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Abstract
We introduce a causal framework for designing optimal policies that satisfy classes of fairness con-
straints. We take a pragmatic approach asking what we can do with an action space available from
historical data, with no further experimentation and novel actions immediately available. We pro-
pose two different fairness constraints: a “moderation breaking’ constraint which aims at reducing
disparity in outcome levels across sensitive attributes to the extent the provided action space per-
mits; and an “equal benefit” constraint which aims at distributing gain from the new and maximized
policy equally across sensitive attribute levels, and thus at keeping pre-existing preferential treat-
ment in place or avoiding the introduction of new disparity. We introduce practical methods for
implementing the constraints and illustrate their uses on experiments with semi-synthetic models.

1. Introduction

The fairness of decisions made by machine learning models involving underprivileged groups has
seen increasing attention and scrutiny by the academic community and beyond. A growing body
of literature has been looking at the unfavourable treatment that might arise from historical biases
present in the data, data collection practices, or the limits of modelling choices and techniques.
Within this field of study, the vast majority of works has considered the problem of designing fair
prediction systems, i.e. systems whose outcomes satisfy certain properties with respect to mem-
bership in a sensitive group (Verma and Rubin, 2018; Barocas et al., 2019; Mehrabi et al., 2019;
Wachter et al., 2020; Mitchell et al., 2021; Pessach and Shmueli, 2022). In contrast, relatively little
attention has been given to the problem of designing fair optimal policies (Joseph et al., 2016, 2018;
Gillen et al., 2019; Kusner et al., 2019; Nabi et al., 2019; Chohlas-Wood et al., 2021). In this case,
the goal is to design a decision making system that specifies how to select actions that maximize a
downstream outcome of interest subject to fairness constraints.
The consideration of an outcome downstream of the action allows a more flexible and powerful
approach to fair decision making, as it enables to optimize future outcomes rather than matching
historical ones, and also to enforce fairness constraints on the effects of the actions rather than
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Figure 1: (a): Causal graph with associated distribution p(A,S,X, Y ;σA) =
p(Y |A,S,X)p(A|S,X;σA)p(S,X) describing our fair optimal policy setting. (b):
A schema of the fair prediction system setting, where we do not control the true outcome
but a predictor of it. A long term distribution shift for Y in the population may take place
by future applications of the new predictor, but no short term, individual level effects are
expected to be significant.

on the actions themselves. Enforcing fairness constraints on the effects of the actions in decision
problems that correspond to allocations of resources or goods may help reduce the risk of unfair
delayed impact (Dwork et al., 2012; Liu et al., 2018; D’Amour et al., 2020).

In this work, we propose a causal framework for designing fair optimal policies that is inspired by
the public health literature (Jackson and VanderWeele, 2018; Jackson, 2018, 2020). We assume the
causal graph in figure 1a, where action A depends on sensitive attribute S and covariates X; and
where S and X , which can be associated, potentially directly influence the outcome Y . We define
the policy with the conditional distribution p(A |S,X;σA) parameterized by σA–represented in the
graph as a regime indicator (Dawid, 2007; Correa and Bareinboim, 2020). The aim is to learn
a parametrization that maximizes Y in expectation while controlling its dependence on S. This
graph describes common real-world settings in which the action can only indirectly control for
the dependence of Y on S, and therefore to a level that depends on the available action space.
In addition, it enables to learn the optimal policy from available historical data collected using a
baseline policy p(A |S,X;σA = ∅), overcoming issues such as, e.g., cost or ethical constraints in
randomizing actions, which are common in real-world applications where fairness is of relevance.
To highlight the difference between our fair optimal policy framework and the fair prediction system
framework, we contrast it to the causal graph in figure 1b, where the action is the definition of a
predictor Ŷ that is designed to approximate some unknown real outcome Ŷ . We describe the goal
as learning a parametrization such that p(Y |S,X;σY ) matches the distribution of past outcomes
p(Y |S,X;σY = ∅) while controlling for dependence of the outcome distribution on S.

We consider two constraints for controlling disparity in the downstream outcomes with respect to
S, which may be applicable for different use cases, depending on context and available actions: (i)
a moderation breaking constraint, which aims at actively reducing disparity to the extent permitted
by the action space; and (ii) an equal benefit constraint, which aims at equalizing the disparity of
a new policy with that of the baseline policy in order to maintain the preferential treatment present
in the baseline policy or to conservatively avoid introducing new disparity. We demonstrate the
performance of our framework on two real-world based settings.
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Symbol Explanation
σA Regime indicator for conditional distribution
A Action influenced by S and X
S Sensitive attribute
X Covariates influencing both A and Y
Y Outcome
YσA Potential outcome under the learned policy
Y∅ Potential outcome under the baseline policy
p(A |S,X; ∅) Baseline policy
p(A|S,X;σA) Parameterized learned policy
µY (a, s, x) Expected outcome given a, s, and x
f(s, x), g(a, s, x), h(a, x) Components of µY for ModBrk constraint
ϵ Slack variable for fairness constraint
µY
σA

Expected outcome under policy σA
gσA(s, x), hσA(x) Adjusted components of µY (σA)
N (·, ·) Gaussian distribution notation
Φ(·) Cumulative distribution function for Gaussian
E[·] Expectation operator
ρ(s, x) Correlation coefficient for joint Gaussian assumptions
F (·) Cumulative distribution function
µA, VA Mean and variance in Gaussian policies
µY , VY Mean and variance of outcomes

Table 1: Symbols and notations in this paper.

2. Outcome Disparity Controlled Policy

We assume the setting represented by the causal graph in figure 1a, where the sensitive attribute S
corresponds to characteristics of an individual–such as race, gender, disabilities, sexual or political
orientation–which we wish to protect against some measure of unfairness. We focus on discrete S,
but the proposed methods can be adapted to settings with continuous S.
This causal graph encodes the following statistical independencies assumptions:

(a) σA ⊥⊥ Y | {A,S,X}

(b) σA ⊥⊥ {S,X}.
These assumptions are not restrictive, as they are satisfied in any setting in which the partial ordering
among nodes is given by {S ∪X,σA, A, Y }. Assumption (a) enables us to learn the optimal policy
based on historical data collected using a baseline policy p(A |S,X;σA = ∅) (observational-data
regime), rather than by taking actions (interventional-data regime). Such a baseline policy rep-
resents the action allocation that was in place during the collection of the data pre-optimization.
Assumption (b) allows us to compute the constraints with the proposed estimation methods below.
We denote with YσA the potential outcome random variable, which represents the outcome result-
ing from taking actions according to p(A |S,X;σA) and has distribution equal to p(y;σA) :=∫
a,s,x p(y | a, s, x)p(a, s, x;σA). In the remainder of the paper, we indicate the baseline policy and

potential outcome with p(A |S,X; ∅) and Y∅ respectively.
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The goal of the decision maker is to learn a parametrization σA that maximizes the expectation of
the potential outcome, E[YσA ], while also controlling the disparity in YσA across S in the following
ways:

(i) through a moderation breaking (ModBrk) constraint the aims at removing dependence of
E[YσA ] on S as much as possible via what can be controlled, namely the allocation of A as
determined by p(A|S,X;σA);

(ii) through an equal benefit (EqB) constraint that requires the distribution of YσA − Y∅ to be
approximately equal across different values of S, ensuring that gain from the new policy is
distributed equally.

2.1. Disparity Control via ModBrk Constraint

Without loss of generality1, µY (a, s, x) := E[Y | a, s, x] can be written as

µY (a, s, x) = f(s, x) + g(a, s, x) + h(a, x), (1)

where h(a, x) is defined to be a function of components of (A,X) which are marginally independent
of S. In particular, E[h(A,X) | S = s;σA] and E[h(A,X) | X = x, S = s;σA] are not functions
of S.
The above leads to the following decomposition

µY
σA

(s, x) := E[YσA | s, x] =
∫
a µ

Y (a, s, x)p(a | s, x;σA)
µY
σA

(s, x) = f(s, x) + gσA(s, x) + hσA(x),

where gσA(s, x) := E[g(A, s, x) | s, x;σA], and hσA(x) := E[h(A, x) | s, x;σA]. This decompo-
sition contains (i) a component f(s, x) that cannot be affected by σA, but which can contribute to
disparity; (ii) a component hσA(x) that can be adjusted by σA to increase expected outcomes, but
which is not affected by S; and (iii) a component gσA(s, x) by which the choice of σA can influence
differences that are moderated by S.
This decomposition is not unique. However, regardless of the exact form of the decomposition, it
follows that for any two levels s and s̄ of S, we have

E[YσA | S = s]− E[YσA | S = s̄] :=

E[gσA(s,X) | S = s]− E[gσA(s̄, X) | S = s̄] + E[f(s,X) | S = s]− E[f(s̄, X) | S = s̄].

If we want to enforce an upper bound on |E[YσA | S = s] − E[YσA | S = s̄]| as an operational
definition of disparity of σA as moderated by S, it suffices to upper bound

|E[gσA(s,X) | S = s]− E[gσA(s̄, X) | S = s̄] + E[f(s,X) | S = s]− E[f(s̄, X) | S = s̄]|.

Considering that E[f(s,X) | S = s] is not a function of σA (since (S,X) ⊥⊥ σA) and solely a
function of s, we will consider them to be nuisance parameters and instead enforce an upper bound

|E[gσA(s,X) | S = s]−E[gσA(s̄, X) | S = s̄]| ≤ ϵ1/2

1. This can be seen by setting f(s, x) = h(a, x) = 0.
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uniformly on all possible combinations (s, s̄). Taking the square of both sides above to ensure
differentiability, we get to the following mathematical program

argmax
σA

E[YσA ] s.t. (E[gσA(s,X) | S = s]−E[gσA(s̄, X) | S = s̄])2 ≤ ϵ,∀s, s̄. (2)

The slack ϵ is chosen based on domain requirements and the feasibility of the problem: central to the
setup is that we work with a given space of policies, which is constrained by real-world phenomena
and, in general, can only do so much to reduce disparity. In practice, a range of ϵ values should be
tried, and the corresponding disparity constrains measured, as well as their impact of the expected
outcome.
Parceling out f and h puts the focus on the interaction between σA and S, which is the only com-
ponent that can be controlled in order to reduce disparity in expectation. In our experiments, we
explicitly parameterize Eq. (1) as the ensemble of three neural networks, each representing f , g and
h, which learns this conditional expectation by mean squared error minimization. For simplicity we
do not enforce any identifiability, which was not required for the derivation above, relying on stan-
dard regularization to guide the smoothness of gσA to be no less than what suffices to reconstruct
E[Y | a, s, x] after accounting for terms in which S and σA do not interact.

Motivation & Suitability. ModBrk aims at removing S’s influence on the outcome. As such,
it is appropriate when disparity is illegitimate. This is analogous to the appropriateness of the
demographic parity constraint in fair prediction systems.

(a)
S

M

X

A

σA

Y

(b)

Demographics

Working moms

Experience

Socio-Economics

Outreach

Tax Policy

σA

Application
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Figure 2: (a): Causal graph providing further intuition for
the ModBrk constraint. (b): Example use cases
for the suggested constrains. See full description
in the text.

However, ModBrk controls dispar-
ity via the separate actions and there-
fore to the extent permitted by the
action space. Some insights into
ModBrk can be gained by notic-
ing that we are operating in the
(estimated) true process that fol-
lows a particular σA. We marginal-
ize the intermediate process between
(A,S,X) and the outcome Y , but im-
plicitly assume that actions change
mediating events, such as M in fig-
ure 2a. The extent by which we can
mitigate unfairness is a property of the real-world space of policies. For instance, we cannot inter-
fere in the direct dependence between S and Y except for the moderating effect that M might have
under a new policy. This is in contrast to previous work, such as Nabi et al. (2019), which solves
a planning problem in a “projection” of the real-world process where unfair information has been
removed by some criteria.
An example in which the ModBrk constraint would be suitable is that of a company looking to
change its outreach campaign A to maximize job applications Y while mitigating current imbal-
ances in their demographics S and level of experience X (figure 2b, green labels). The company
cannot control factors such as cultural preference among applicants for industry sectors, but can
induce modifications by focusing recruiting efforts in events organized by minority groups in rele-
vant conferences and by choosing recruiting strategies that do not interact with group membership.
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Likewise, if we have have policies to increase a measure of wealth or other economical indicators
across subgroups of S, we may not wish to do so while keeping disparities uncontrolled.
We emphatically do not claim ModBrk is an universal principle. For instance, if Y is a particular
medical outcome, we may want to have as much of that maximized regardless of differences in
subgroup status.

2.2. Disparity Control via EqB Constraint

We formalize the requirement that the distribution of YσA − Y∅ must be approximately equal across
different values of S using the cumulative distribution function (cdf) F , leading to the constrained
objective

argmax
σA

E[YσA ] s.t. F(YσA − Y∅ |S = s) = F(YσA − Y∅ |S = s̄), ∀s, s̄. (3)

The EqB constraint focuses on YσA − Y∅ because it is proposing a notion of fairness which looks to
equally distribute gains from a new policy compared to an initial condition, represented by Y∅, or in
fact keep preferential treatment present in the original policy. That is part of the pragmatic nature
of our proposal.
In general, the distribution of YσA −Y∅ is not identifiable, due to the fact that the decision maker has
access only to realization of Y under the baseline policy. This problem is similar to the “fundamental
problem of causal inference” in the context of hard interventions, for which bounding approaches
have been suggested (Pearl, 2000; Wu et al., 2019; Miratrix et al., 2018). Similarly, we propose
matching upper bounds and lower bounds of the cdf.

Motivation & Suitability. EqB aims at not increasing disparity compared to the baseline policy.
The EqB constraint would be appropriate in two scenarios. The first scenario is when we would like
to keep the disparity present in the baseline policy when moving to the new one, since it includes
legitimate disparity or desirable preferential treatment. This is a similar motivation to the equalized
odds constraint in fair prediction systems. This scenario would arise, for example, when wishing to
design an income taxation system to optimize disposable income or savings levels (figure 2b, purple
labels). Disparities in Y across gender or racial groups S may exist, as well as possibly related
individual characteristics X , like socio-economic status, employment type and housing situation.
The decision maker should take into account and maintain desirable preferential treatments present
in the baseline policy, for example, for working moms.
The second scenario is when we would like to not introduce greater disparity in a new policy,
acknowledging the limitations of the action space. This scenario would arise, e.g., when wishing to
perform a software update of a medical or well-being app that includes different designs, with users
belonging to different age groups. The decision maker might want to ensure that the new policy
does not change existing levels of difference in health or wellbeing across groups, which relates to
the usage of the app. The app use, as well as the downstream outcome Y itself, has pre-existing
relations to age groups S as well as to other associated user characteristics X , but the decision maker
wants the update rollout to not exacerbate the already existing gap in outcome under the baseline
policy. The decision maker may not want to forcefully reduce disparities in outcome in such a case
– it is likely that younger age groups would be more responsive and happier with a software update,
and have higher levels of the downstream outcome Y overall; the choice of policy can only do so
much to change that.
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Figure 3: (a, b) Training phases for ModBrk. (c, d) Training phases for EqB. Gray circles: inputs.
Teal blocks: parameter layers. Light green blocks: fixed parameters. Purple diamonds:
additive gates. Dashed edge: alternating inputs.

3. Relation to Prior Work

While more attention has been given to the problem of designing fair prediction systems, some
works have considered the problem of designing fair optimal policies. Like us, Nabi et al. (2019) use
observational data, but in order to learn a policy as if particular path-specific effects between S and
A and S and Y were completely deactivated. They do not place any constraints on the distribution
of YσA given S and X , require complex counterfactual computations, and aim to achieve a notion
of fair policy which targets specific causal subpaths. Critically, they rely on a manipulation of
S, and do not have an equivalent to our pragmatic view, asking what can be done with a set of
available actions. Chohlas-Wood et al. (2021) consider a more general utility function than ours as
the optimization objective but focuses on enforcing a notion similar to demographic parity on the
choice of the policies, rather than considering a fairness notion on the outcomes. The most similar
work to ours is the one from Kusner et al. (2019), still in the observational data regime. Crucially,
this work is different in its motivation: it aims to extend the work in Kusner et al. (2017) to the
policy setting, and thus relies on manipulation of S. Further, it consists mostly of budget treatment
allocations and interference problems. It does not have our pragmatic view, and does not consider
parameterized policy spaces that take into account a covariate vector X . Due to the difference in
their disparity definitions, these methods would not be directly comparable to ours. There is also
a growing literature on fair policy optimization in online settings, but those deal with sequential
decisions and interventional data, which are fundamentally different from ours (see Appendix A).

4. Method

In this section, we describe how the ModBrk and EqB constrained objectives (2) and (3) can be es-
timated from an observational dataset D = {ai, si, xi, yi}Ni=1, (ai, si, xi, yi) ∼ p(A,S,X, Y ;σ∅),
and introduce a method for optimizing σA using neural networks for each constraint. In both cases,
we enforce the constraints via an augmented Lagrangian approach, casting them as inequality con-
straints controlled by a slack value ϵ (see Appendix B). Different choices of ϵ lead to different
trade-offs between utility and constraints, similarly to varying Lagrange multiplier values.
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4.1. ModBrk Constraint

For the ModBrk constrained objective (2), we learn a deterministic policy using an MLP neu-
ral network MLPA

σA
, i.e. p(A | s, x;σA) = δA=MLPA

σA
(s,x), where δ denotes the delta function

and MLPA
σA

(s, x) the output of MLPA
σA

given input s, x. This gives µY
σA

(s, x) = E[YσA |s, x] =∫
a µ

Y (a, s, x)p(a | s, x;σA) = µY (MLPA
σA

(s, x), s, x).
We model µY (a, s, x) = f(s, x) + g(a, s, x) + h(a, x) using a structured neural network NNY that
separates into the three components f, g, h reflecting the decomposition of µY (a, s, x). We learn
the parameters of MLPA

σA
and NNY in two phases, as outlined in figure 3a. In Phase I, we estimate

the parameters of NNY from D. In Phase II, we learn the parameters of MLPA
σA

by optimizing
objective (2) with E[YσA ] ≈ 1

N

∑N
i=1 E[YσA | si, xi] = 1

N

∑N
i=1 µ

Y (MLPA
σA

(si, xi), si, xi), using
the NNY trained in Phase I. If all variables are discrete, after estimating µY (a, s, x) and p(s, x),
computing (2) can be cast as an LP (see Appendix C). Consistency is then a standard result which
follows immediately. Notice that this formulation can also be extended to continuous S by defining
the constraint via partial derivative, E

[∣∣∣∂gσA (s,X)

∂s

∣∣∣ ∣∣∣ S = s
]
≤ ϵ.

Action clipping. We suggest ensuring overlap of p(a|s, x;σA) with p(a|s, x; ∅) by adaptively
constraining the output of MLPA

σA
to be within an interval that resembles the one observed under

the baseline policy. We consider two options: (a) matching the minimal and maximal value a seen
for each s, x combination (binning continuous elements) and (b): extend that interval according to
the difference between the minimal and maximal a value seen with each s, x. In the experiments,
we opted for constraining the output of MLPA

σA
to be in the interval

[min
AS,X

−ηgapAS,X
,max
AS,X

+ηgapAS,X
],

where gapAS,X
= maxAS,X

−minAS,X
. We enforced this interval with a shifted sigmoid function

in the last layer of MLPA
σA

. We set η = 1 to allow some extrapolation and increase in utility.

4.2. EqB Constraint

For the EqB constrained objective (3), we require knowledge of the baseline policy as well as cre-
ating upper and lower bounds on the cdf F(YσA − Y∅ |S = s),∀s. YσA − Y∅ is a counterfactual
quantity, which is not generally identifiable. In fact, we do not have access to the joint distribution
of YσA and Y∅ as we never observed both variables simultaneously for the same individual. How-
ever, we show next that if one is willing to make a parametric assumption, then YσA −Y∅ is partially
identifiable and amenable to bounding. We assume that the baseline policy is Gaussian and only con-
sider Gaussian policies, with equal homogeneous variance, i.e. p(A|s, x; ∅) = N (µA

∅ (s, x), V
A),

p(A|s, x;σA) = N (µA
σA

(s, x), V A). In addition, we assume that YσA and Y∅ are jointly Gaussian
conditioned on S,X , with marginal means µY

σA
(s, x), µY

∅ (s, x) and equal homogenous marginal
variance V Y .
The assumption on YσA and Y∅ enables us to bound the population cdf by maximizing/minimiz-
ing it with respect to the unknown correlation coefficient ρ(s, x) ∈ [−1, 1], where ρ(s, x) :=
Cov(YσA

,Y∅ | s,x)
V Y . Let Φ denote the cdf of the standard Gaussian. We can write

P(YσA − Y∅ ≤ z |x, s) = Φ

(
z − µY

σA
(s, x) + µY

∅ (s, x)√
2V Y (1− ρ(s, x))

)
.
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Defining µ(s, x) := µY
σA

(s, x) − µY
∅ (s, x) and fz

s,x(ρ) := Φ

(
z−µ(s,x)√
2V Y (1−ρ)

)
, we can show that,

for any s, x, the following bounds are the tightest: (i) fz
s,x(−1) ≤ P(YσA − Y∅ ≤ z |x, s) ≤

fz
s,x(1), for z−µ(s, x) > 0; (ii) fz

s,x(1) ≤ P(YσA −Y∅ ≤ z |x, s) ≤ fz
s,x(−1), for z−µ(s, x) < 0.

Using Ns to indicate the number of elements in D with si = s, we obtain global lower and upper
bounds estimates for P(YσA − Y∅ ≤ z | s) as FL

s (z) =
1
Ns

∑
i:si=s f

z
s,xi(−sign(z − µ(s, xi))) and

FU
s (z) = 1

Ns

∑
i:si=s f

z
s,xi(sign(z − µ(s, xi))).

We operationalize the constraint by minimizing the mean squared error (MSE) of the bounds differ-
ences, i.e. our final objective is

argmax
σA

E[YσA ] s.t.
∑
z∈Sz

(
||FL

s (z)− FL
s̄ (z)||22 + ||FU

s (z)− FU
s̄ (z)||22

)
≤ ϵ, (4)

∀s, s̄, where Sz is a grid of values.
We propose to estimate E[YσA ] with the inverse probability weighting (IPW) estimator. This is an
alternative estimation approach to the one used for ModBrk, to demonstrate the modularity of our
approach and constraints.

E[YσA ] =

∫
a,s,x,y

y
p(a | s, x;σA)
p(a | s, x; ∅) p(a, s, x, y; ∅) ≈ 1

N

N∑
i=1

yi
p(ai | si, xi;σA)
p(ai | si, xi; ∅) .

We model µA
∅ (s, x), µ

A
σA

(s, x) and µY (a, s, x) = E[Y | a, s, x] using MLP neural networks MLPA
∅ ,

MLPA
σA

, and MLPY respectively. We learn the parameters of these networks in two phases as
outlined in figure 3b. In Phase I, we learn the parameters of MLPA

∅ and MLPY from D with
MSE losses between predicted and observed actions and outcome. We obtain a MAP estimate
of µY

∅ (s, x) =
∫
a µ

Y (a, s, x)p(a|s, x, ∅) as µ̂Y
∅ (s, x) =

∫
a µ

Y (a, s, x)δA=µA
∅ (s,x). We estimate V A

and V Y through averaging the MSE of target and predicted mean output from MLPA and MLPY

respectively 2. In Phase II, we learn the parameters of MLPA
σA

that maximize objective (4) using the
MLPA

∅ and MLPY trained in Phase I.

Misspecification and parametric restrictiveness. Notice that, as the Gaussianity assumption is
placed on the conditional joint distribution of (YσA , Y∅) given S and X rather than on the marginal
distribution. It is thus reasonable to invoke the central limit theorem and assume that, given enough
samples, the residuals of Y∅|s, x and YσA |s, x are normally distributed, since one can view the
residuals as aggregating various minor factors that explain the remaining variability after taking
into account a strong signal. Also notice that our proposed approach can be easily extended to
heteroskedastic Gaussian regression models which are very flexible and can accommodate many
real-world datasets. Finally, a nonparametric approach for the constraint computation would be
possible e.g. via Fréchet bound (see Appendix D), but that may come at a computational cost. To
illustrate the effects of misspecification on our proposed assumption, we present below a formal
result showing that our constraint estimation error is bounded from above by how the true joint
density deviates from the Gaussian density (see Appendix D for a proof and discussion).

2. We assume V Y to be homoskedastic.

9251



GULTCHIN GUO MALEK CHIAPPA SILVA

Proposition 1 For fixed s, x, let Q = P(YσA − Y∅ ≤ z | s, x) and our estimator

Q̂ = Φ

(
z − µY

σA
(s, x) + µY

∅ (s, x)√
2V Y (1− ρ(s, x))

)
.

Let fs,x denote the joint density function of YσA , Y∅ | s, x and ϕs,x the joint Gaussian density function

with mean [µY
σA

(s, x), µY
∅ (s, x)] and shared variance V with correlation ρ(s, x). Then

∣∣∣Q− Q̂
∣∣∣ ≤

∥fs,x − ϕs,x∥1, where || · ||1 denotes the L1 norm.

5. Experiments

We evaluated the ModBrk and EqB constraint methods 3 on the New York City Public School
District (NYCSchools) dataset compiled in Kusner et al. (2019), which we augmented to include
actions; and further tested ModBrk on the Infant Health and Development Program (IHDP) dataset,
specifically the real-data example examining dosage effects described in Section 6.2 of Hill (2011)
(we could not use this dataset for EqB due to its reliance on parametric assumptions). Below, we
briefly discuss the datasets and defer further details to Appendix E.
Action-augmented NYCSchools dataset. We adopted the same sensitive attribute and covariates
as Kusner et al. (2019), and augmented the dataset with generated actions and outcomes. We created
continuous actions corresponding to funding level decisions as A = (wT

SXSX)2+max(0, wT
XX)+

N (0.5, 0.4), where E is the original percent of students taking the SAT/ACT exams (pre-college
entry) in the dataset. The proposed form of Y is discussed in Appendix E.
IHDP dataset. The IHDP dataset describes a program that targeted low-birth-weight, premature in-
fants, providing them with intensive high-quality child care and home visits from a trained provider.
As continuous action A we used the self-selected number of participation days in the program. The
outcome Y corresponds to child score attainment in cognitive tests at age three. We considered
mother’s race (white vs. non-white) as sensitive attribute S. We reinterpreted the original setting
as a resource allocation problems as follows: rather than as a self-decision, we view the number of
days in treatment as external, e.g., by assigning different individuals to different lengths of partici-
pation. In this case, the ModBrk constraint goal is to break the moderation of the allocation of days
in program by the group membership, such that the resource allocation policy is not responsible for
the difference in scores attained by different groups.

5.1. Results

We evaluated ModBrk and EqB by comparing these methods with: (1) optimizing the policy with
no disparity constraint (Unconstrained), (2) optimizing the policy without using S (Drop S), and
(3) using the baseline policy (σA = ∅). As discussed in Section 2, previous work on fair policy
or action allocation differs from our setting and objective, and therefore cannot be meaningfully
compared. For ModBrk, we also compare against different levels of constant actions (ConstA). We
do not include it for EqB since the IPW estimator is not suitable for δ-distributions. The range of ϵ
values in the plots was determined such that the minimal ϵ slack values correspond to the smallest
constraint value achievable with our optimization strategy (this is the lowest possible constraint
value achieved when setting ϵ = 0); the maximal ϵ slack value is the one that would closely match

3. The code reproducing our results is available at https://github.com/limorigu/PragmaticFairness.
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Figure 4: (Top) influence of the slack value on obtained values of the objective function and fair-
ness constraint violations. (Bottom) recommended actions by group for unconstrained
optimization and for constrained optimization, where the slack on fairness violation set
to 0 or the highest level shown in the top plot, respectively.

the constraint violation under unconstrained optimization. In practice, we propose to explore the
frontier resulting from choices of slack values and select the most acceptable trade-off for the user.

ModBrk Constraint Method. The results for ModBrk on the NYCSchools and IHDP datasets
are presented in Fig. 4(a), 4(d) and in Figs. 4(c), 4(f ) respectively4. For both datasets, as we increase
the tolerance on fairness violations, in the form of higher slack value ϵ in (2), we see a major
increase in constraint value, while allowing some increase in utility E[YσA ]. Observing the utility
values broken down by group membership (E[YσA |S = 1] vs. E[YσA |S = 0]), we see most of this
increase of utility is driven by the privileged group, S = 1 (a majority-white student body in the
NYCSchools dataset, and white mothers for the IHDP dataset). This is to be expected given that
we are trying to minimize interactions involving S = 1 and A, i.e. where the membership in the
privileged group inflates utility values, via higher g values. These higher g values for the S = 1
group also translate into higher utility values for S = 1 according the baseline policy, as can be

4. Dropping S had no influence here on utility and constraint values, thus we removed this baseline to avoid confusion
due to overlap and subsequent mismatch of colors between figure and legend.
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seen from the orange line, indicating baseline policy actions in the corresponding figures. Notice
that the choice of an appropriate slack ϵ here is a matter of trade-off based on user preferences of
utility vs. constraint value, and will depend on the specific dataset. We can gain deeper insight
into the working of our approach by inspecting the histogram of recommended actions at the end
of the policy model training. For both datasets, we see that applying the constraint with a small
ϵ value results in mapping more S = 1 members to lower action values compared to the S = 0
group, indicating that to enforce the constraint more tightly means allocating lower value actions to
the privileged group, while giving out as many high actions to S = 0 as possible under the action
clipping setting described previously. Notice that in both settings we succeed in increasing the utility
compared to the baseline policy. Recall that we employ action clipping to ensure some overlap with
the baseline actions for estimation purposes. This means that we are bound to some extent to the
interval of actions seen for each s, x in the baseline policy (this trade-off can be explored via choice
of η value, see Section 4.1). One could also increase η to achieve higher utility at the cost of
increased total action allocation (i.e. higher “budget”) and sacrifice in coverage. This is also why
we cannot achieve utility values that are as high as the highest ConstA in the figures; we ask how
best to distribute actions within the effective “budget”.

EqB Constraint Method. We present results for EqB on the NYCSchools dataset in Figs. 4(b)
and 4(e). As we increase the tolerance on fairness violations - in the form of higher slack value ϵ
in (4) - we observe an increase in constraint value with almost no change in overall utility E[YσA ].
Observing the utility values broken down by group membership (E[YσA |S = 1] vs. E[YσA |S =
0]), we see also no significant change in utility coming from either group. This result indicates that
our method learns a policy that assigns actions ensuring equal benefit without sacrificing the utility
of either group. Note that we also see an unusually high estimate of utility for S = 1. This could
be explained by the IPW estimator not extrapolating well to unseen data, as the S = 1 group only
consists of 7% of an already small dataset. On the right hand side of Fig. 4(b) we observe similar
recommended action histograms for the unconstrained (top right) and constrained (bottom right)
cases. This shows that our method decreases disparity with a similar “budget”. This is possible
because we are not attempting to reduce disparity present under the baseline policy. The similarity
in action histograms is partially due to the IPW objective which aligns recommended actions with
observed ones to achieve higher weighting. To validate our approach, we compute the ground truth
constraint value through counterfactual realization of the policy model’s predicted action mean in
the data generating process and compute distributional difference of YσA − Y∅ |S for the different
sensitive attribute groups. Notice also that our method succeeds in increasing the utility compared
to the baseline policy. Although the baseline policy has the lowest constraint, this is expected as we
are comparing distributions of YσA − Y∅ |S, where σA = ∅. Dropping S has a slight increase in
constraint and a decrease in utility compared to unconstrained setting, as our policy model performs
better through taking into account S to break the indirect association between S and Y .

6. Conclusion

We introduced a causal framework to learn fair policies given access to observational data and an
action space. Taking a pragmatic view, we asked what is the best utility that can be achieved with
the provided action space, while controlling two notions of disparity: one focusing on mitigating
a possible moderation effect involving group membership and the policy, and the other focusing
on ensuring equal benefit with respect to a baseline policy. We see this work as a first conceptual
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contribution in defining pragmatic fair impact policies, and envisage various possible future direc-
tions, including extending the proposed methods beyond binary sensitive attributes, to a multi-stage
policy setting, to handle unmeasured confounding and to online optimization.

Limitations discussion. Conceptual. Our pragmatic approach relies on data that we have about
mechanisms in this world, including possible inequities our actions in question cannot affect. We
also do so within a stationary framework that currently does not account for feedback, although we
see it as an important next step. This comes with caveats. First, whether or not it is desirable to
control for disparities of outcomes across levels of the sensitive attribute is problem-dependent. For
instance, if the action space consists of solely two options, to give a medical treatment or not, it may
be unclear why we should take into consideration group differences in recovery: other things being
equal, we just want to maximize the number of lives saved. In contrast, if Y is a relative measure,
e.g., of wealth, pure wealth maximization may be judged to be harmful if disparities among groups
in S are exacerbated. In this case, we may settle for a scenario with less aggregated wealth if
disparities are controlled. Such value judgements are not to be decided algorithmically. Our goal
is to provide a formalization of disparity control if it is judged to be desirable, and to provide an
estimate of whether different levels of control can be achieved under an acceptable loss of total
expected outcome, given an action space that is, again, a property of the real-world. We simply
provide a framework to examine what is possible. However, if our data reflects biased mechanisms
existing in the world that is outside of reach for our actions, we will not be able to change those,
and they will be reflected in estimates of what is possible. This is in contrast to methods that aim to
model alternative fair worlds.
Technical. The parametric assumption we make for the operationalization of the EqB constraint
is one that could be avoided and extended for greater generalization (e.g., via Fréchet bounds, see
Appendix D.1). However, in this work we opted for a parametric assumption to focus on a general
concpetual introduction. For the ModBrk constraint we propose a simple MLP estimation of the
decomposition in Eq. 1. One could envision a more elaborate formulation that will avoid a possible
failure mode, where g simply subsumes f and h. We did not observe empirically that this happens
in practice. However, one could avoid such possible issue by including additional regularization or
residual connections between the components of the MLP.
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Appendix A. Further discussion of related works

Considering interventional data in the online setting, Joseph et al. (2016, 2018) derive algorithms
that have “meritocratic fairness,” requiring that, at every round, no arm with lower expected reward
is preferred to one with a higher expected reward. This goal can be seen as an individual-level
fairness metric, but it is not at odds with a policy that maximizes utility; instead, its main concern is
to offer more conservative exploration.
Recently, fairness in bandit settings has received a lot of additional attention (Huang et al., 2021;
Schumann et al., 2022; Patil et al., 2020). We see interventional data and online sequential settings
as an interesting future direction, especially appropriate for use cases with low individual impact,
such as software and internet applications that interact with users naturally and frequently, at low
participation cost. However, we focus on observational-data regimes which we see as often more
appropriate, especially when the collection of interventional data could be harmful, or when it would
be unfair for individuals to essentially pay the price for exploration and calibration of learning
agents.

Appendix B. Augmented Lagrangian penalties

We can write the constrained problem as minxmaxλ≥0 f(x)+λ(c(x)−b) (possibly with a flipped
sign, depending on the optimization problem specifics). f is our policy optimization objective, c
stands for the computed constraint, and b is the level we wish to hold it at. The max returns f(x)
when x satisfies the constraints (as the maximum is obtained at λ = 0), and ∞ otherwise (as the
maximum is at λ = ∞). There could be a difficulty in optimizing the form above directly, as λ
jumps from 0 to ∞ when passing through the constraint boundary. To fix this we add a penalty
on making large changes to λ, obtaining minxmaxλ≥0 f(x) + λ(c(x) − b) − 1/(2µ||λ − λ′||2),
where λ′ are the Lagrange multipliers from the previous iteration and µ is a penalty term iteratively
increased.
The inner max can be solved in closed form as

λ =

{
0 if k(x) ≤ −λ′

µ

λ′ + µk(x) otherwise
(5)

where k(x) := (c(x)-b), representing the inequality constraint. Plugging the above into a complete
optimization problem,

min
x

f(x) + ϕ(k(x), λ′, µ)

s.t. ϕ(k(x), λ′, µ) =

{
−λ′2

2µ if k(x) ≤ −λ′

µ

λ′k(x) + µk(x)2

2 otherwise

(6)

This suggests a straight-forward algorithm: at each step, minimize the above, update the value of λ
via Eq. 5, and repeat until convergence.
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Appendix C. The ModBrk constraint as an LP

In this section we show how the optimization problem in Eq. 2 can be cast as a Linear Program
(LP) for the common case where the variables are discrete. We decouple the estimation problem
and assume that µY (a, s, x) and p(s, x) are known or appropriately estimated.
First, consider the case when A is binary; then, the policy may be identified by µA

σA
(s, x) = p(A =

1|S = s,X = x;σA). For convenience, define δ(s, x) = µY (1, s, x)− µY (0, s, x). Then, we may
evaluate

E[Yπ] =
∑
s,x

p(s, x)
(
µY (1, s, x)µA

σA
(s, x) + µY (0, s, x)(1− µA

σA
(s, x))

)
=∑

s,x

p(s, x)(µY (0, s, x) + δ(s, x)µA
σA

(s, x)),

which simplifies the optimization problem to

max
σA

∑
s,x

p(s, x)δ(s, x)µA
σA

(s, x)

s.t.
∑
x

(
p(s, x)δ(s, x)µA

σA
(s, x)− p(s′, x)δ(s′, x)µA

σA
(s′, x)

)
≤ √

ϵ ∀s, s′ < s, and∑
x

(
p(s, x)δ(s, x)µA

σA
(s, x)− p(s′, x)δ(s′, x)µA

σA
(s′, x)

)
≥ −√

ϵ ∀s, s′ < s,

which is a linear program in σA with a linear objective and linear constraints.
To generalize to the non-binary case, we define, by a slight abuse of notation, µA

σA
(a, s, x) = p(A =

a|S = s,X = x;σA) and evaluate the objective as

E[Yπ] =
∑
s,x,a

p(s, x)µY (1, s, x)µA
σA

(a, s, x),

leading to the linear program

max
µA
σA

(a,s,x)

∑
s,x,a

p(s, x)µY (a, s, x)µA
σA

(a, s, x)

s.t.
∑
a,x

p(s, x)
(
µY (a, s, x)µA

σA
(a, s, x)− p(s, x)µY (a, s, x)µA

σA
(a, s, x)

)
−
∑
a,x

p(s′, x)
(
µY (a, s′, x)σA(s

′, x, a)− p(s, x)µY (a, s′, x)µA
σA

(a, s′, x)
)
≤ √

ϵ ∀s, s′ < s,∑
a,x

p(s, x)
(
µY (a, s, x)µA

σA
(a, s, x)− p(s, x)µY (a, s, x)µA

σA
(a, s, x)

)
−
∑
a,x

p(s′, x)
(
µY (a, s′, x)σA(s

′, x, a)− p(s, x)µY (a, s′, x)µA
σA

(a, s′, x)
)
≥ −√

ϵ ∀s, s′ < s,∑
a

µA
σA

(a, s, x) = 1 ∀s, x, and µA
σA

(a, s, x) ≥ 0 ∀a, s, x.

The last two constraints ensure that the policy is a valid conditional probability distribution.
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Appendix D. The EqB constraint formulation

We first formulate the EqB constraint under a Gaussian assumption primarily for simplicity of expo-
sition. We derive a conservative bound in section 4.2 to guarantee that FL

s (z) ≤ F true
s (z) ≤ FU

s (z),
where F true

s (z) = P(YσA − Y∅ ≤ z|s). Note that no tighter bound exists without further assump-
tions. This is a result that follows directly from the properties of a Gaussian distribution: that is,
for a bivariate Gaussian (X,Y ) with fixed marginals, one gets the smallest/largest value of the
cdf P(X − Y ≤ z) among all possible correlation coefficients when their correlation is −1 or 1
(depending on z and the marginal means). This can be directly verified in the equation following
the second paragraph in Section 4.2 by simple differentiation. Thus we know the global bound,
FU
s (z)− FL

s (z).
Relying on such-tight-as-possible bounds, equating the upper and lower bounds across groups will
indeed ensure similar constraints, and is the best we can do if we do not want to deal with the quality
of approximation itself, but rather enforce a similarity between approximations across groups. In
other words, the goal is to make the distribution of D ≡ YσA − Y∅ as independent as possible of
the values of S, meaning any pair s and s̄ should imply the same conditional distribution for D (up
to an agreeable tolerance level ϵ). Ideally, if the conditional distribution of D was identified, the
constraint would be

|P(D ≤ z | s)− P(D ≤ z | s̄)| ≤ ϵ

As these distributions are not identified, we apply the principle of aiming at not having any evidence
against the lack of equality between these distributions. This means making the set of all possible
P(D ≤ z | s) and P(D ≤ z | s̄) the same for all z. As the smallest of such sets are given by
intervals, this is equivalent to making the upper bounds the same and the lower bounds the same,
not mixing upper and lower bounds:

|PU (D ≤ z | s)− PU (D ≤ z | s̄)| ≤ ϵ

|PL(D ≤ z | s)− PL(D ≤ z | s̄)| ≤ ϵ

Finally, in order to reduce the number of possible Lagrange multipliers, we use the norm in Eq. 4
as an alternative to enforcing all of the constraints separately.
For extensions beyond the normality assumption, there are very standard worst-case tight bounds
based on standard copula theory. We describe those in the following.

D.1. Fréchet bound (Makarov, 1982)

Consider a random vector (X,Y ) with continuous marginal CDF FX(x) = P(X ≤ x), FY (y) =
P(Y ≤ y). The copula of (X,Y ) is

C(u, v) = P(X ≤ F−1
X (u), Y ≤ F−1

Y (v))

The Fréchet-Hoeffding Theorem states that

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v}
Thus we can bound the unknown joint distribution with estimable marginal distributions. However,
we note that the benefit of this nonparametric approach comes at a computational cost, since we
would need to estimate the CDF of marginal distributions. Additionally, we may end up with loose
bounds, for example, when marginal probabilities take values around 0.5.
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D.2. Proof of model misspecification

Lemma 1 The difference distribution W := X−Y for two (possibly dependent) random variables
has density fW taking the form

fW (w) =

∫ ∞

−∞
fX,Y (x, x− w)dx (7)

where fX,Y (x, y) is the joint density function of X,Y .

Proof We can write the cumulative density function of the difference X − Y as the following:

FW (w) := P(W ≤ w) = P(X − Y ≤ w) =

∫ ∞

−∞

∫ w+y

−∞
fX,Y (x, y)dxdy

Note the density function is the derivative of the CDF. Thus, we have:

fW (w) =
d

dw
FW (w) =

d

dw

∫ ∞

−∞

∫ w+y

−∞
fX,Y (x, y)dxdy

=

∫ ∞

−∞

d

dw

∫ w

−∞
fX,Y (t+ y, y)dtdy (change of variable x = t+ y)

=

∫ ∞

−∞
fX,Y (w + y, y)dy

=

∫ ∞

−∞
fX,Y (x, x− w)dx (change of variable x = w + y)

Lemma 2 Let W := X − Y and W ′ := X ′ − Y ′ where fX,Y is the joint density function of X,Y
and ϕX,Y is the joint density function of X ′, Y ′. Then ∀w,∣∣P(W ≤ w)− P(W ′ ≤ w)

∣∣ ≤ ∥fX,Y − ϕX,Y ∥1 (8)

Proof Let fW be the density function of W and ϕW be the density function of W ′.∣∣P(W ≤ w)− P(W ′ ≤ w)
∣∣ = ∣∣∣∣∫ w

−∞
fW (z)− ϕW (z)dz

∣∣∣∣
=

∣∣∣∣∫ w

−∞

∫ ∞

−∞
fX,Y (x, x− z)− ϕX,Y (x, x− z)dxdz

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞

∫ ∞

x−w
fX,Y (x, y)− ϕX,Y (x, y)dydx

∣∣∣∣
≤
∫ ∞

−∞

∫ ∞

x−w
|fX,Y (x, y)− ϕX,Y (x, y)| dydx

≤ ∥fX,Y − ϕX,Y ∥1 ,∀w
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Proposition 1 (Model Misspecification) For fixed s, x, let Q = P(YσA − Y∅ ≤ z|s, x) and our

estimator Q̂ = Φ

(
z−µY

σA
(s,x)+µY

∅ (s,x)√
2V Y (1−ρ(s,x))

)
. Let fs,x denote the joint density function of YσA , Y∅|s, x

and ϕs,x denote the joint Gaussian density function with mean [µY
σA

(s, x), µY
∅ (s, x)] and shared

variance V with correlation ρ(s, x). Then∣∣∣Q− Q̂
∣∣∣ ≤ ∥fs,x − ϕs,x∥1 , (9)

where || · ||1 denotes the L1 norm.

Informally speaking, the accuracy of our estimator is bounded by the L1 norm between our Gaus-
sian approximated joint density function and the real underlying joint density function of observed
treatment effect and counterfactual treatment effect conditioned on individual circumstance (s, x).
Proof We can think of ϕs,x as a jointly normal approximation to the true underlying joint den-
sity fs,x of observed treatment effect and counterfactual treatment effect conditioned on individual
circumstance (s, x). Then by Lemma 2, we have∣∣∣∣∣P(YσA − Y∅ ≤ z|s, x)− Φ(

z − µY
σA

(s, x) + µY
∅ (s, x)√

2V Y (1− ρ(s, x)
)

∣∣∣∣∣ ≤ ∥fs,x − ϕs,x∥1 .

Appendix E. Additional dataset details

To the best of our knowledge, both datasets were made public under CC0 license.
Action-augmented NYCSchools dataset. As sensitive attribute S, we consider the majority race
of students in the school (white vs. non-white), while as covariates X we consider: (1) if the
school offers advanced placement or international baccalaureate classes, (2) whether the school
offers calculus courses, and (3) the number of full-time counselors employed (fractional values
indicate part-time work). We then create continuous actions corresponding to funding level de-
cisions as A = (wT

SXSX)2 + max(0, wT
XX) + N (0.5, σ), where wSX , wX are sampled uni-

formly in [0, 1], and σ = 0.4 (to allow variability, but not encourage negative values, given that
the mean is set at 0.5). We then scale A to lie in [0,1]. We generate the outcome Y that rep-
resents the percent of students who take the college entrance exams in the US (SAT/ACT), as
Y = 20E + βT[S,X, SX,A,XA, SA, SAX] + γT[X,A,AX] + N (1, σ), where E is the origi-
nal percent of students taking the SAT/ACT exams (pre-college entry) appearing in the dataset. We
multiply E by 20 to bring it within the same scale as the other components in the structural equation.
β and γ are sampled from a normal distribution, with higher mean values for coefficients affecting
terms involving A, to ensure the outcome is noticeably responsive to changes in A. In the original
dataset, E is the outcome and therefore can be interpreted as a function of S and X .
The form of Y was picked as a simple demonstration of one that would include the original Y ’s
in the original dataset, as well as interaction terms across X,S,A, and with a component that does
depend on S versus one that does not. The goal was to upweight the original Y such that the
magnitude of the contribution of the different parts are on the same scale, and the noise was chosen
to hold the Gaussian assumption we introduce, as well as retaining a meaningful signal to noise
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ratio when trying to fit a model for the conditional E[Y |S,X,A]. We plotted the data to ensure that
the Gaussianity assumption holds and the observed residuals to ensure that the model is reasonably
fitted.
The original dataset includes 345 data points. For the ModBrk constraint, we use a bootstrapped
version (by re-sampling S,X,E with replacement), increasing the number of data points to 20,000.
IHDP dataset. The IHDP dataset consists of data from a program that targeted low-birth-weight,
premature infants, providing them with intensive high-quality child care and home visits from a
trained provider. The continuous action A is the self-selected number of participation days in the
program. The outcome Y is the child score attainment in cognitive tests at age three. As sensitive at-
tribute S, we consider mother’s race (white vs. non-white). After removing duplicate encoding and
NaN values, we are left with 31 covariates, 22 categorical and 9 continuous. We use a bootstrapped
version (by re-sampling S,X with replacement, and obtaining corresponding A, Y predictions from
two black-box models trained on the original S, Y in the dataset), increasing the number of samples
to 20,000.
We re-reinterpret the original setting into a resource allocation problems as follows: rather than as
a self-decision, we suggest to think of the number of days in treatment as external, e.g., voucher
allocation or by assigning different individuals to different lengths of participation. In this case, the
ModBrk constraint’s goal is to break the moderation of the allocation of days in program by the
group membership (white vs. non-white mothers), such that the resource allocation policy is not
responsible for the difference in test scores attained by different groups.

Appendix F. Additional experimental details

All experiments were implemented using the Pytorch library (Paszke et al., 2019). The EqB ex-
periments were run on a standard personal Mac, using CPUs. The ModBrk experiments were run
on a single Microsoft Azure NVIDIA Tesla P100 GPU server (NC6s v2 instance). We provide the
corresponding environment setups in the accompanying code. After performing hyper-parameter
tuning, we ran the experiments appearing in the manuscripts with the following configurations:

F.1. EqB NYCSchools

Our stage I model consists of two MLPs, where MLPA
∅ learns µA

∅ and MLPY learns µY as described
in the main text. Both MLPs share the same structure, one hidden linear layer and one ReLu layer
(Agarap, 2018), with the hidden dimension set to 128 (for each component). We train the stage I
model for 500 epochs for MLPY and 1,000 epochs for MLPA

∅ , with a learning rate set at 0.01 and
0.0001 respectively, and the optimizer is Adam (Kingma and Ba, 2017). We verify the training of
our stage I models by checking R2 score involving predictions and the target. We also check the
predictions of the trained model MLPY for constant actions against the original model’s.
The stage II model consists of one linear layer and one ReLU layer, with the hidden dimension set
to 10 (for each component). In order to speed up its convergence, we standardize the output of the
stage II model with constant values. We train the stage II model for 1,000 epochs, with learning rate
0.01.
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F.2. ModBrk NYCSchools

Our stage I model is an MLP composed of additive f, g, h components, as described in the main
text. For this setting, we use three linear layers, and two ReLU non-linearities (Agarap, 2018), with
the hidden dimension set to 256 (for each component). We train the stage I model for 3,000 epochs,
with a learning rate set at 0.005, and the optimizer is Adam (Kingma and Ba, 2017). We verify the
training of our stage I model by checking explained variance and R2 scores on a held-out set. We
also check the predictions of the trained model for constant actions against the original model’s.
The stage II model consists of 3 linear layers and 2 ReLU nonlinearities, with a single batchnorm
layer following the first input layer. We also include a shifted Sigmoid at the end of the network to
enforce our action clipping, as described in the main text. For this setting, the hidden dimension is
set to 64, the learning rate is 0.001, and we use the Adam optimizer (Kingma and Ba, 2017). We
use scheduling for smoother training, and for both, we use a single batch of size 20,000.

F.3. ModBrk IHDP

We use similar model architectures to the ones above for this dataset, with the following modifica-
tions. For the stage I model, we use only 2 linear layers and 1 ReLU non-linearity (Agarap, 2018),
with the hidden dimensions set at 512. This model is trained for 1,000 epochs. We compare constant
action predictions compared to those of a standard black box model trained for E[Y |S,X,A]. The
learning rate used for stage I is 0.001, with a small weight decay of 0.1 for regularization.
For stage II, we use 50 hidden dimensions and a learning rate of 0.0005. We train for 3,000 epochs.
See complete configuration specifications in the files configs/NYCSchools EqB configs.yml, con-
figs/NYCSchools ModBrk configs.yml, configs/IHDP ModBrk configs.yml in the accompanying
code.
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