synthetic Data

Figure 1: Setting I (top row): n = 300
and vary s. SSL (red), SL1 (blue), and
SL2 (green). 50 repeated experiments.
Solid lines: mean; shaded region: standard
derivation. Setting II (bottom row): s = 5
and n varies.

We use a synthetic dataset to verify our theoretical re-
sults when n > d2. First, we generate (X1, X2, Y )
with d1 = 10, d2 = 20, and p = 2, where X2 =
(A + Bg(X1))Y + N , where B ∈ Rd2×s. See de-
tails of the model parameters in Appendix I. We com-
pare SSL with two supervised learning (SL) procedures
in two settings: I. Fix s = 5 and vary the labeled sam-
ple size n ∈ {100, 200, 400, 800, 1600}; II. Fix n =
300 and vary the low-rank approximation by consider-
ing s ∈ {1, 2, . . . , 5, 10, 15, 20}. We consider two su-
pervised learning procedures. SL2: Predicting Y by X1,
and SL2: Predicting Y by (X1, X2). We use MLPs for
the pretext task and the two supervised learning proce-
dures. In Fig. 1, the performance of SL1 is roughly in-
variant with respect to s since it does not use X2 for the
prediction, making it more robust than SL2. This veri-
fies that predictions using the parents of Y as predictors
(which we call causal predictions) are more robust than
non-causal predictions under a small sample size. The su-
perior performance of SSL degrades as s increases. When
s < d2− p = 18, we have εs = 0 according to the factor-
ization in (7). In Fig. 1, when s = 20, a low-rank approx-
imation (8) could lead to a large approximation error εs̄
for s̄ ≤ 18. As a consequence, the advantage of SSL over
SL1 is much smaller compared with the case with s = 0.
This indicates that a good low-rank approximation is not
only sufficient but also necessary for SSL. In the other
setting when s is fixed to 5 but the sample size n varies, as shown in Fig.1, the performance of SSL
improves slowly with the increasing sample size, since it already achieves performance that to close
to the optimal (i.e., the performance of SL1 with a large n) under a small n. SL1 starts to catch up
with SSL when n ≥ 800, while the accuracy of SL2 does not consistently improve as n increases.
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6.2. Computer Vision Tasks

6.2.1. GEOMETRIC SHAPES (ON THE RANK CONDITION)

In computer vision applications, it is common that the dimension of the learned representation is
much larger than the labeled sample size (i.e., d2 ≫ n) for SSL. We design a simple task to help
understand how the patterns in an image make SSL work or fail; the task is inspired by (Gidaris
et al., 2018), where the pretext task is to predict the rotated angles of images. We consider X1 as
a random image of some objects, where the objects have random sizes and random locations. The
goal is to classify the shape of the object Ȳ . We created X2 by randomly rotating X1 by 0 or 90
degrees. Observe that the location and the size of an object are redundant features for predicting its
shape and orientation. This stylized setting, even though much simpler than real-world images, is
designed this way on purpose in order for the redundancy variable to have low-rank approximations.
According to (4), the jth column of Ch(x) can be viewed as a feature vector for the rotation angle
corresponding to the jth class of objects. Since we consider the classification of two classes (i.e.,
p = 2), the condition requires that the two feature vectors should not be similar. To verify this
necessary condition, we consider two pairs of objects:

Figure 2: (a) Left: Triangle vs. Tangent Circles. (b) Right: Triangle vs. Pentagon. 50 repeated experiments.
SSL (red) and SL (blue).

Triangle vs. Tangent Circles (Fig. 2(a)). In this case, the identification of orientation is based on
characteristics specific to the two shapes. For triangles, it is natural to focus on the edges and ver-
tices, while those characteristics are not even defined for circles. Thus, we think the rank condition
is approximately satisfied. We examine this observation using Grad-CAM (Selvaraju et al., 2017)
that visualizes the contributing features that the model extracted from the image (see Fig. 4 from
Appendix J). Similarly for the pair of objects below.

Triangle vs. Pentagon (Fig. 2(b)) In this case, the orientation of the two objects can be identified in
similar ways, mainly based on the edges and vertices. In this case, the columns of Ch(x) are close
to linearly dependent for different x ∈ X1. As a consequence, the necessary condition for the exact
matching is violated.

We compare SSL with SL under different labeled sample sizes n ∈ {10, 20, 40, 60, 80, 100}.
For Triangle vs. Tangent Circles, as shown in Fig. 2, SSL consistently outperforms SL for small
sample sizes (i.e., n ≤ 60). The performance of SSL improves slower compared with SL for
sufficiently large n, since the prediction error of SSL will be dominated by the population error
instead of the estimation error. Recall that our finite-sample bound on the excess risk in Corollary 11
converges to the sum of the approximation error and an error term depending on λ as n → ∞. In
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contrast, SSL behaves very differently for Triangle vs. Pentagon. From Fig. 2(b), the accuracy of
SSL improves slower as n increases, potentially due to the large approximation error. Overall, SSL
has almost no advantage over SL. This experiment shows that the rank condition is crucial for SSL.

6.2.2. STYLIZED MNIST (ON THE LOW-RANK APPROXIMATION)

Figure 3: SSL(red) and SL(blue).

To examine how the redundancy affects the perfor-
mance of SSL, we consider the same rotation predic-
tion task for a stylized MNIST dataset illustrated in
Fig. 3, where the density of the background pattern
varies randomly. A key observation is that the dot pat-
tern does not help identify the image orientation, so it
is not encoded into the orientation variable as redun-
dancy. On the contrary, one can tell the orientation of
the image simply by the orientation of the dash pat-
tern, thus the pretext task will extract features from the
dash pattern as redundant information. Again, we use
Grad-CAM to visualize our observation in Fig. 7 from
Appendix K. Consequently, a dense dash pattern can
lead to poor low-rank approximation. In Fig. 6 from
Appendix K, the performance of SSL is almost invari-
ant to the density of the dot pattern while the perfor-
mance of SL drops as the density increases. In con-
trast, SSL is quite sensitive to a sparse dash pattern and
the performance gets worse as the density increases
(see Fig. 3). We have tested the dot vs. dash patterns
for the geometric shape images, and similar results are
observed as shown in Fig. 5 from Appendix J.

7. Discussion

Many important questions remain to be studied and we list a few in this section. One natural next
step is to study nonlinear function classes for the downstream task and characterize the correspond-
ing sufficient and necessary conditions. Since our theoretical results can potentially provide guid-
ance for developing SSL procedures, especially for designing pretext tasks, it would be worthwhile
to design systematic and extensive experiments to better bridge the theories and practical designs.
Besides the superior performance under limited labeled samples, the other major advantage of SSL
is that the learned representation can be useful for a diverse class of downstream tasks; a theoretical
understanding of its ability to generalize to new tasks or unseen environments (e.g., by exploiting
invariance Du and Xiang (2023b)) is of great importance.
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Appendix A. Conditional Mean Independence

Recall that whenCh is a constant function, we haveX2 = C̃Y +N and we require E[N |X1, Y ] = 0
rather than E[N |Y ] = 0.

Proposition 12 Model (4) holds with Ch being a constant function if and only if E[X2|X1, Y ] =
E[X2|Y ].

151022
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Proof First, assume that X2 = C̃Y +N holds with E[N |X1, Y ] = 0. It follows immediately that

E[X2|X1, Y ] = E[C̃Y +N |X1, Y ] = C̃Y

and E[X2|Y ] = E[C̃Y +N |Y ] = C̃Y , where we use the fact that E[N |Y ] = E[E[N |X1, Y ]|Y ] =
0. Thus we have E[X2|X1, Y ] = E[X2|Y ]. Now we prove the other direction. Assume that
E[X2|X1, Y ] = E[X2|Y ], then

E[X2|X1, Y ] = E[X2|Y ] =

p∑
i=1

E[X2|Y = ei]1Ȳ=yi
:= C̃Y,

where C̃ has columns E[X2|Y = ei]’s, which implies model (12) in the form of X2 = C̃Y +N .

Appendix B. Proof of Proposition 5

Proof First, according to Definition 2, the exacting matching is equivalent to

E[Y |X1] = β E[X1|X2] (9)

for some β ∈ Rp×d2 . By our assumption that Cov(E[Y |X1]) has full rank, β has to have full rank
when the exact matching holds. Plugging E[X2|X1] = Ch(X1)E[Y |X1] into (9), we have

(Ip − βCh(X1))E[Y |X1] = 0,

for some β ∈ Rp×d2 . Equivalently,

Ip − βCh(X1) = Ō(X1) (10)

for some Ō : X1 → Rp×p such that Ō(X1)E[Y |X1] = 0. Since β has full rank, (10) is equivalent
to

β(Ch(X1)− β−1Ō(X1)) = Ip, (11)

where β−1 denotes the right inverse of β and O(X1) := β−1Ō(X1) satisfies O(X1)E[Y |X1] = 0.

Appendix C. Proof of Lemma 6

Proof For simplicity of notation, we prove the lemma without considering the orthogonal term,
while the orthogonal term can be directly added to the final expression of Ch. Recall the dimension
of β is p by d2. According to Proposition 5, it is sufficient to show that βCh(x) = Ip is equivalent
to (6). The “if” part is immediate since β = [C−1,0]A−1 will lead to βCh(x) = Ip, ∀x ∈ X1.
In the following, we prove the other direction. When the exact matching holds, recall that the full
rank of Cov(E[Y |X1]) implies that β has full row rank since p < d2. The QR decomposition of β⊤

gives β = [C̄,0]Ā, where C̄ ∈ Rp×p is an invertible lower-triangular matrix and Ā ∈ Rd2×d2 is an
orthonormal matrix. Then, βCh(x) = Ip implies [C̄,0]B(x) = Ip with B(x) := ĀCh(x). Due to
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the zero columns in [C̄,0], the first p rows of B(x) has to be C̄−1, while the other rows, denoted by
R(x), can be arbitrary. Therefore, we obtain

Ch(x) = Ā−1B(x) = Ā−1

[
C̄−1

R(x)

]
= Ã−1

[
Ip
R(x)

]
, ∀x ∈ X1,

where Ã−1 is the product of Ā−1 and some elementary matrices introduced to transform C̄−1 to an
identity matrix Ip.

Appendix D. Low-rank approximation of Smooth Encoding Functions

In this section, we study how the smoothness of the encoding function enables the low-rank ap-
proximation. Specifically, we will construct the approximation in (8) explicitly with polynomial
functions. For simplicity, we present the idea for second-order approximation, while the higher-
order cases can be derived in a similar manner.

Let Ch : X1 → Rd2×p be a twice continuously differentiable matrix function, the Taylor expan-
sion of its jth column Chj at a ∈ X1 is given by

Chj (x) = Chj (a) + (Chj )
′(a)(x− a) +

 1
2(x− a)⊤(Ch1j)

′′(a)(x− a)

· · ·
1
2(x− a)⊤(Chd2j)

′′(a)(x− a)

+O(||x− a||3)

:= Chj (a) +Aj(a)ϕ(x) +O(||x− a||3), (12)

where the ith row of (Chj )
′(a) ∈ Rd2×d1 is the derivative of Chij evaluated at x = a and (Chij)

′′(a)

is the Hessian matrix of Chij evaluated at x = a. We represent Chj (x) in a matrix form in (12)
by introducing ϕ(x) = (x1 − a1, x2 − a2, . . . , xd1 − ad1 , (x1 − a1)

2, (x1 − a1)(x2 − a2), (x1 −
a1)(x3 − a3), . . . , (xd1−1 − ad1−1)(xd1 − ad1) + (xd1 − ad1)

2)⊤ ∈ Rd1+d21 and the coefficient
matrix Aj(a) ∈ Rd2×(d1+d21) consisting of the (scaled) first two order derivatives. This allows us to
approximate Ch by

Ch(x) = Ch(a) +
[
A1(a)ϕ(x), A2(a)ϕ(x), . . . , Ap(a)ϕ(x)

]
+O(||x− a||3).

Let the maximum rank of the matrices {Ai(a) : i = 1, . . . , p} be s, then there exists B ∈ Rd2×s
and {Di(a) ∈ Rs×(d1+d21) : i = 1, . . . , p} such that

Ch(x) = Ch(a) +B
[
D1(a)ϕ(x), D2(a)ϕ(x), . . . , Dp(a)ϕ(x)

]
+O(||x− a||3), (13)

which is enabled by the decomposition Ai(a) = BDi(a) for each i. With the continuity of Ch(x),
we can fix a so that Ch(a) = C̃ by the mean value theorem. The high-order reminder term can be
ignored when the third derivatives of Ch are all zeros. If this is not the case, we can include high-
order terms in ϕ until the reminder term is small enough. If the maximum rank s is not small, one can
still consider the low-rank approximation of {Ai(a)}, and there will be an additional approximation
error term in (13).
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Appendix E. SSL under Gaussian Distribution

Even though our formulation focuses on the classification setting, the extension of our results to
the Gaussian case is straightforward. Assume {X1, X2, Y } are jointly Gaussian, where Y is a
scalar Gaussian variable. Let ΣXZ := Cov(X,Z) for any random vectors X and Z. Then, X :=
E[X2|X1] = ΣX2X1Σ

−1
X1X1

X1 and E[Y |X1] = ΣY X1Σ
−1
X1X1

X1. If d2 ≥ d1 and ΣX2X1 has a full
rank, it is straightforward to see that an exact matching holds with β = ΣY X1Σ

†
X2X1

. Concretely,
there exists A ∈ Rd1×d2 and b ∈ Rd2 such that

X2 = h(X1, Y ) +N = AX1 + bY +N, (14)

where E[N |X1, Y ] = 0.
Since the encoding function is not well-defined when Y is continuous, we formulate the low-

rank approximation by

εs := min
X̂

E

[∥∥∥X − X̂
∥∥∥2] = min

B∈Rd2×d1 :rank(B)=s
E

[∥∥∥ΣX2X1Σ
−1
X1X1

X1 −BX1

∥∥∥2]
= min

B∈Rd2×d1 :rank(B)=s

∥∥∥(ΣX2X1Σ
−1
X1X1

−B)Σ
1/2
X1X1

∥∥∥2 ,
which aims to find a weighted low-rank approximation for ΣX2X1Σ

−1
X1X1

.

Appendix F. Proof of Lemma 7

Proof We have

min
β

errorapx(β) = min
β

E[∥E[Y |X1]− βCh(X1)E[Y |X1]]∥2]

≤ min
β

E[∥E[Y |X1]∥2]E[∥Ip − β(C̃ +B∗g∗(X1))∥2] + εs∥β∥2

≤ min
β

2(p+ E[∥N∥2])
(
∥Ip − βC̃∥2 + ∥βB∗∥2

)
+ εs∥β∥2

≤ 2(p+ E[∥N∥2])min
β

(
∥Ip − βC̃∥2 + ∥βB∗∥2 + εs∥β∥2

)
,

where the first inequality follows from the sub-multiplicativity of the matrix norm and the trian-
gle inequality and the last two inequalities are due to the triangle inequality, and the fact that
E[∥E[Y |X1]∥2] = E[∥Y − N∥2] ≤ 2E[∥Y ∥2] + 2E[∥N∥2] ≤ 2(p + E[∥N∥2]). When εs = 0,
note that [C̃, B∗] has rank at most p + s ≤ d2, thus there exists at least one solution β ∈ Rp×d2
for the equation β[C̃, B∗] = [βC̃, βB∗] = [Ip,0]. The expression of βs is a standard expression of
ridge-type estimators.

Appendix G. Proof of Theorem 9

Lemma 13 (Concentration on the covariance matrix (Lee et al., 2021)) For X ∈ Rn×d with
i.i.d. rows, where each row is ρ2-sub-Gaussian with covariance Σ. For any B ∈ Rd×m with rank
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k that is independent of X . For any δ ∈ (0, 1), if n ≫ ρ4(k + log
(
1
δ

)
), with probability at least

1− δ
10 , we have

0.9B⊤ΣB ⪯ 1

n
B⊤X⊤XB ⪯ 1.1B⊤ΣB.

Lemma 14 ((Lee et al., 2021)) Let P ∈ Rn×n be a projection matrix and let Z ∈ Rn×d be a
matrix with i.i.d. rows, where each row of Z is mean zero (conditioning on P being rank k) σ2-sub-
Gaussian. For any δ ∈ (0, 1), with probability at least 1− δ,

∥PZ∥ ≲ σ
√
k(1 + log(k/δ)).

G.1. Technical Lemmas

Lemma 15 Under Assumptions 3 and 4, for any s such that 1 ≤ s ≤ d2 − p,

• Σ̃ satisfies Σ̃ ⪯ ã(1 + εs)Σ for some ã ≥ 0 ;

• Σ̄ satisfies Σ̄ ⪯ āεsΣ for some ā ≥ 0 .

Proof To prove A ⪯ aB for symmetrical matrices A,B ∈ Rd×d and a ≥ 0, one can simply prove
λj(A) ≤ aλj(B),∀j. This holds immediately for zero eigenvalues λj(B)’s if rank(A) ≤ rank(B).
Therefore, by Assumption 4, we will focus on the case when Σ has all positive eigenvalues. First,

εs =
1

d2
E[∥X̃ −X∥2] ≥ 1

d2

∣∣∣E[∥X̃∥2]− E[∥X∥2]
∣∣∣ = 1

d2

∣∣∣tr(Σ̃− Σ)
∣∣∣ .

In the following, we will use the fact that λmin ̸=0(A)Id ⪯ A ⪯ λmax(A)Id for any symmetric matrix
A ∈ Rd×d. Using Assumption 3,

Σ̃− Σ ⪯ λmax(Σ̃− Σ)Id2 ≤ c1
d2

|tr(Σ̃− Σ)|Id2 ≤ c1εsId2 ,

which implies,

λi(Σ̃) ≤ λi(Σ) + c1εs ≤ λi(Σ) +
λi(Σ)

λmin ̸=0(Σ)
c1εs =

(
1 +

c1εs
λmin̸=0(Σ)

)
λi(Σ) ≤ ã(1 + εs)λi(Σ),

for every i and ã ≥ max(1, c1
λmin̸=0(Σ)). This immediately leads to Σ̃ ⪯ ã(1 + εs)Σ.

Finally, recall the fact that εs = 1
d2

· tr(Σ̄). By Assumption 3, we have

Σ̄ ⪯ λmax(Σ̄)Id2 ⪯ c2
d2

tr(Σ̄)Id2 = c2εsId2 ⪯ c2
λmin ̸=0(Σ)

εsΣ := āεsΣ.
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G.2. Proof of Theorem 9

Proof First, recall that β∗ ∈ argminβ errorapx(β) and the shorthand X := E[X2|X1]. By the
triangle inequality, we have

R(β̂0) = E[∥E[Y |X1]− β̂0X)∥2] ≤ error∗apx + E[∥(β∗ − β̂0)X∥2].

Denote a(X1) := E[Y |X1]− β∗X .
Recall thatX = X̃+X̄ . Then, we can write Y = β∗X̃+β∗X̄+a(X1)+N , withN satisfying

E[N |X1] = 0 by the tower property. The definition of β̂0 implies

∥Y −Xβ̂⊤0 ∥2 ≤ ∥Y −X(β∗)⊤∥2 = ∥a(X1) +N∥2.

By rearranging the terms, we get

∥X(β∗ − β̂0)
⊤)∥2 ≤ ⟨a(X1), X̃(β∗ − β̂0)

⊤⟩ − ⟨N , X̃(β∗ − β̂0)
⊤⟩

+ ⟨a(X1), X̄(β∗ − β̂0)
⊤⟩ − ⟨N , X̄(β∗ − β̂0)

⊤⟩.

We bound the first two inner products in the following, and the other two follow similarly. First,

⟨a(X1), X̃(β∗ − β̂0)
⊤⟩ = ⟨Σ̃−1/2X̃⊤a(X1), Σ̃

1/2(β∗ − β̂0)
⊤⟩

≤ ∥Σ̃−1/2X̃⊤a(X1)∥∥Σ̃1/2(β∗ − β̂0)
⊤∥

≤ 1.1ãb̃
√
1 + εs

√
n(p+ s)∥Σ1/2(β∗ − β̂0)

⊤∥
≲

√
1 + εs

√
p+ s∥X(β∗ − β̂0)

⊤∥, (15)

where the inequality ∥Σ̃−1/2X̃⊤a(X1)∥ ≤ 1.1b̃
√
n(p+ s) is due to Assumption 2 and the covari-

ance concentration in Lemma 13, and the last inequality is simply due to the covariance concentra-
tion. The replacement of Σ̃ by Σ is by Lemma 15. Let PX̃ denote the projection matrix defined
with respect to X̃ , we have

⟨N , X̃(β∗ − β̂0)
⊤⟩ = ⟨PX̃N , X̃(β∗ − β̂0)

⊤⟩
≤ ∥PX̃N∥∥X̃(β∗ − β̂0)

⊤∥.

≲ σ
√
1 + εs

√
(p+ s)

(
1 + log

p+ s

δ

)
∥X(β∗ − β̂0)

⊤∥, (16)

where the last bound is due to Lemma 14 and the replacement of X̃ by X follows from the covari-
ance concentration and Lemma 15. Since we make no assumptions on the rank of Σ̄, it has at most
rank d2. Similarly, we get

⟨a(X1), X̄(β∗ − β̂0)
⊤⟩ ≲

√
εs
√
d2∥X(β∗ − β̂0)

⊤∥ (17)

⟨N , X̄(β∗ − β̂0)
⊤⟩ ≲ σ

√
εs

√
d2

(
1 + log

d2
δ

)
∥X(β∗ − β̂0)

⊤∥. (18)

Combining (15), (16), (17), and (18) yields

∥X(β∗ − β̂0)
⊤∥ ≲ σ

√
1 + εs

√
(p+ s)

(
1 + log

p+ s

δ

)
+ σ

√
εs

√
d2

(
1 + log

d2
δ

)
.

201027



LOW-RANK APPROXIMATION OF STRUCTURAL REDUNDANCY FOR SELF-SUPERVISED LEARNING

Finally, the covariance concentration implies

E[∥(β∗ − β̂0)X∥2] ≲ (1 + εs)
(p+ s)

(
1 + log p+s

δ

)
n

σ2 + εs
d2

(
1 + log d2

δ

)
n

σ2.

Appendix H. Proof of Corollary 11

Lemma 16 Under Assumptions 3 and 4, for λ > 0, there exists c2 such that

dλ ≤ c2

(
1 +

εs
λ

)
(p+ s).

Remark 17 It is known that dλ = E[∥(Σ+λI)−1/2X∥2] (Hsu et al., 2012). When εs = 0, we have
E[∥(Σ + λI)−1/2X∥2] ≤ rank(Σ) = p+ s, where the equality holds when λ = 0.

Proof Let {λ̃i} and {λi} denote the eigenvalues of Σ and Σ̃, respectively. Recall that Assumptions 3
and 4 imply λ̃i − λi ≤ c1εs as shown in the proof of Lemma 15, then we have

dλ =

d∑
i=1

λi
λ+ λi

=

d∑
i=1

λ̃i

λ+ λ̃i
+ λ

d∑
i=1

λi − λ̃i

(λ+ λi)(λ+ λ̃i)

≤
d∑
i=1

λ̃i

λ+ λ̃i
+ c1εs

d∑
i=1

1

(λ+ λi)(λ+ λ̃i)

=
d∑
i=1

λ̃i

λ+ λ̃i
+

c1εs

λ · λmin ̸=0(Σ̃)

d∑
i=1

λ · λmin̸=0(Σ̃)

(λ+ λi)(λ+ λ̃i)
,

where λ
λ+λi

≤ 1 for ∀i and
∑d

i=1
λ̃i

λ+λ̃i
≤ p+ s since rank(Σ̃) ≤ p+ s. Finally, we get

dλ ≤ p+ s+
c1εs(p+ s)

λ · λmin̸=0(Σ̃)
≤ c2

(
1 +

εs
λ

)
(p+ s),

where c2 ≥ max

{
1, c1

λmin̸=0(Σ̃)

}
.

Corollary 11 Under (Hsu et al., 2012, Condition 2 and 4), and the assumptions in Lemma 16, the
excess risk of the downstream task can be upper bounded by

R(β̂λ) ≤ error∗apx + E[∥(βλ − β∗)X∥2] +O
(
p+ s

n

(
1 +

εs
λ

)
σ̃2

)
,

with high probability, where σ̃2 :=
(
E[|E[Y |X]− βλX∥2] + E[∥(βλ − β∗)X∥2] + σ2

)
.

We only outline the main steps and refer the readers to (Hsu et al., 2012, Theorem 16) for
details. First, by the triangular inequality, we have R(β̂λ) ≤ error∗apx + E[∥(β̂λ − β∗)X∥2]. The
bound on the second term can be obtained as discussed below. The last term is simply due to
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d2,λ ≤ d1,λ ≤ cλ(1+
εs
λ )(p+s) by Lemma 16, where dl,λ =

∑d
j=1

(
λj

λj+λ

)l
for l ∈ {1, 2}. Observe

that the ridge estimator with Yj = 1Ȳ=yj
as the target variable is equivalent to the jth row of the

ridge estimator with Y as the target variable. Thus we can provide a bound on E[∥(β̂λ,j − β∗j )X∥2]
for each j ∈ {1, . . . , p} according to (Hsu et al., 2012, Theorem 16). Summing up the inequalities
gives E[∥(β̂λ − β∗)X∥2] ≤ E[∥(βλ − β∗)X∥2] + E[∥(β̂λ − βλ)X∥2], where E[∥(β̂λ − βλ)X∥2] is
upper bounded in (Hsu et al., 2012, Theorem 16).

Appendix I. Synthetic Data: Details of the Data Generation

Let X1 ∼ N (0, Id1). Note that E[∥X1∥] =
√
2Γ(5.5)

Γ(5) ≈ 3.08, where Γ(·) is the Gamma function.
The label Ȳ is determined by ∥X1∥ as follows: Ȳ = 0 when ∥X1∥ < 2.5; Ȳ = 1 when 2.5 ≤
∥X1∥ < 3.5; Ȳ = 2 when ∥X1∥ ≥ 3.5. Then, let X2 = (A + Bg(X1))Y + N where A and B
are matrices with i.i.d. entries from Unif[−2, 2] and N ∼ N (0, Id2). The (i, j)th element of g(X1)

is given by (maxk(X1,k)) · sin
(
2πi
s mink(X1,k) +

2πj
p

)
. The sample sizes of the pretext training

data and testing data are 104 and 103, respectively. The MLPs used for the pretext task and two SL
procedures all have two fully connected hidden layers with ReLU activation. The batch size is 32,
the number of epochs is 10, and the learning rate is 0.001.

Appendix J. Further Details of the Computer Vision Task

The sample sizes of the pretext task and testing are fixed to be 20000 and 1000, respectively.
The edge of the triangle is sampled from Unif[8, 32], the radius of the circles is sampled from
Unif[5, 10], and the pentagon is drawn within a circle with radius samples from Unif[8, 64/3]. The
sizes are chosen to ensure that the average areas of the objects are similar. The pretext task and SL
both use convolution neural networks (CNNs) consisting of two convolution layers and two fully
connected layers with ReLU activation. The learned representation is obtained from the second
convolution layer of the CNN, which has a dimension d2 = 12544. Since the rotated image X2 has
the same label as X1, we also use the rotated images as additional labeled data for the downstream
task and SL. In the pretext task, the batch size is 64, the number of epochs for training is 15, and
the learning rate is 0.001. For SL, the batch size the modified to be 32 since the sample size is
much smaller. For ridge regression, we choose the shrinkage parameter λ from 200 numbers evenly
spaced on a log scale over [0.001, 100] with 5-fold cross-validation.

In Section 6.2, we explain that the unsatisfactory performance of SSL for Triangle vs. Pentagon
is potentially due to the analogous characteristics (i.e., the edges and vertices) that determine the
orientation of the object. From a theoretical perspective, the full rank condition on Ch(x) (that
is a necessary condition for the exact matching) is violated since the columns of Ch(x) are ap-
proximately linearly dependent. This does not happen for Triangle vs. Tangent Circles since the
orientation of the circles is determined by curved edges. To further support our observation, we use
Grad-CAM (Selvaraju et al., 2017) to visualize the contributing features that the pretext model used
for rotation prediction. To highlight the major components, we only show pixels of the heatmap
with top-20% intensity in Fig. 4.
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Figure 4: Visualization of the contributing features for rotation prediction in the computer vision task.

Similarly to the stylized MNIST dataset, we add dot and dash patterns to the image background.
The space in patterns is sampled from Unif[8, 32].

Figure 5: Geometric shape images with dot vs. dash background. SSL (red) and SL (blue)
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Appendix K. Experiments on the MNIST Dataset

The sample sizes for the pretext task and testing is 45000 and 10000, respectively. We compare the
performance of SSL and SL under different labeled sample sizes {50, 100, 200, 400}. The space
d in the sparse and dense patterns is sampled from Unif[3, 8] and Unif[8, 15], respectively. We
randomly shift each pattern by Unif[0, d] to avoid the position of the pattern being correlated with
the image orientation. We use the same CNN configuration as the geometric shape task.
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Figure 6: The original MNIST dataset and four stylized versions of MNIST. SSL (red) and SL (blue).

Figure 7: A visualization of the contributing features for MNIST dataset with dash vs. dot background.
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