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Abstract
Observational data is often used to estimate the effect of a treatment when randomized
experiments are infeasible or costly. However, observational data often yields biased estimates
of treatment effects, since treatment assignment can be confounded by unobserved variables.
A remedy is offered by deconfounding methods that adjust for such unobserved confounders.
In this paper, we develop the Sequential Deconfounder, a method that enables estimating
individualized treatment effects over time in presence of unobserved confounders. This is
the first deconfounding method that can be used with a single treatment assigned at each
timestep. The Sequential Deconfounder uses a novel Gaussian process latent variable model
to infer substitutes for the unobserved confounders, which are then used in conjunction with
an outcome model to estimate treatment effects over time. We prove that using our method
yields unbiased estimates of individualized treatment responses over time. Using simulated
and real medical data, we demonstrate the efficacy of our method in deconfounding the
estimation of treatment responses over time.

1. Introduction

Individual-level decision-making is of increasing importance in domains such as marketing
(Brodersen et al., 2015), education (Mandel et al., 2014), and medicine (Hatt et al., 2022b).
For instance, in the medical domain, treatment decisions are based on the individual response
of a patient to a treatment and must be adapted over time according to the diseases progress.
Hence, physicians must know the treatment effect in order to decide how to treat a patient.
Since randomized experiments are often costly or otherwise infeasible, several methods have
been proposed to estimate treatment effect over time from observational data (e. g., Lim
et al., 2018; Robins and Hernán, 2009). These methods are largely based on the assumption
that there are no unobserved confounders, i. e., variables that affect both the treatment
assignment and the outcome. In practice, however, this assumption generally fails to hold,
which yields biased estimates and, therefore, may invalidate any conclusions drawn from
such methods.

We discuss how unobserved confounders introduce bias based on the following example.
Consider a physician in a hospital that prescribes medications (i. e., treatments) to a patient,
whereby the outcome is a measurement of a disease (e. g., a lab test). In this setting,
there are many potential confounders, which affect both the treatment assignment and the
patient outcome. For instance, treatment assignment is often confounded by social and
behavioral data such as socio-economic status or housing conditions. Although recognized

© 2024 T. Hatt & S. Feuerriegel.

Proceedings of Machine Learning Research vol 236:934–956, 2024 3rd Conference on Causal Learning and Reasoning



Hatt Feuerriegel

as important, social and behavioral data are routinely not captured in electronic health
records (EHRs) (Adler and Stead, 2015; Cantor and Thorpe, 2018; Chan et al., 2010). Since
these confounders are unobserved, we cannot control for them when estimating the effect of
a treatment. And, if not controlled for, these confounders introduce statistical dependence
between treatment assignment and patient outcome, which yields biased estimates (Hatt
et al., 2022a). Hence, methods are required that can estimate treatment effects in presence
of such unobserved confounders.

In order to cope with unobserved confounders, a theory for deconfounding (i. e., adjusting
for unobserved confounders) was developed in the static setting, which assumes that there
are multiple treatments available (Wang and Blei, 2019a). Bica et al. (2020b) extended this
theory to a specific sequential setting: They infer latent variables that act as substitutes
for the unobserved confounders using a factor model. However, in order to infer latent
variables, their theory requires multiple (i. e., two or more) treatments at each timestep. As
a consequence, this method cannot be used in the common setting with a single treatment
at each timestep. In contrast to this, we develop a theory for deconfounding the estimation
of treatment responses over time that does not rely on multiple treatments at each timestep;
instead, our theory can be used in the common case in which there is a single treatment
available at each timestep. Instead of leveraging the dependence between multiple treatments
at each timestep, we leverage the sequential dependence between the treatments over time
to infer substitutes for the unobserved confounders. To the best of our knowledge, this is the
first work that exploits the sequential dependence between treatment assignment to enable
unbiased estimation of treatment responses over time in presence of unobserved confounders.

In this paper, we propose the Sequential Deconfounder, a method for estimating treatment
responses over time in presence of unobserved confounders. Our method proceeds in two
steps: (i) We fit a specific latent variable model that captures the sequential dependence
between assigned treatments. By doing so, we obtain latent variables, which act as substitutes
for the unobserved confounders. (ii) We control for the substitutes and obtain estimates of
the treatment responses via an outcome model. We prove that this yields unbiased estimates
of individualized treatment responses over time. Informed by this theoretical result, we
propose an instantiation of the Sequential Deconfounder based on a novel Gaussian process
latent variable model. Finally, we demonstrate the efficacy of the Sequential Deconfounder
using both simulated data, where we can control the amount of confounding, and real-world
medical data.

We summarize our contributions1 as follows:

1. We develop a theory for deconfounding the estimation of treatment responses in
presence of unobserved confounders when a single treatment is assigned sequentially,
i. e., over time.

2. We propose, based on this theory, the Sequential Deconfounder, a method that
infers substitutes for the unobserved confounders and yields unbiased estimates of
individualized treatment responses over time.

1. Code available at https://github.com/tobhatt/SeqDeconf.
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3. We provide an instantiation of the Sequential Deconfounder via a novel Gaussian
process latent variable model. The performance of state-of-the-art algorithms is
substantially improved by our method.

2. Related Work

Extensive work focuses on estimating treatment effects in the static setting (e. g., Alaa and
van der Schaar, 2017; Johansson et al., 2016; Shalit et al., 2017; Wager and Athey, 2018;
Hatt and Feuerriegel, 2021). In contrast, our work focuses on estimating individualized
treatment responses over time, i. e., we consider sequences of treatments. In the following,
we discuss (i) works on estimating treatment responses over time assuming no unobserved
confounders and (ii) works on deconfounding the estimation of treatment effects.

(i) Treatment responses over time. Methods for estimating responses to a sequence
of treatments originate primarily from the epidemiology literature. Among these methods
are g-computation, structural nested models, and, in particular, marginal structural models
(e. g., Robins, 1986; Robins and Hernán, 2009; Robins et al., 2000). These methods have been
extended using recurrent neural networks and adversarial balancing (Lim et al., 2018; Bica
et al., 2020a; Frauen et al., 2023). In order to incorporate uncertainty quantification, Gaussian
processes have been tailored to the estimation of treatment responses in the continuous-time
setting (Schulam and Saria, 2017; Soleimani et al., 2017). The aforementioned methods
have found widespread use; however, without exception, all of these methods rely on the
assumption that there are no unobserved confounders. In practice, this assumption rarely
holds true such that estimates obtained from these methods can be biased.

Our work addresses this shortcoming by developing a method for deconfounding, which
can be used in conjunction with the above approaches and can lead to unbiased estimates of
treatment responses over time.

(ii) Deconfounding the estimation of treatment effects. Deconfounding uses
latent variable models to adjust for unobserved confounders. One possible approach is to rely
proxies of the unobserved confounder to infer latent variables that are used for adjustment
(Louizos et al., 2017; Lu et al., 2018; Witty et al., 2020; Kuzmanovic et al., 2021). However,
proxies may often not be available in practice. Instead, there have been several attempts
to infer unobserved confounders in the static setting only from the treatment assignment
(e. g., Tran and Blei, 2017; Wang and Blei, 2019a; Wang et al., 2018; Zhang et al., 2019).
These methods estimate treatment effects in the static setting and assume that there are
multiple treatments assigned. In particular, Wang and Blei (2019a) leverages the dependence
between multiple treatments to infer substitutes for the unobserved confounders using a
factor model. The only approach in the sequential setting is an extension of Wang and
Blei (2019a) to a specific sequential setting, that is, when there are multiple treatments
available at each timestep (Bica et al., 2020b). Similar to Wang and Blei (2019a), multiple
treatments at each timestep are assumed to infer latent variables via a factor model. This
factor model leverages the dependence between the multiple treatments at each timestep
in order to infer substitutes for the unobserved confounders at each timestep. Both theory
and methods entirely rely on the assumption of multiple treatments and, hence, none of the
above methods can be applied in the common sequential setting with a single treatment
assigned at each timestep.
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As a remedy, we develop a theory for sequential deconfounding which can be applied in
the common sequential setting with a single treatment at each timestep.

3. Problem Setup

In this section, we introduce the setup and notation used to study treatment responses and
formalize the problem of unobserved confounders. For this, we consider a patient i, for
which the random variables X

piq
t P Xt are the observed covariates (e. g., blood pressure),

a single treatment A
piq
t P At assigned at time t, and Y

piq
t`1 P Yt are the observed outcomes.

Static covariates (e. g., genetic information) are part of the observed covariates. Note that
we do not assume multiple treatments at each timestep. We consider the common case in
which there is a single treatment available at each timestep.

Observational data on patient trajectories consists of N independent realizations of the
above variables for t “ 1 until T piq, i. e., D “ ptx

piq
t , a

piq
t , y

piq
t`1uT piq

t“1 qN
i“1. For simplicity, we

omit the patient superscript piq.
We introduce further notation as follows. Let sXt “ pX1, . . . , Xtq P sXt denote the history

of covariates and let sAt “ pA1, . . . , Atq P sAt denote the treatment history up to timestep t.
Realizations of these random variables are denoted by sxt and sat, respectively.

We build upon the potential outcomes framework (Rubin, 1978, 2005), which was
extended to take into account sequences of treatments (Robins and Hernán, 2009). Let Y psatq

be the potential outcome for the treatment history sat. If sat coincides with the treatment
history in the data, then the outcome is observed. Otherwise, the outcome is not observed.
For each patient, we aim to estimate the individualized treatment response, i. e., the outcome
conditional on patient covariate history: ErY psatq | sXt “ sxts.

For this, we make two standard assumptions (Robins and Hernán, 2009; Schulam and
Saria, 2017):

Assumption 1. (Consistency.) If sAt “ sat for a given patient, then Y psatq “ Y for that
patient.

Assumption 2. (Positivity.) If Pp sAt´1 “ sat´1, sXt “ sxtq ‰ 0 then Pp sAt “ sat | sAt´1 “

sat´1, sXt “ sxtq ą 0 for all sat P sAt.

When using observational data, we can only obtain estimates of ErY | sAt “ sat, sXt “ sxts,
but not for ErY psatq | sXt “ sxts. However, many existing methods assume that these quantities
are equal by assuming sequential strong ignorability:

Y psatq KK At | sAt´1, sXt, (1)

for all sat P sAt and for all t “ 1, . . . , T . Sequential strong ignorability holds if there are no
unobserved confounders Ut. If this condition held true, then ErY psatq | sXt “ sxts could be
estimated from observational data, since ErY psatq | sXt “ sxts “ ErY | sAt “ sat, sXt “ sxts. In
practice, however, sequential strong ignorability may fail to hold, since there exist unobserved
confounders Ut.

Hence, individualized treatment responses cannot be estimated from observational
data using standard methods, since they estimate ErY | sAt “ sat, sXt “ sxts, but not
ErY psatq | sXt “ sxts, which are in general not equal. Moreover, we cannot test whether
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Figure 1: An illustration of the setup. A patient with covariates Xt is assigned a treatment At. In
practice, the assigned treatment and the patient’s outcome are often confounded by an unobserved
confounder Ut, which prohibits the use of standard methods for estimating treatment effects over
time. The variables can be connected to the outcome in an arbitrary way.

sequential strong ignorability holds in practice, since we never observe all potential outcomes.
Instead, we only observed the outcome associated to the assigned treatment history, which
is not sufficient to test the conditional independence. Figure 1 illustrates the general setup.

In this paper, we address this problem and show how to estimate individualized treatment
effects over time in presence of unobserved confounders.

4. Sequential Deconfounder

We introduce the Sequential Deconfounder, a method that enables the estimation of treatment
responses in presence of unobserved confounders when treatments are assigned sequentially,
i. e., over time. The Sequential Deconfounder proceeds in two steps: (1) We deconfound the
data. For this, we leverage the sequential dependence between assigned treatments to infer
latent variables which act as substitutes for the unobserved confounders. (2) We estimate
an outcome model using the observational data augmented with the substitutes. We prove
that this yields unbiased estimates of individualized treatment responses over time.

4.1. Step 1: Deconfounding

Our approach for sequential deconfounding is based on the following idea. If there are
unobserved confounders Ut, they introduce dependence between the treatments assigned over
time. Hence, we can use the probabilistic law according to which the assigned treatments
in the observed data changes over time to infer latent variables Zt P Zt. We show that
these latent variables act as substitutes for the unobserved confounders. In particular, we
prove that there cannot exist unobserved confounders that are not captured by Zt and, thus,
conditioning on Zt yields an unbiased estimate of the individualized treatment response.

4.1.1. Conditional Markov Model

We introduce the following conditional Markov model (CMM). The CMM determines the
probabilistic laws according to which the assigned treatments in the observed data changes
over time. Conditional on the observed covariates Xt and the latent variable Zt, the CMM
renders the treatment assignment as a Markov process.
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Definition 1. (Conditional Markov model for sequential treatments.) The assigned treat-
ments follows a conditional Markov model if the distribution can be written as

ppsa | sx, sz, θtq “ ppa1 | z1, x1, θq

T
ź

t“2
ppat | at´1, zt, xt, θtq, (2)

where θt are parameters.

Notice that we do not assume that, in the observational data, the patient covariates
xt at timestep t are independent of the patient history. We can leverage the sequential
dependence between assigned treatments over time in the CMM to infer a latent variable Zt

which, conditional on the covariates Xt, renders the treatment assignment Markovian.
Markovianity is realistic in practice, since clinicians typically determine the course of

treatment considering not the entire treatment history, but the current treatment. As such,
some of the most established methods for modeling decision-making in medicine are based
on Markov processes (e. g., Bennett and Hauser, 2013; Komorowski et al., 2018; Steimle and
Denton, 2017; Tsoukalas et al., 2015).

4.1.2. Theoretical Results

In this section, we prove that, when the assigned treatments follow a CMM, the latent
variables Zt act as valid substitutes for the unobserved confounders. In particular, we show
that there cannot exist any other unobserved confounder Ut that is not captured by Zt. If
there existed another unobserved confounder Ut, then the conditional Markov property of
the treatment assignment would not be satisfied anymore.

This argument does not apply to time-varying unobserved confounders, i. e., unobserved
confounders that change over time and affect one assigned treatment at each timestep.
Hence, we require time-invariant unobserved confounding.2

Assumption 3. (Time-Invariant Unobserved Confounding.) All unobserved confounders
Ut are time-invariant, i. e., Ut “ U, for all t P t1, . . . , T u.

Assumption 3 requires the unobserved confounder to be the same random variable at
each timestep, but potentially different for each patient.

Time-invariant unobserved confounding is realistic in many domains. For instance, in
the medical domain, social data such as socio-economic status or housing condition are, over
the course of treatment, time-invariant. Although these variables are potential confounders
for treatment decisions and explain potential disparities associated with the outcome of
interest, social data is not routinely captured in electronic health records (EHRs) (Chan
et al., 2010; Cantor and Thorpe, 2018; Hatt, 2024). Moreover, social determinants of health
that could be imported from data sources such as social services organizations are usually
missing in EHRs due to the lack of interoperability (Adler and Stead, 2015). Our Sequential
Deconfounder is suitable for capturing such unobserved confounders. As a direct consequence
of Assumption 3, the latent variable Zt is also time-invariant.

2. In epidemiology, such confounders are often called missing baseline measurements (White and Thompson,
2005), whereas they are called time-invariant unobserved heterogeneity in economics (Plümper and
Troeger, 2007).
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Figure 2: An illustration of the proof of Theorem 1. If there existed an unobserved time-invariant
confounder U that is not captured by Z, it would introduce dependence between the assigned
treatments beyond the previous treatment (depicted by the red arrows), which contradicts the
Markov property imposed by the CMM.

We now present the connection between the CMM and sequential strong ignorability,
which justifies the use of our method.

Theorem 1. If the treatment assignment can be written as a CMM, we obtain sequential
strong ignorability, conditional on the substitute and the covariates, i. e.

Y psatq KK At | sAt´1, sXt, Z, (3)

for all sat P sAt and for all t P t1, . . . , T u.

Sketch of Proof. The Markov process in the CMM requires that treatment at only
depends on the previous treatment at´1, given covariates xt and latent variable z. If there
was a time-invariant unobserved confounder u that is not captured by z, then this would
introduce dependence between assigned treatments beyond the previous treatment at´1.
This would contradict the Markov property of the treatment assignment. See Appendix A
for a full proof.

Theorem 1 has several implications. First, using the latent variable Z inferred by
the CMM as a substitute for the unobserved confounder yields unbiased estimates of
individualized treatment responses. Second, it shows how to find a valid substitute for the
unobserved confounder that renders the treatments subject to sequential strong ignorability.
A valid substitute has to satisfy two sufficient conditions: (i) the substitute comes from a
CMM; (ii) the CMM captures the distribution of the assigned treatments, which both can
be tested. In sum, Theorem 1 confirms that the Sequential Deconfounder enables unbiased
estimation of individualized treatment responses over time when the treatment assignment
can be written as a CMM.3

In order to assess the quality of the fitted CMM in the Sequential Deconfounder, we can
use predictive model checks as introduced in previous work (e. g., Bica et al., 2020b; Rubin,
1984). We describe predictive model checks in Appendix A.

3. The static deconfounder framework introduced by Wang and Blei (2019a) initiated several discussions
regarding identification of the latent variable model (e. g., D’Amour, 2019), which we discuss for our
setting in detail in Appendix B.
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Figure 3: An Illustration of the SeqGPLVM. The current treatment At is determined by the covariates
Xt, the latent variable Z, and the previous treatment At´1. The function ft is modeled by a Gaussian
process.

4.2. Step 2: Outcome Model

Once we obtained an estimate Ẑ for the substitute, we use it to estimate
E

“

Y | sAt “ sat, sXt “ sxt, Z “ ẑ
‰

via an outcome model (e. g., Bica et al., 2020a; Lim et al.,
2018; Robins and Hernán, 2009). While any outcome model can be used, we use established
outcome models for estimating individualized treatment responses over time as discussed in
Section 6.2.

4.3. “Time-Invariant Unobserved Confounders” vs. “No Unobserved
Confounders”

We compare the assumption of the Sequential Deconfounder to the “no unobserved con-
founders” assumption. Most existing methods for estimating treatment responses over time
assume that there are no unobserved confounders at all (e. g., Lim et al., 2018; Robins,
1986). In practice, however, this assumption rarely holds, since many confounders are not
subject to data collection or cannot be easily measured. Our work makes strictly weaker
assumptions: We assume that there are only time-invariant unobserved confounders. This
is relevant in practice. For instance, social data such as socio-economic status or housing
conditions are, over the course of treatment, time-invariant. Yet, besides being confounders,
they are not recorded in EHRs (Chan et al., 2010).

5. Instantiation of the Sequential Deconfounder

In this section, we propose an instantiation of the Sequential Deconfounder in order to
infer the substitute Z. Note that our theory holds true for any model that infers the latent
variable Z in the CMM: it does not restrict the class of models that can be used. However,
factor models (Bica et al., 2020b; Wang and Blei, 2019a) are prohibited in the sequential
setting, since they render the assigned treatments independent of each other and, hence,
cannot capture any sequential dependence between the assigned treatments. As a remedy, we
develop a sequential Gaussian process latent variable model (SeqGPLVM) that captures the
sequential dependencies between assigned treatment by leveraging the underlying structure
of the CMM.

5.1. The SeqGPLVM

In the context of latent variable models, the Gaussian process latent variable model (GPLVM)
is a prominent example for probabilistic learning of latent variables (e. g., Lawrence, 2004;
Titsias and Lawrence, 2010). However, standard GPLVMs are typically not applicable to
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the Sequential Deconfounder, since they were developed for the static setting and, hence,
cannot capture sequential dependencies between treatment assignment over time. Tailored
GPLVMs were proposed that allow some of the covariates to be observed and others to be
latent (Märtens et al., 2019), but again in the static setting. As a remedy, we introduce a
novel SeqGPLVM in the following.

Given the covariates and treatment history, sxt and sat, our objective is to infer the posterior
distribution of the substitute, ppz | sat, sxtq, over latent coordinates whilst maintaining the
latent structure imposed by the CMM. To this end, we place a prior over the substitute,
ppZq “ N pz | 0, σ2Iq and define the forward mappings ft : Z ˆ Xt ˆ At´1 Ñ At, i. e., the
mapping from the joint space representing the substitute, the observed covariates, and
the previous treatment assignment to the space of the current treatment assignment. We
choose Gaussian processes (GPs) as a non-parametric model for the forward mappings,
i. e., ft „ GPp0, Ktq. This choice reflects the strong theoretical underpinnings of GPs and
advances that enabled such models to be scalable to large datasets (Hensman et al., 2013).
As a result, we obtain the following generative model, which maintains the structure of the
CMM:

ppsat | sft, sxt, z, θq “ ppa1 | f1q ppf1 | x1, z, θq (4)

ˆ

t
ź

s“2
ppas | fsq ppfs | as´1, xs, z, θq, (5)

where fs „ GPp0, Ksq. The generative model is depicted in Figure 3. Different forms
of interactions between z, xt, and at´1 can be encoded via different kernels. We use a
treatment-adjusted kernel on the joint space Z ˆ Xt ˆ At´1, which is based on the popular
squared exponential kernel:

ktreatppz, x, aq, pz1, x1, a1qq “ ´
1
2σ2

zxa

«

|Z|
ÿ

j“1

˜

zj ´ z1
j

l
pzq

j

¸2

`

|Xt|
ÿ

j“1

˜

xj ´ x1
j

l
pxq

j

¸2

`

|At´1|
ÿ

j“1

˜

aj ´ a1
j

l
paq

j

¸2 ff

, (6)

where σ2
zxa is the kernel variance parameter and lj are the lengthscales on the different

spaces. This kernel allows to capture interactions between xt and zt while adjusting for the
previously assigned treatment at´1, but not for any assigned treatments further in the past
as required by the CMM. Finally, we make use of Bayesian shrinkage priors on the kernel
variance σ2

zxa to encourage unnecessary components to be shrunk to zero, i. e., we specify
σ2

zxa „ Γp1, 1q.

5.2. Inference for SeqGPLVM

To make inference, we adopt variational inducing point based inference (Titsias and Lawrence,
2010) to the SeqGPLVM in a straightforward manner. Recall that the treatment-adjusted
kernel is defined on the product space Z ˆ Xt ˆ At´1, and hence the inducing points lie in
this space which has dimensionality |Z| ` |Xt| ` |At´1|. The emission likelihood ppat | ftq
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determines the marginal likelihood and has to be chosen depending on the space At. For
instance, if At “ t0, 1u, one might choose a Bernoulli likelihood. If treatments are continuous,
the emission likelihood could be Gaussian. In the latter case, one can analytically integrate
out the GP mappings and give a closed-form solution for the marginal likelihood. We discuss
further advantages of our SeqGPLVM in Appendix D.

6. Experiments on Simulated Data

The medical domain is known to be prone to many unobserved confounders affecting both
treatment assignment and outcomes (Gottesman et al., 2019). As such, estimating individu-
alized treatment responses requires adaptation to the sequential setting with unobserved
confounders. We simulate a medical environment which offers the advantage that we have
access to ground truth individualized treatment responses. Further, we can vary the amount
of unobserved confounding in order to validate our theory empirically similar to Bica et al.
(2020b); Louizos et al. (2017); Wang and Blei (2019a).

6.1. Data Simulation

We simulate observational data D “ ptx
piq
t , a

piq
t , y

piq
t`1uT piq

t“1 qN
i“1 similarly to previous works

(Bica et al., 2020b). The data consists of a patient’s (observed) covariates Xt at each
timestep, which changes according to the treatment history and past covariates. Moreover,
we introduce a time-invariant confounder U , which influences the treatment assignment
and the outcome. This confounder is not included in the data and, thus, is an unobserved
confounder. We control the strength of unobserved confounding via a parameter γ P r0, 1s.
The detailed data-generating process is described in Appendix E.

6.2. Outcome Model

We evaluate the effectiveness of our Sequential Deconfounder to adjust for unobserved
confounders when used in conjunction with an outcome model for estimating treatment
responses. We focus on three established outcome model: (a) Marginal Structural Models
(e. g., Robins and Hernán, 2009; Robins et al., 2000) from the epidemiology literature,
(b) Recurrent Marginal Structural Networks (Lim et al., 2018), and (c) Counterfactual
Recurrent Networks (Bica et al., 2020a) from the machine learning literature. Note that any
outcome model can be used in conjunction with our Sequential Deconfounder.

6.3. Results

In this section, we use the Sequential Deconfounder to obtain unbiased estimates of one-step
ahead treatment responses. For a comparative evaluation, we investigate three different
scenarios in which the outcome models are trained to estimate treatment responses: (i) with-
out information about the unobserved confounder U (“Confounded”), (ii) with the true
unobserved confounder U (“Oracle”), and (iii) with the substitute Ẑ obtained by the
Sequential Deconfounder (“Deconfounded”). Note that we cannot compare to any other
deconfounder methods such as Bica et al. (2020b), since our work is the first deconfounder
method applicable in a setting in which there is only a single treatment available at each
timestep. Hence, methods such as the one of Bica et al. (2020b), which require multiple
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Figure 4: Mean squared error (MSE) and standard deviation for one-step ahead prediction of
treatment responses for varying amount of unobserved confounding. We use (a) Marginal Structural
models, (b) Recurrent Marginal Structural Networks, and (c) Counterfactual Recurrent Networks as
outcome models. Lower is better.

treatments assigned at each timestep in order for both their theory and factor model to
work, are not applicable.

In Figure 4, we present the mean squared error (MSE) for one-step ahead estimation
of individualized treatment responses for varying amount of unobserved confounding (i. e.,
varying the parameter γ “ γA “ γY ). We find that the Sequential Deconfounder, when used
in conjunction with outcome models, improves the MSE substantially. This shows the strong
benefit of our Sequential Deconfounder. In particular, the Sequential Deconfounder achieves
unbiased estimates of treatment responses, i. e., its estimates are close to the estimates
obtained by the oracle approach (which has access to the true unobserved confounder). In
absence of unobserved confounding (i. e., γ “ 0), using the Sequential Deconfounder does
not decrease the performance.

Violation of “Time-Invariant Unobserved Confounders”. We investigate the
sensitivity of the Sequential Deconfounder with respect to violation of Assumption 3, i. e.,
when there are not only time-invariant unobserved confounders. For this, remove the
time-varying covariate Xt,1 from the dataset. This makes Xt,1 a time-varying unobserved
confounder, which violates Assumption 3. We then train the Sequential Deconfounder.
We denote this scenario as “Time-inv. violated”. In Figure 4, we observe that this yields
biased estimates of the treatment responses. However, the performance of the Sequential
Deconfounder remains superior to the performance when there is no control over unobserved
confounders at all.

Predictive checks. Similar to previous works, we assess whether the Sequential
Deconfounder captures the distribution of assigned treatments by performing predictive
model checks (Bica et al., 2020b; Wang and Blei, 2019a). We observe that the p-values are
close to the optimal value of 0.5, which means that our method captures the distribution of
the assigned treatment. Details are given in Appendix F.

In presence of unobserved confounders, methods that rely on the assumption of no
unobserved confounders yield biased estimates of the individualized treatment response,
since ErY psatq | sXt “ sxts ‰ ErY | sAt “ sat, sXt “ sxts. In contrast, by inferring a substitute
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and augmenting the data with it, the Sequential Deconfounder provides unbiased estimates
of individualized treatment responses. As a result, our Sequential Deconfounder, when used
in conjunction with state-of-the-art methods, improves performance substantially.

7. Experiments on Real-World Data

We apply the Sequential Deconfounder to a real-world medical setting using the Medical
Information Mart for Intensive Care (MIMIC-III) database (Johnson et al., 2016). The
database consists of EHRs from patients in the intensive care unit. We extract 3, 487 patients
with trajectories up to 30 timesteps and 25 patient covariates such as vital signals and
lab tests together with static covariates such as gender. We estimate the individualized
treatment response on two datasets. In particular, we estimate the individualized treatment
response of: (1) vassopressors and (2) mechanical ventilators over time on three patient
outcomes: white blood cell count, blood pressure, and oxygen saturation.

Table 1: Results (MSE) for estimating responses to vasopressors on MIMIC-III. Each outcome model is
trained without information about the unobserved confounder U (Conf.) and with the substitute Ẑ obtained
by Sequential Deconfounder (Deconf.) for 10 runs. Lower is better.

MIMIC-III (Mean ˘ Std)

White blood
cell count

Blood
pressure

Oxygen
saturation

MSM Conf. .871 ˘ .00 .171 ˘ .00 .497 ˘ .00
Deconf. .709 ˘ .01 .165 ˘ .00 .337 ˘ .01

RMSN Conf. .677 ˘ .03 .135 ˘ .01 .401 ˘ .02
Deconf. .532 ˘ .04 .101 ˘ .01 .249 ˘ .02

CRN Conf. .665 ˘ .05 .081 ˘ .00 .357 ˘ .02
Deconf. .521 ˘ .06 .073 ˘ .00 .199 ˘ .03

We use the Sequential Deconfounder in conjunction with the same outcome models as in
Section 6. In Table 1, we illustrate the MSE for one-step ahead estimation of vassopressors.
The results for mechanical ventilators can be found in Appendix G. Note that we do not
have access to the true treatment responses, since MIMIC-III is a real-world medical dataset.
However, compared to the standalone outcome models (“Conf.”), using our Sequential
Deconfounder and augmenting the data with the substitutes for the unobserved confounders
(“Deconf.”) yields substantially lower MSE for the response to vassopressors. This is because
the Sequential Deconfounder uses the sequential dependence between assigned treatments to
infer latent variables which account for unobserved variables. By using these latent variables
as substitutes, we improve the estimation of individualized treatment responses. While these
results on real-world data require validation from clinicians, they indicate the potential
benefit of the Sequential Deconfounder in real medical settings.

8. Conclusion

We propose the Sequential Deconfounder, which exploits the treatment assignment over time
to infer substitutes for unobserved confounders. These substitutes are used in conjunction
with an outcome model to estimate treatment responses over time. We prove that this

12945



Sequential Deconfounding for Causal Inference

approach can lead to unbiased estimates of the treatment responses. Further, on simulated
and real data, we show the benefit of our method for estimating treatment responses with
unobserved confounders. A directions for future research is the Markovianity of the CMM.
Here, the current treatment assignment is only dependent on the last treatment assignment,
but not on any treatment assignments prior to this. Many established methods for modeling
medical decision-making are based on Markovianity, which is realistic in many applications.
However, it may be restrictive in settings in which Markovianity does not hold true. As
such, extending upon the CMM is an avenue for future work.
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Appendix A. Proof of Theorem 1

In order to prove Theorem 1, we define the recursive construction and prove lemmas that
are used for the proof of Theorem 1. As a reminder, in order to obtain sequential strong
ignorablility using the substitute Z for the unobserved confounder, the following needs to
hold:

Y psatq KK At | sAt´1, sXt, Z, (7)

for all sat P sAt and for all t “ 1, . . . , T .

Definition 2. (Recursive construction.) The sequence of assigned treatments pAtqtě1 admits
a recursive construction from Z and pXtqtě1, if at any timestep t, there exist a (deterministic)
measurable function ft : Z ˆ Xt ˆ At´1 ˆ r0, 1s Ñ At and random variables Vt, such that the
distribution of the assigned treatment At can be written as

At “ ftpAt´1, Z, Xt, Vtq, (8)

where Vt „ Uniformpr0, 1sq and satisfies

Vt KK Y psatq | sAt´1, sXt, Z (9)

for all sat P sAt.

Lemma 1. (Recursive construction is sufficient for sequential strong ignorability.) If the
sequence of assigned treatments pAtqtě1 admits a recursive construction from Z and pXtqtě1
then we obtain sequential strong ignorability.

Proof Without loss of generality it is assumed that At is a Borel space and Z and Xt are
measurable spaces for any t P t1, . . . , T u. Because pAtqtě1 admits a recursive construction
from Z and pXtqtě1, we can write At “ ftpAt´1, Z, Xt, Vtq, where ft is measurable and

Vt KK Y psatq | sAt´1, sXt, Z (10)

for all sat P sAt. This implies that

pAt´1, Z, Xt, Vtq KK Y psatq | sAt´1, sXt, Z. (11)

Since At is a measurable function of pAt´1, Z, Xt, Vtq, sequential strong ignorability holds
true, i. e.,

At KK Y psatq | sAt´1, sXt, Z, (12)

for all sat P sAt and for all t “ 1, . . . , T .

Lemma 2. (Conditional Markov model for sequential treatments is sufficient for recursive
construction.) Under weak regularity conditions, if the distribution of the assigned treatments
ppsaq can be written as a conditional Markov model, then the sequence of assigned treatments
obtains a recursive construction.
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Regularity condition: the set of treatments At is a Borel subset of compact intervals.
Without loss of generality, it is assumed that At “ r0, 1s for all t “ 1, . . . , T .

The proof for Lemma 2 uses Proposition 7.6 in Kallenberg (2006) (recursion): Let pXtqtě1
be a sequence of random variables with values in a Borel space S. Then pXtqtě1 is Markov
if and only if there exist some measurable functions ft : S ˆ r0, 1s Ñ S and random variables
Vt

iid
„ Uniformpr0, 1sq with Vt KK X1 such that Xt “ ftpXt´1, Vtq, P-a.s., for all t ě 1. pXtqtě1

is time-homogeneous if and only if f1 “ f2 “ . . . “ f .
Proof At timestep t, consider the random variables At P At, Z P Z, and Xt P Xt. Since
the distribution of the assigned treatments can be written as a conditional Markov model,
we know that the sequence of assigned treatments, when conditioned on Z and Xt, i. e.,
pAt | Xt, Zqt, is Markov. Hence, from Proposition 7.6 in Kallenberg (2006), there exits some
measurable function ft : Z ˆ At´1 ˆ Xt ˆ r0, 1s Ñ At such that

At “ ftpAt´1, Z, Xt, Vtq, (13)

with Vt
iid
„ Uniformpr0, 1sq and Vt KK A1 for all t “ 1, . . . , T . It remains to show that

Vt KK Y psatq | sAt´1, sXt, Z. (14)

This can be seen by distinction of cases. If there exists a random variable Ut (not equal
to Z or Xt almost surely) that confounds Vt and Y psatq, it is either (i) time-invariant or
(ii) time-varying. (i) If Ut is time-invariant, then it would also confound Vs for s ‰ t, which
introduces dependence between the random variables Vt for t “ 1, . . . , T . However, since
Vt are drawn iid from Uniformpr0, 1sq, this cannot be the case. Otherwise, Vt and Vs for
s ‰ t would not be jointly independent. (ii) If Ut is time-varying, then Ut would confound
At through Vt. As a consequence, Ut would be also a confounder for At. However, because
of Assumption 3, there cannot be any time-varying confounders for At. As a result, there
cannot be another random variable that confounds Vt, and therefore Vt KK Y psatq | sAt´1, sXt, Z
holds true.

Appendix B. Identifiability of the Individualized Treatment Response

The deconfounder framework introduced by Wang and Blei (2019a) in the static setting
initiated several independent discussion regarding new theory and applications (Athey et al.,
2019; D’Amour, 2019; Imai and Jiang, 2019; Ogburn et al., 2019; Wang and Blei, 2019b).
In particular, issues regarding the identification4 of the causal quantity P pY | dopA “ aqq

were raised in the static setting with multiple treatments (D’Amour, 2019). This issue arises
when the substitute confounder cannot be uniquely recovered from the observational data.
However, under the conditions in Wang and Blei (2019a), the identification of the mean
potential outcome is indeed given. This relies particularly on the condition of consistent
substitute confounders,5 which allows to uniquely recover the substitute confounder (see
Theorem 8 in Wang and Blei (2019a) and explanations in Wang and Blei (2019b, 2020)).

4. In this context, identifiability means that a quantity can be written as a function of the observed data.
5. The substitute confounder is consistent, if it is determined by a deterministic function of the treatment

assignment (Wang and Blei, 2019a).
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This discussion also applies to our work. Indeed, if the substitute confounder is not
uniquely determined by the Markov model, then we cannot be sure that we recover the
correct one. However, the identifiability is given under similar conditions on the consistency
of the substitute confounder as in Wang and Blei (2019a). This ensures that we can pinpoint
the substitute confounder and then use it in the outcome model to estimate the individualized
treatment response. The proof in our setting is similar to the proof in the static setting with
multiple treatments (Theorem 8 in Wang and Blei (2019a)). For completeness, we give a full
proof in our setting below. Moreover, the identifiability of the Sequential Deconfounder is
also empirically supported by the experimental results in Section 6, in which the Sequential
Deconfounder achieves oracle-near estimation errors.

Before stating the identification results, we first describe the notion of a consistent
substitute confounder; we will rely on this notion for identification.

Definition 3. (Consistency of the substitute confounder.) The CMM admits consistent
estimates of the substitute confounder Z if, for some function f ,

ppz | sx, saq “ δfpsx,saq. (15)

Consistency of substitute confounders yields that we can estimate the substitute con-
founder Z from the treatment history sa and the covariate history sx with certainty. Since it
is a deterministic function of the treatment and covariate history, it uniquely pinpoints the
substitute confounder. Nevertheless, the substitute confounder need not coincide with the
true data-generating Z, nor does it need to coincide with the true unobserved confounder.
We only need to estimate the substitute confounder Z up to some deterministic bijective
transformations (e. g., scaling and linear transformations).

Theorem 2. (Identifiability of the individualized treatment response.) Assume time-invariant
confounding and consistent substitute confounders. Then, for the assigned treatment history
sa, the individualized treatment response to an alternative assignment sa1 is

ErY psa1q | Z “ z, sX “ sxs “ ErY | Z “ z, sX “ sx, sA “ sa1s. (16)

This holds when the alternative assignment sa1 leads to the same substitute confounder estimate
as the observed treatment history, i. e., fpsa, sxq “ fpsa1, sxq.

Proof To prove identification, we rewrite the individualized treatment response

ErY psa1q | Z “ z, sX “ sxs (17)
“ ErY psa1q | Z “ z, sX “ sx, sA “ sas (18)
“ ErY psa1q | Z “ fpsa, sxq, sX “ sx, sA “ sas (19)
“ ErY psa1q | Z “ fpsa, sxq, sX “ sx, sA “ sa1s (20)
“ ErY | Z “ fpsa, sxq, sX “ sx, sA “ sa1s (21)

(22)

The first equality makes use of the unconfoundedness given Z, and sX by Theorem 1. The
second equality makes use of the consistency of the substitute confounder. The third
equality makes again use of the unconfoundedness and fpsa, sxq “ fpsa1, sxq. The fourth
equation is estimable from data, since fpsa, sxq “ fpsa1, sxq. Hence, the identification of
ErY psa1q | Z “ z, sX “ sxs is provided.
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The condition fpsa, sxq “ fpsa1, sxq requires that the changing the assignment does not
change the substitute confounder. This is particularly reasonable in the case of time-invariant
confounder, since such confounder do no change over time. For instance, considering an
alternative treatment assignment or half way though the therapy changing the treatment
assignment would not change the housing condition of the patient.

Appendix C. Predictive Checks

We provide a sound definition of predictive model checks over time (e. g., Bica et al., 2020b;
Rubin, 1984) in order to assess the quality of the fitted CMM in the Sequential Deconfounder.
We do this since the CMM has to appropriately capture the distribution of the treatment
assignment. Hence, the quality of the causal estimate relies on the quality of the fitted
CMM.

To this end, a CMM is fitted on a training dataset. Then, for each patient in a validation
dataset, we sample M treatment assignments at,rep from the fitted CMM at each timestep.
We compare the samples from the fitted CMM to the actual treatment assignment at,val via
the predictive p-value, which is computed as follows:

1
M

M
ÿ

i“1
1pT pa

piq
t,repq ă T pat,valqq, (23)

where 1p¨q is the indicator function and T patq is the test statistic defined as
T patq “ EZrlog ppat | Xt, Zqs. (24)

The test statistics for the treatment samples at,rep are similar to the test statistics for the
treatments in the validation set, if the model captures the distribution of the assigned
treatments well. In this case, the ideal p-value is 0.5.

Appendix D. Advantages of our SeqGPLVM

Our theory holds true for any model that infers the latent variable Z in the CMM: it does
not restrict the class of models that can be used. However, off-the-shelf latent variable
models that allow some confounders to be observed and others to be unobserved are scarce,
in particular, in the sequential setting. Moreover, there are several advantages of using
SeqGPLVM: (i) The Bayesian approach allows to infer the posterior distribution of the
substitute Z. This allows to quantify the uncertainty originating from the Sequential
Deconfounder in the estimate of the individualized treatment responses. This can be done
as follows: we first draw s samples tzp1q, . . . , zpsqu of the substitute from the posterior
distribution, i.e., zplq „ ppz | āt, x̄tq. For each sample zplq, we then fit an outcome model
and compute a point estimate of the individualized treatment response. We aggregate the
estimates of the treatment responses from the s samples. The variance of these aggregated
estimates describes the uncertainty of the Sequential Deconfounder. (ii) It enables us to
easily sample from the marginal likelihood to obtain samples of treatments. These samples
are used to compute predictive model checks over time, which are necessary to assess the
model fit of the SeqGPLVM (cf. Rubin, 1984). (iii) The use of GPs enables us to learn
complex and nonlinear relationships from the data, which is needed in medical application
involving complex diseases.
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Appendix E. Data Simulation

We simulate observational data D “ ptx
piq
t , a

piq
t , y

piq
t`1uT piq

t“1 qN
i“1 similarly to previous works

(Bica et al., 2020b). The data consists of a patient’s (observed) covariates Xt at each
timestep, which changes according to the treatment history and past covariates by

Xt,j “
1
p

p
ÿ

i“1
pαi,jXt´i,j ` ωiAt´iq ` ηt, (25)

with weights αi,j „ N p0, 0.52q, ωi „ N p1 ´ pi{pq, p1{pq2q and noise ηt „ N p0, 0.012q. The
initial covariates are given by X0,j „ N p0, 0.12q. Suppose there exists a time-invariant
unobserved confounder U , which is modeled by

U „ N p0, 0.12q. (26)

This confounder is not included in the data and, thus, is an unobserved confounder. The
treatment assignments depends on the covariates Xt, the unobserved confounder U , and the
previous treatment At´1:

πt “ γAU ` p1 ´ γAqpX̂t ` At´1q, (27)
At | πt „ Bernoullipσpλπtqq, (28)

where X̂t is the mean of the covariates, λ “ 15, σp¨q is the sigmoid function, and γA P r0, 1s is
a parameter which controls the amount of confounding applied to the treatment assignment.
No unobserved confounding corresponds to γA “ 0. The outcome is a function of unobserved
confounder and observed covariates:

Yt`1 “ γY U ` p1 ´ γY qX̂t`1, (29)

where, as before, γY P r0, 1s controls the amount of unobserved confounding applied to the
outcome. We simulate 5,000 patients trajectories from the data-generating process with 20
to 30 timesteps. The dimension and time-dependence of the covariates is set to k “ 3 and
p “ 3. Each dataset is split 80/20 for training and testing, respectively.

Appendix F. Predictive Model Checks for Experiments on Simulated
Data

The quality of the treatment response estimates based on the Sequential Deconfounder
relies on how well it captures the distribution of the assigned treatments, since it infers the
substitute. Hence, we assess whether the Sequential Deconfounder captures the distribution
of the assigned treatments for the experiments on simulated data in Section 6 by performing
predictive model checks over time as in Bica et al. (2020b). The results are shown in Figure 5.
We see that the p-values are close to the optimal value of 0.5. Hence, we are confident that
the SeqGPLVM captures the distribution of the treatment assignment well.
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Figure 5: Predictive checks for SeqGPLVM to assess its quality of capturing the treatment assignment
distribution. The red line indicates the optimal p-values of 0.5 as in Bica et al. (2020b). The blue line
indicates the p-values of SeqGPLVM. We see that SeqGPLVM captures the treatment assignment
distribution well as its p-values are close to 0.5.

Table 2: Results (MSE) for estimating responses to antibiotics on MIMIC-III. Each outcome model is trained
without information about the unobserved confounder U (Conf.) and with the substitute Ẑ obtained by
Sequential Deconfounder (Deconf.) for 10 runs. Lower is better. Best in bold.

Dataset 2: MIMIC-III w/ treatment: Mechanical Ventilator
MIMIC-III (Mean ˘ Std)

White blood
cell count

Blood
pressure

Oxygen
saturation

MSM Conf. 1.295 ˘ .00 2.418 ˘ .00 1.013 ˘ .00
Deconf. 1.182 ˘ .04 2.147 ˘ .03 0.897 ˘ .04

RMSN Conf. 1.147 ˘ .05 2.173 ˘ .03 0.886 ˘ .05
Deconf. 1.007 ˘ .06 1.854 ˘ .05 0.677 ˘ .05

CRN Conf. 1.112 ˘ .07 1.970 ˘ .06 0.807 ˘ .05
Deconf. 0.937 ˘ .08 1.694 ˘ .08 0.593 ˘ .06

Appendix G. Additional Results on Real-World Data

Here, we present the results for estimating the individualized treatment response mechanical
ventilators over time on three patient outcomes: white blood cell count, blood pressure, and
oxygen saturation. Our Sequential Deconfounder in conjunction with the same outcome
models as in Section 6 and Section 7. The results can be found in Table 2, where , we
illustrate the MSE for one-step ahead estimation of mechanical ventilators. Compared to the
standalone outcome models (“Conf.”), using our Sequential Deconfounder and augmenting
the data with the substitutes for the unobserved confounders (“Deconf.”) yields substantially
lower MSE for the response to mechanical ventilators.

23956


