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Abstract
We study the problem of learning “good” interventions in a stochastic environment modeled by its
underlying causal graph. Good interventions refer to interventions that maximize rewards. Specif-
ically, we consider the setting of a pre-specified budget constraint, where interventions can have
non-uniform costs. We show that this problem can be formulated as maximizing the expected
reward for a stochastic multi-armed bandit with side information. We propose an algorithm to
minimize the cumulative regret in general causal graphs. This algorithm trades off observations
and interventions based on their costs to achieve the optimal reward. This algorithm generalizes
the state-of-the-art methods by allowing non-uniform costs and hidden confounders in the causal
graph. Furthermore, we develop an algorithm to minimize the simple regret in the budgeted setting
with non-uniform costs and also general causal graphs. We provide theoretical guarantees, includ-
ing both upper and lower bounds, as well as empirical evaluations of our algorithms. Our empirical
results showcase that our algorithms outperform the state of the art.
Keywords: Causal inference, Multi-armed bandits.

1. Introduction

Multi-armed bandits (MAB) problem has been widely studied in sequential decision-making litera-
ture (Lai et al., 1985; Even-Dar et al., 2006). In this problem, a learner sequentially selects an arm to
pull and receives a stochastic reward. The learner tries different arms with the goal of maximizing
the expected reward. A commonly used assumption in the literature is that the arms are statistically
independent. In other words, the distribution of one arm’s reward contains no information about the
reward of the other arms. Under this assumption, a variety of approaches have been developed in the
literature to solve the MAB problem, such as Thompson sampling (Thompson, 1933) and variants
of Upper Confidence Bound (UCB) (Auer et al., 2002; Cappé et al., 2013). Recently, a variant of the
problem where dependencies among different arms are allowed has been studied. In such a setting,
prevalent in real-world problems, pulling an arm reveals additional information about other arms.
Examples of applications can be found in various settings, such as linear optimization (Dani et al.,
2008), combinatorial bandits (Cesa-Bianchi and Lugosi, 2012), and Lipschitz bandits (Magureanu
et al., 2014).

An effective and succinct representation of interdependencies among a set of variables (e.g.,
arms) can be captured by its corresponding causal graph (Pearl, 1995). In the field of causal dis-
covery, a significant array of algorithms has been devised with the goal of identifying the underly-
ing causal graph (Spirtes et al., 2000; Margaritis and Thrun, 1999; Chickering, 2002; Mokhtarian
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et al., 2022). Moreover, the study of sample complexity, crucial for understanding the efficiency of
these algorithms, has received considerable attention (Kalisch and Bühlman, 2007; Jamshidi et al.,
2023b; Acharya et al., 2023). Such graphs have been successfully used in a wide range of appli-
cations from agriculture (Splawa-Neyman et al., 1990) and genetics (Meinshausen et al., 2016) to
marketing (Kim et al., 2008) to model the causal relationships. In this work, we study the MAB
problem in a stochastic environment in which the dependencies among different arms are modeled
by the underlying causal graph. We assume that this causal graph is available to the learner as side
information 1. This formulation is known as causal MAB, and it has recently gained increasing
attention in literature (Bareinboim et al., 2015; Lattimore et al., 2016; Lee and Bareinboim, 2018,
2019; Lu et al., 2020; Nair et al., 2021; Maiti et al., 2022).

In certain variants of the MAB problem, pulling an arm is associated with a cost (Kocaoglu
et al., 2017; Lindgren et al., 2018; Nair et al., 2021). In this setting, the challenge of the learner with
a limited budget is to use the budget for exploring different arms effectively in order to maximize
the reward. As an example, consider a treatment-effect problem in which the goal of a practitioner
is to measure the effectiveness of different treatments and ultimately find the most effective one. In
this example, the effectiveness of the treatments (e.g., the percentage of recovered patients) denotes
the reward. On the other hand, different treatments may have different costs. Suppose that there are
two treatments available: A) a medicament and B) a surgery. As pulling arm B is more expensive
than arm A in this problem, the practitioner’s challenge is to use her given budget effectively to try
both treatments and maximize the reward.

We study causal MAbs with non-uniform costs for pulling arms. As we discuss in Sections 3
and 4, having non-uniform costs leads to different learning algorithms and theoretical guarantees.
Additionally, we relax the existing structural assumptions on the underlying causal graph, as such
structural assumptions may not be valid in many real-world problems. These assumptions were put
into place to simplify accounting for the information pulling an arm reveals about other arms. For
instance, a standard result in causal inference literature implies that when the causal graph does
not have any unblocked backdoor path (see Appendix A for definitions) between the intervened
variables and the reward variable, the effect of any intervention (pulling any arm) is equal to the
conditional expectation of the reward given that arm (Pearl, 2009). Lastly, previous work has mainly
considered the case where the causal graph is fully observable. We relax this assumption by allowing
for so-called unobserved confounders, i.e., variables we cannot observe.

Contribution: Our main contributions are as follows.

• We generalize the setting studied in the state of the art in causal bandit literature by allowing
non-uniform costs and hidden confounders in the causal graph. Non-uniform costs introduce
additional complexity to the MAB problem in terms of the trade-off between exploration and
exploitation. It becomes crucial for the learner to select an arm for exploration not only based
on its reward but also its associated cost. To address this complexity, we propose algorithms that
incorporate cost-dependent exploration criteria both in the setting of simple and cumulative regret.
General causal graphs with hidden confounders add yet another challenge: how to avoid spurious
correlations in the data as a result of the confounders and harness true causal relationships to
learn about other arms besides the one being played. To overcome this challenge, we propose

1. It is pertinent to note that using side information is observed in other domains, such as causal effect identification
(Tikka et al., 2019; Akbari et al., 2023) and causal imitation learning (Jamshidi et al., 2023a).
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estimators in Section 3.1 for the expected reward of arms that leverage both observational and
interventional data.

• We propose two algorithms (Algorithm 1 in Section 3 and Algorithm 2 in Section 4) to minimize
the cumulative and simple regrets, respectively2 and upper bound their expected regrets. We
prove that by leveraging causal information, Algorithm 1 achieves better cumulative regret than
the optimal classic MAB algorithm. In Algorithm 2, we propose a new threshold that accounts
for the cost of pulling arms to identify infrequent arms more effectively. As a result, Algorithm 2
outperforms prior work (Nair et al., 2021) even in their own settings (when the costs are uniform
and the causal graph has no backdoor). Moreover, we present lower bounds on both simple and
cumulative regrets of any algorithm and discuss their relations with the presented upper bounds
in Section 5.

• We evaluate our proposed algorithms in Section 6. Our simulation results show that our algorithms
perform well for general causal graphs and non-uniform costs and outperform the state of the art
even in the settings they were specifically designed for.

1.1. Related Work

Authors in Tran-Thanh et al. (2012) propose F-KUBE, an algorithm for a budgeted MAB problem
without utilizing the underlying causal graph. Lattimore et al. (2016) study the problem of minimiz-
ing the simple regret in a special causal graph called parallel graphs3 after T steps where the cost of

pulling all arms is one. They propose an algorithm with average regret ofO
(√

a
T log NT

a

)
, where a

defined in Remark 9 depends on the underlying causal model and N is the number of intervenable
variables.

The authors in Nair et al. (2021) study a causal MAB problem in which the learner has a lim-
ited budget B, all interventions have the same cost c ≥ 1, and the cost of observation is one.
They consider the problem of minimizing the simple regret in special causal graphs called no-
backdoor graphs4. They show that their proposed algorithm’s expected regret is upper bounded by

O
(√

ca
B log NB

ca

)
. We also study this particular setting in Section 4 as a special case of our setting

but allow for non-uniform costs and derive a tighter bound for the expected regret (Remark 9).
Nair et al. (2021) studies non-budgeted a causal MAB problem with general causal graphs when

the objective is the cumulative regret. The proposed algorithm in Nair et al. (2021) requires access
to the distribution of parents of the reward variable for each intervention. This restrictive assumption
is also required in Lu et al. (2020). Maiti et al. (2022) studies a causal MAB problem when all costs
are assumed to be one for both simple and cumulative regret objectives. In the case of simple regret,
the proposed algorithm for causal graphs with possibly hidden confounders attains an expected

simple regret upper bounded byO
(√

b
T log NT

b

)
, where b depends on the causal model. In the case

of cumulative regret, the proposed algorithm only works for causal graphs with no hidden variables.

2. Our theoretical results both generalize the results in Nair et al. (2021) and Maiti et al. (2022) (to allow for non-uniform
costs and general causal graphs) and correct the oversights and errors in the proofs of these papers which affect the
validity of the bounds claimed therein (see Section H for details).

3. It is composed of variable set V = {X1, . . . , XN , Y } and edges from each Xi to Y .
4. The graphs in which all backdoor paths from each intervenable variable to the reward variable are blocked. Please

refer to Appendix A for details.
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We generalize both aforementioned results to non-uniform cost settings and derive tighter theoretical
bounds on the regret.

2. Preliminaries

Throughout this paper, random variables and their realizations are denoted by capital and lowercase
letters, respectively. We use bold capital and lowercase letters to denote sets of variables and their
realizations, respectively.
Causal structure: Let G = (V,Ed,Eb) denote an acyclic-directed mixed graph (ADMG) with
the set of observed variables V, the set of directed edges Ed ⊆ V × V and the set of bidirected
edges Eb ⊆

(
V
2

)
. The existence of a bidirected edge between nodes V1 and V2 represents a hidden

confounder that influences both V1 and V2.
Given two arbitrary variables V1, V2 ∈ V, when (V1, V2) ∈ Ed, V1 is a parent of V2 and V2 is a

child of V1. The set of parents of V2 is denoted by Pa(V2).
Given two subsets of variables R and S and their realizations r and s, respectively, let Ps(r) :=

P (R = r|do(S = s)) denote the post-interventional distribution of R after intervening on S.

Definition 1 (C-component (Tian and Pearl, 2002b)) Two observed variables V1 and V2 are said
to be in a c-component of an ADMG G, if and only if they are connected by a bi-directed path.

As an example, in Figure 1, {X1, X2, X3, X5} and {X4} are two c-components of G.

Definition 2 (Identifiability (Tian and Pearl, 2002b)) Given an ADMG G = (V,Ed,Eb), and
two disjoint subsets R,S ⊆ V, Ps(r) is said to be identifiable in G if Ps(r) is uniquely computable
from P (V).

Causal multi-arm bandits: Let X = {X1, . . . , XN} ⊆ V and Y ∈ V denote the set of inter-
venable variables (variables that the learner is allowed to intervene on) and the reward variable,
respectively. For ease of presentation, we assume that all variables are binary. All our results can be
extended to sets of finite-domain variables.

In the causal MAB setting, at each round, a learner can explore either by intervening in the
system or merely observing it. If the learner decides to intervene, they will select an intervenable
variable, e.g., Xi ∈ X, set its value, e.g., do(Xi = x), and observe the remaining variables, i.e.,
V \ {Xi}. This choice of action (arm) is denoted by ai,x. On the other hand, when the decision is
to observe, i.e., do(), she merely observes all observed variables. This action is denoted by a0.

X2

X3

X4

X5
X1

Figure 1: An ADMAG G over V = {X1, ..., X5}. Bidirected edges are represented by dashed
edges.
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We denote the set of possible actions by A :=
{
ai,x|i ∈ [N ], x ∈ {0, 1}

}
∪ {a0}. We assume

that the cost of pulling an arm a ∈ A is ca ∈ R+ and denote the set of costs by C := {ca|a ∈ A}.
Moreover, without loss of generality, we assume that the cost of a0 is one, i.e., c0 = 1. At time t, the
arm pulled by the learner is denoted by at, the reward received is denoted by yt, and the observed
values of the variables in an arbitrary subset S ⊆ V are denoted by st.

Problem Setting: We study a causal MAB problem, in which a learner with a budget B ≥ 0
aims to minimize either its simple regret (Section 4) or cumulative regret (Section 3). It is assumed
that the learner knows the underlying causal graph. This problem is known as the budgeted causal
MAB (Nair et al., 2021). Regret is a commonly used measure to evaluate the performance of learn-
ers in a bandit setting, and it captures the foregone utility from the actual action choice against the
optimum action (Cesa-Bianchi and Lugosi, 2006).

In order to formally introduce the regret, we first define the average reward of action a ∈ A as
follows: µa := E[Y |a]. For example, µai,x denotes E[Y |do(Xi = x)].

Simple regret: Let a∗ denote the arm that maximizes the expected reward with budget B. The
simple regret of a learner using budget B is defined by

Rs(B) := µa∗ − µãB , (1)

where ãB denotes the arm selected by the learner after exhausting budget B. When the learner’s
objective is the minimize simple regret, it suffices to find the best arm at the final step (i.e., after
spending their budget) without having to worry about the intermediate actions that they chose.

In many real-world applications, it is important that the learner does not pull sub-optimal arms
too often during her exploration. In this case, the objective function should reflect the intermediate
regrets the learner accumulates.

Cumulative regret: Let T ℓ
B denote the time step that a learner ℓ consumes its budget B, i.e., at

time step T ℓ
B + 1, it does not have enough budget to perform even the lowest cost action. In this

case, the expected reward accumulated by the learner ℓ will be Rℓ(B) :=
∑

t≤T ℓ
B
µat , where µat

is the rewards of action taken at time t. Furthermore, let R∗(B) denote the expected reward accu-
mulated by the optimum learner with budget B. Then, the cumulative regret of the learner ℓ using
budget B is given by

Rc(B) := R∗(B)−Rℓ(B). (2)

As we consider a single learner in this work, in the rest of the paper, we drop the superscript ℓ. A
learner minimizing cumulative regret must trade off exploration vs. exploitation.

Remark 3 We can define a non-budgeted causal MAB problem in which there is no cost associated
with pulling an arm, but the learner has limited time T to either identify the best arm or minimize
cumulative regret during T steps. This problem is a special case of the budgeted MAB problem.
Assume all arms have the same cost ca = c > 0, then a budgeted causal MAB with budget B
is equivalent to a non-budgeted causal bandit with the time limit T = B/c and the simple and
cumulative regrets are given by Rs(B/c) and Rc(B/c), respectively.

5427



JAMSHIDI ETESAMI KIYAVASH

3. Cumulative Regret in General Graphs

In this section, we study the budgeted causal MAB problem in general causal graphs with hidden
confounders when the learner’s objective is to minimize cumulative regret. We propose Algorithm
1, developed based on Upper Confidence Bound (UCB) algorithm (Auer et al., 2002), which gen-
eralizes the state-of-the-art in causal MAB in two ways: it allows for non-uniform costs among the
arms and as well as the existence of hidden confounders in the causal graph.

Non-uniform costs change the optimal exploitation policy as, depending on the costs, pulling
the arm with the highest reward repeatedly, in general, does not maximize the learner’s accumu-
lated reward within the budget. Indeed our empirical studies in Section 6.1 show that Algorithm 1
outperforms existing causal MAB algorithms designed for uniform costs.

Algorithm 1 works in general graphs and relaxes existing structural assumptions on the under-
lying causal graph in the literature. Recently, Maiti et al. (2022) studied the non-budgeted causal
MAB problem with graphs that have no hidden confounders. This is a limiting assumption in many
real-world applications such as medical science, epidemiology, and sociology when it is impossible
to ensure that all common confounders are measured in a study (Leek and Storey, 2007; Imai et al.,
2010; Colombo et al., 2012). Our proposed algorithm merely requires the identifiability assumption
for all intervenable variables in G. A sufficient graphical condition for identifiability of Pxi(y) is
that there does not exist a path of bi-directed edges from Xi to its children (Tian and Pearl, 2002b)
which significantly relaxes the existing structural assumptions in the state of the art.

Algorithm 1 takes as inputs the causal graph G, the budget B, and the cost set C. In the be-
ginning, it pulls each arm once (line 1). Assuming that the intervenable variables are binary, i.e.,
Xi ∈ {0, 1}, this requires 2N + 1 number of steps and costs

∑
i,x ci,x + 1.

Algorithm 1 Budgeted Cumulative Regret in General Graphs
Input: G, B, C

1: Pull each arm once and set t = 2N + 1;
2: Set Bt = B −

∑
i,x ci,x − 1 and β = 1;

3: while Bt ≥ 1 do
4: if N t−1

0 < β2 log t or Bt < mini,x ci,x then
5: pull at = a0
6: else
7: pull at = argmaxa∈A µ̄t−1

a

8: for a ∈ A do
9: Update N t

a = N t−1
a + 1{at = a}.

10: Update µ̂t
a and µ̄t

a using Equations (5), (8), and (9).
11: Let ã = argmaxa∈A(µ̂

t
a/ca).

12: if µ̂t
0 < (µ̂t

ã/cã) then
13: Update β = min{ 2

√
2

(µ̂t
ã/cã)−µ̂t

0
,
√
log t}

14: set t = t+ 1.
15: Update Bt = Bt−1 − cat−1 .

Let N t
a denote the number of times that arm a ∈ A is pulled at the end of t rounds. We denote

the estimated average reward by pulling arm a and its estimated UCB at the end of round t by µ̂t
a

and µ̄t
a, respectively. The procedure for these estimators will be discussed in Section 3.1. As long
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as the remaining budget at round t, Bt, is larger than one, Algorithm 1 continues to explore and
exploit by checking at round t whether arm a0 is pulled at least β2 log t times (this threshold might
change in line 17). If so, Algorithm 1 pulls an arm with the highest µ̄t

a in line 8; otherwise, it pulls
arm a0. Afterward, in lines 10-14, it updates µ̂t

a and µ̄t
a using the newly acquired observational or

interventional data, which is discussed in Section 3.1. In the end, the threshold β and the remaining
budget are updated in lines 16-19.

3.1. Estimation and update steps

Herein, we explain how to estimate and update µ̂t
a and µ̄t

a in Algorithm 1. Recall that µi,x =
E[Y |do(Xi = x)]. Therefore, to estimate µi,x, it suffices to estimate P

(
Y = 1|do(Xi = x)

)
.

Let Ci and Wi denote the c-component containing Xi and V \ {Xi}, respectively. Given two
subsets S and R of observed variables such that S ⊆ R and a subset of realizations r for R, we use
(r)S to denote the restriction of r to the variables in S. Given two subsets of variables S1 and S2,
and realizations s1 for S1 and s2 for S2, we denote the assignments to S1 ∪ S2 by s1 ◦ s2.

Under the identifiability assumption for intervenable variables, Bhattacharyya et al. (2020)
shows that Px(wi) := P (Wi = wi|do(Xi = x)) can be factorized as follows,

Px(wi) =
∑

x′∈{0,1}

∏
Vj∈Ci

P
(
(x′ ◦wi)Vj

∣∣(x′ ◦wi)Zj

) ∏
Vj /∈Ci

P
(
(wi)Vj

∣∣(x ◦wi)Zj

)
, (3)

where Zj=(
⋃

Vk∈Cj
Pa(Vk) ∪Cj)\Vj and Cj is c-component of Vj .

Using (3), the expected reward of pulling ai,x would be

E[Y |do(Xi = x)]=
∑

w′
i:y=1

P
(
Wi = w′

i|do(Xi = x)
)

=
∑

w′
i:y=1

∑
x′∈{0,1}

∏
Vj∈Ci

P
(
(x′ ◦w′

i)Vj
|(x′ ◦w′

i)Zj

) ∏
Vj /∈Ci

P
(
(w′

i)Vj
|(x ◦w′

i)Zj

)
, (4)

where the first summation is over all realization of Wi = V \ {Xi} in which Y = 1. This is
because the terms with Y = 0 have no contribution to the expectation.

Define Ot := {t′ ≤ t| at′ = a0}, and Iti,x := {t′ ≤ t| at′ = ai,x}. Ot and Iti,x denote the
set of time steps at which arms a0 and ai,x are pulled by the end of time t, respectively. Hence, an
empirical estimation of average reward of a0 is given by

µ̂t
0 :=

1

N t
0

∑
t′∈Ot

1
{
at

′
= a0, y

t′ = 1
}
. (5)

To estimate µi,x from observational data, it suffices to estimate each term in (4). To do so, we
partition Ot into |V| number of subsets randomly and denote the j-th partition by Ot

j . We will use
the data in Ot

j to estimate P (Vj |Zj). Given a realization x′ of Xi and a realization w′
i of Wi, let

Ot
j(x

′,w′
i) :=

{
t′ ∈ Ot

j |zt
′
j = (x′ ◦ w′

i)Zj

}
. Recall that w′

i is an arbitrary realization of Wi in
which Y = 1. To proceed, we require the following definitions,

St
j,i := min

w′
i

min
x′
|Ot

j(x
′,w′

i)|, if Vj ∈ Ci, S̃t
j,i,x := min

w′
i

|Ot
j(x,w

′
i)|, if Vj /∈ Ci,

where |O| denotes the size of set O. We also define the minimum number of data points in the
partition sets as

St
i,x := min

{
min

j:Vj∈Ci

St
j,i, min

j:Vj /∈Ci

S̃t
j,i,x

}
.
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In the next step, we partition each Ot
j(x

′,w′
i) into St

i,x number of subsets randomly and denote the
s-th subset by Ot,s

j (x′,w′
i). Let

P̂ t,s
j (x′,w′

i) :=

∑
t′∈Ot,s

j (x′,w′
i)
1{vt′j = (w′

i ◦ x′)Vj
}

|Ot,s
j (x′,w′

i)|
, Vj ∈ Ci, (6)

P̂ t,s
j (x,w′

i) :=

∑
t′∈Ot,s

j (x,w′
i)
1{vt′j = (w′

i)Vj
}

|Ot,s
j (x,w′

i)|
, Vj /∈ Ci. (7)

Finally, the expected reward of pulling ai,x is estimated as follows,

µ̂t
i,x :=

∑
t′∈Iti,x

1{yt′ = 1}+
∑

s∈[St
i,x]

Y s
i,x

N t
i,x + St

i,x

, (8)

where [St
i,x]={1, ..., St

i,x} and Y s
i,x :=

∑
w′

i:y=1

∑
x′∈{0,1}

∏
Vj∈Ci

P̂ t,s
j (x′,w′

i)
∏

Vj /∈Ci
P̂ t,s
j (x,w′

i).

Lemma 4 µ̂t
i,x in (8) and µ̂t

0 in (5) are unbiased estimators of µi,x and µ0.

Analogous to UCB algorithm in bandits literature (Auer et al., 2002; Cesa-Bianchi and Lugosi,
2006), Algorithm 1 computes UCB estimate of µa at round t using the following equations,

µ̄t
i,x := µ̂t

i,x +

√
2 ln t

N t
i,x + St

i,x

, µ̄t
0 := µ̂t

0 +

√
2 ln t

N t
0

. (9)

Let a∗ := argmaxa∈A
µa

ca
and for a ∈ A, let δa := µa∗

ca∗
− µa

ca
. Recall that pi,x = P (Xi = x).

Theorem 5 The expected cumulative regret of Algorithm 1 is bounded by

δ0

(8 lnB
δ20

+ 1 +
π2

3

)
+
∑

δi,x>0

δi,x

(8 lnB
δ2i,x

+ 2− 8pi,x
18δ20 |V|

ln bi,x · τi,x,b +
π2

3

)
,

where bi,x := 8
δ2i,x

ln( B
maxa ca

) + 1, τi,x,b := max
{
0, 1− |V| · Wi · b

−p2i,x/(2|V|)
i,x

}
, andWi denotes

the alphabet size of variables in V \ {Xi, Y }.

The proof of Theorem 5 is provided in Appendix B. This theorem ensures that the maximum
number of pulling a sub-optimal arm a is bounded by a factor of δa.

4. Simple Regret in General Graphs

In this section, we study the budgeted causal MAB problem with general graph G for a learner whose
objective is simple regret. The novelty of our results is that they generalize the state-of-the-art by
allowing non-uniform costs for arms. As discussed in the previous section, having non-uniform
costs may change the trade-off between exploration vs. exploitation and hence requires a different
treatment than non-budgeted causal MAB. Our experiments in Section 6 showcase that, indeed, our
algorithm outperforms the state of the art, which is designed for uniform costs.
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Algorithm 2 Budgeted Simple Regret in General Graphs
Input: G, B, C

1: for t ∈ {1, 2, . . . , B/2} do
2: Pull arm a0 and observe vt

3: µ̂0 = 2(
∑B/2

t=1 yt)/B
4: for ai,x ∈ A do
5: Estimate µ̂i,x using Alg. 3 in Appendix C
6: Estimate q̂i,x using Equation (11)
7: Compute n(q̂) using Equation (10)
8: Construct A′ := {ai,x ∈ A|q̂kii,x ≤

1
n(q̂)}

9: if |A′| = 0 then
10: Pull arm a0 for the remaining B

2 rounds

11: Re-estimate µ̂0 = (
∑B/2

t=1 yt)/B
12: for ai,x ∈ A do
13: Re-estimate µ̂i,x using Alg. 3
14: else
15: Compute n = B

2
∑

i,x ci,x1{ai,x∈A′}
16: Pull each arm ai,x ∈ A′ for n rounds
17: for ai,x ∈ A′ do

18: µ̂i,x=
1
n

∑B
2
+n|A′|

t=B
2
+1

yt1{at = ai,x}
19: return â∗ ∈ argmaxa∈A µ̂a.

Under the identifiability assumption for all intervenable variables in G, we present Algorithm
2 to minimize the simple regret for a budget B. This algorithm generalizes the one in Maiti et al.
(2022) to a budgeted causal MAB setting when the arms have non-uniform costs. It uses its given
budget B to estimate the average reward of each arm and then outputs an arm with the maximum
estimated average reward. More specifically, Algorithm 2 takes the causal graph G, the budget B,
and the cost set C as inputs.

It pulls arm a0, i.e., collects observational data until it has exhausted half of its budget. This
leads to an initial estimate of the expected reward of each arm a ∈ A (lines 4-8). Note that estimat-
ing the expected rewards is possible due to the identifiability assumption of intervenable variables
and is done by Algorithm 3 presented in Appendix C.

Algorithm 3 is proposed by Bhattacharyya et al. (2020) to estimate E[Y |do(X)] from observa-
tional data when the causal effect Px(y) is identifiable in G.

When an arm is observed frequently during the first part of the algorithm, the initial estimate of
its expected reward becomes accurate. Algorithm 2 spends the other half of its budget to explore
the so-called infrequent arms (lines 9-23). An arm ai,x ∈ A is considered to be infrequent if
q̂i,x ≤

(
1

n(q̂)

)1/ki , where

n(q̂) :=min
{
τ |
∑
i,x

ci,x1
{
q̂i,x <

(1
τ

) 1
ki
}
≤ τ

}
, (10)

q̂i,x :=
2

B
min
z

{B/2∑
t=1

1
{
xt
i = x, P̃a

t
(xi) = z

}}
, (11)
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where P̃a(Xi) :=
(⋃

Vj∈Ci
Pa(Vj) ∪Ci

) \Xi, and Ci denotes the c-component in G containing
Xi. The size of Ci is denoted by ki.

Let A′ denote the set of all infrequently observed arms. If A′ = ∅, Algorithm 2 spends the
remaining budget for observation, i.e., pulls a0. Otherwise, it uses the remaining budget to pull
the infrequent arms and update their corresponding estimations. Finally, it outputs an arm with the
maximum estimated average reward.

Remark 6 Consider the special case of no-backdoor graphs (causal graphs with no unblocked
backdoor paths from intervenable variables to the reward variable Y ). This graphical constraint
ensures that for all X ∈ X, E[Y |do(X = x)] = E[Y |X = x]. This is due to the second rule of
do-calculus (Pearl, 1995). For causal MABs with no-backdoor graphs, µi,x can be estimated using
observation as follows

∑B/2
t=1 yt1{xti = x}/

∑B/2
t=1 1{xti = x}. When the interventions have non-

uniform costs, redefining q̂i,x = 2
B

∑B/2
t=1 1{xti = x} yields drastically lower regrets. This special

case and our improvements are discussed in Appendix E.

Theorem 7 The expected simple regret of Algorithm 2 is bounded by O
(√

n(q)
B log NB

n(q)

)
.

The proof of this theorem is provided in Appendix D.

Remark 8 Maiti et al. (2022) proposes an algorithm for non-budgeted causal MAB with general
causal graphs, which is a special case of our setting in all costs are one. By setting ci,x = 1 for all
i and x in Theorem 7, we can recover their expected simple regret bound.

Remark 9 Nair et al. (2021) studies the causal MAB problem with no-backdoor graphs and an
additional constraint on the costs that is ci,x = c > 1 for all i and x and c0 = 1. Note that
this setting does not satisfy the non-budgeted assumption in Maiti et al. (2022). Moreover, their
algorithm uses a different exploration set than A′ that seems to result in both worse performance
and theoretical bound. Specifically, the threshold for determining the infrequent arms in Nair et al.
(2021) is given by m′(q) := min{τ |

∑
i,x 1{pi,x < 1

τ } ≤ τ}. As we show in Appendix E, in this
setting, n(q) ≤ cm′(q) for all c > 1 and q. Nair et al. (2021) shows that the expected simple

regret of their algorithm is bounded by O
(√

cm′(q)
B log NB

cm′(q)

)
. Given that n(q) ≤ cm′(q) for

all c > 1, even in the special setting of Nair et al. (2021), our algorithm achieves better expected
simple regret. This is also shown empirically in our experiment in Section 6.2.

5. Lower Bounds

Simple regret: As mentioned earlier, Maiti et al. (2022) studies a special setting of causal MAB
problem with uniform costs (ci,x = 1 for all i, x) in general causal graphs when the objective func-
tion of the learner is simple regret. In particular, they showed that there is a large class of causal
graphs called tree graphs, such that for any graph T in this class with N intervenable nodes and a
positive integer M ≤ N , there exists a joint distribution P (·) compatible5 with graph T , such that
n(q) = M and the expected simple regret of any causal MAB algorithm is Ω

(√
n(q)/B

)
. Com-

paring this result with the bound introduced in Theorem 7, we observe that for certain categories
of graphs with uniform costs, the expected simple regret yielded by Algorithm 2 differs from the
minimum value at most by a factor of

√
log

(
NB/n(q)

)
.

5. Compatibility also known as Markov property (Pearl, 2009) means that the P (·) factorizes according to the graph T .
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Cumulative regret: We prove minAB
maxC,GN ,P ′ Rc(AB,GN , P, C) ≥ Ω

(√
⌊B/c⌋KN

)
in ap-

pendix F, where Rc(AB,GN , P, C) denotes the cumulative regret of an adaptive algorithm AB with
total budget B on a causal graph GN with N nodes each of which has domain {1, ...,K}. The
reward distribution is P and the set of costs is given by C = {1 ≤ ca ≤ c|a ∈ A}. This shows
that for any algorithm, there exists a causal bandits problem characterized by (GN , P, C) such that
it suffers at least Ω

(√
⌊B/c⌋KN

)
of cumulative regret.

6. Experiments

Herein, we present our empirical evaluations of our algorithm in comparison with state of the art.
Throughout, each point in figures is obtained as an average of 100 trials6.

6.1. Cumulative Regret in General Graphs

In this section, we compared the performance of Algorithm 1 with algorithms CRM and F-KUBE
by Maiti et al. (2022) and Tran-Thanh et al. (2012), respectively. CRM is a causal MAB algo-
rithm designed for general causal graphs where all of the variables are observable (no hidden con-
founders exist). F-KUBE is a budgeted MAB algorithm with non-uniform costs that does not use
the knowledge of the causal graph. We used a graph with 6 intervenable variables, N = 6, and
modeled each Vi with at least a parent in G to be the XOR of its parents with probability 0.8 or the
XNOR of its parents, otherwise. Moreover, for each variable Vi without any parents, we modeled
Vi ∼ Bernoulli(0.5 + 0.5ϵ), where ϵ ∼ Uniform(0, 1).
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Figure 2: Cumulative regret on a general graph with N = 6.

The cumulative regret vs. budget plot in Figure 2 depicts the performance of algorithms by
assuming that the cost of pulling ai,x for i ∈ [N ], x ∈ {0, 1} is selected randomly from {2, 3}. As
the budget increases, the cumulative regret of all of the algorithms increases. However, the growth
rate of the cumulative regrets of F-KUBE and CRM are higher than our algorithm. Moreover, since
the cumulative regrets of F-KUBE and CRM do not converge to a constant for B ≤ 2500, they
fail to identify the optimal arm within this budget range while the regret of our algorithm remains a
constant for large budgets, which indicates that it could identify the best arm in the experiment.

The cumulative regret vs. intervention cost in Figure 2 illustrates the performance of the al-
gorithms when the budget was fixed to 1000 and ci,x = c for all i ∈ [N ], x ∈ {0, 1} such that

6. Python implementations are provided in the supplementary.
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c ∈ {2, 3, . . . , 20} (uniform cost for all interventional arms). As shown in this figure, the cumula-
tive regret of Algorithm 1 grows slower than the others. Note that since CRM considers only the
causal graphs without hidden variables, for fairness, we compared these algorithms for the graph
without hidden variables. The underlying graph for this experiment and additional experiments on
graphs with hidden variables are provided in Appendix G.1.

6.2. Simple Regret in No-backdoor Graphs

In order to be able to compare our algorithm for simple regret with several related works, we stud-
ied the causal MAB for the special case of no-backdoor graphs in this section. We compared the
performance of Algorithm 2 with two causal bandit algorithms γ-NB (Nair et al., 2021) and PB
(Lattimore et al., 2016). PB is a non-budgeted algorithm that is designed to minimize the simple
regret when the graph has no backdoor. γ-NB is a budgeted version of PB that allows uniform costs
on arms, i.e., ci,x = c > 1 for all i and x.

We used the same setting as in Nair et al. (2021) and Lattimore et al. (2016) in which the
underlying graph has 50 intervenable variables and all of these variables are parents of the reward
variable Y . This particular structure is called a parallel graph. We modeled Xi ∼ Bernoulli(pi)
with p1 = p2 = 0.02 for i ∈ {1, 2} and pi = 0.5 for i ∈ {3, . . . , 50}. Moreover, we modeled the
reward variable as Y ∼ Bernoulli(12 + ϵ) if X1 = 1, and otherwise, Y ∼ Bernoulli(12 − ϵ′),
where ϵ = 0.3 and ϵ′ = p1ϵ

1−p1
.

0 200 400 600 800 1000 1200
Budget (B)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Si
m

pl
e 

R
eg

re
t

PB
Algorithm 2
γ-NB

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Cost of doing intervention (c)

0.00

0.02

0.04

0.06

0.08

0.10

Si
m

pl
e 

R
eg

re
t

Figure 3: Simple regret on the parallel graph with N = 50.

The simple regret vs. budget plot in Figure 3 was obtained by selecting the cost of pulling each
arm ai,x for i ∈ [N ], x ∈ {0, 1} randomly from {2, 3, 4, 5}. The simple regrets of all of the algo-
rithms converge to zero as the budget increases, but Algorithm 2 demonstrates faster convergence.
In the simple regret vs. the cost of intervention plot in Figure 3, we considered the setting in which
the budget was fixed to 1500 and ci,x = c for i ∈ [N ], x ∈ {0, 1} such that c ∈ {1, 2, . . . , 20}.
The simple regret is increasing in terms of intervention costs, as expected. Since Algorithm 2 uses
a different exploration set compared to the others, it drastically outperforms them even in a setting
favorable to them. Additional experiments are presented in Appendix G.2 including an experiment
using Successive Rejects algorithm in Audibert et al. (2010) which is a baseline MAB algorithm7.

7. Successive Rejects is not included in the experiments of the main text as it fails to perform well for large N .
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6.3. Simple Regret in General Graphs

We compared the performance of Algorithm 2 with two algorithms, SRM (Maiti et al., 2022) and
Successive Rejects for general graphs in addition to the special structures of the previous section.
SRM is a causal MAB algorithm for minimizing simple regret in the non-budgeted setting where
the underlying graph is general. Here, we used a causal graph that violates the no-backdoor crite-
rion. The graph has N = 7 intervenable variables, i.e., it has 15 arms (14 interventional and one
observational arm). We used the same procedure to construct the model as Section 6.1.
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Figure 4: Simple regret on a general graph with N = 7.

The simple regret vs. budget plot in Figure 4 illustrates the performance of algorithms when
the cost of each interventional arm was selected randomly from {5, 6, 7}. Algorithm 2 converges
to 0 faster than the others as B grows. The simple regret vs. the cost of intervention plot in Figure
4 compares the performance of the algorithms when the budget is fixed to 800, and the cost of
all interventional arms is equal to c, where c ∈ {2, 3, . . . , 20}. Additional experiments and the
underlying graph of this experiment are provided in Appendix G.3.

7. Conclusion

We studied the budgeted causal MAB problem with non-uniform costs for different arms in general
causal graphs in which all intervenable variables have identifiable causal effects. We considered
two different learners; one with simple regret as its objective and the other with cumulative regret
objective. For each learner, we proposed an algorithm and provided theoretical guarantees. Fur-
thermore, through empirical studies in different scenarios, we evaluated the performances of our
proposed algorithms and showed that they outperform the state-of-the-art.
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Appendix A. Technical preliminaries

Definition 10 (Directed Path) Let V1, V2, . . . , Vm be a set of distinct vertices in an ADMG G.
There is a directed path from V1 to Vm if Vi ∈ Pa(Vi+1) for every 1 ≤ i ≤ m− 1.

Definition 11 (Descendant) Let Xi and Xj be two vertices in an ADMG G. Xj is called a descen-
dant of Xi if there exists a directed path from Xi to Xj .

Definition 12 (Blocked) Given a causal graph G and two vertices X1, Xn ∈ V, a path between
X1 and Xn is called blocked by a set of vertices W (with neither X1 nor Xn in W) whenever there
is a vertex Xk, such that one of the followings holds:

(1) Xk ∈W and Xk−1 → Xk → Xk+1 or Xk−1 ← Xk ← Xk+1 or Xk−1 ← Xk → Xk+1,

(2) Xk−1 → Xk ← Xk+1 and neither Xk nor any of its descendants is in W.

Lemma 13 (Chernoff inequalities) Let X be a random variable. Then, for every s ≥ 0, the
followings hold:

(1) P (X ≥ E[X] + s) ≤ minλ≥0E
[
exp

(
λ(X −E[X])

)]
exp(−λs)

(2) P (X ≤ E[X]− s) ≤ minλ≥0E
[
exp

(
λ(E[X]−X)

)]
exp(−λs)

Lemma 14 (Hoeffding inequalities) Let X be a random variable such that X ∈ [a, b]. Therefore,
for every λ ∈ R:

E

[
exp

(
λ(X −E[X])

)]
≤ exp

(λ2(b− a)2

8

)
.

Lemma 15 (Chernoff-Hoeffeding inequality) Assume X1, . . . , XT are independent random vari-
ables such that 0 ≤ Xt ≤ 1 for t = 1, . . . , T . Then, for every ϵ > 0, the following inequalities
hold:

(1) P
(∑

t∈[T ]X
t −E

[∑
t∈[T ]X

t
]
≥ ϵ
)
≤ exp(−2ϵ2

T ),

(2) P
(∑

t∈[T ]X
t −E

[∑
t∈[T ]X

t
]
≤ −ϵ

)
≤ exp(−2ϵ2

T ).

Appendix B. Proofs of Section 3

In order to prove Theorem 5, we require several technical lemmas which we present below.
In the following lemma, we show that µ̂t

i,x is an unbiased estimator of µi,x.

Lemma 16 µ̂t
i,x in (8) and µ̂t

0 in (5) are unbiased estimators of µi,x and µ0.

Proof Recall Equation (8):

µ̂t
i,x :=

∑
t′∈Iti,j

1{Y t′ = 1}+
∑

s∈[St
i,x]

Y s
i,x

N t
i,x + St

i,x

.
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Note that Y s
i,x is an unbiased estimator of µi,x because we partition the time steps that arm a0

was pulled into |V| different number of subsets. Taking expectations from both sides of the above
equation yields

E[µ̂t
i,x] = E

∑t′∈Iti,j
1{Y t′ = 1}+

∑
s∈[St

i,x]
Y s
i,x

N t
i,x + St

i,x


=

∞∑
a=1

∞∑
b=0

E

∑t′∈Iti,j
1{Y t′ = 1}+

∑
s∈[St

i,x]
Y s
i,x

N t
i,x + St

i,x

∣∣∣N t
i,x = a, St

i,x = b

P (N t
i,x = a, St

i,x = b)

=
∞∑
a=1

∞∑
b=0

E

[aµi,x + bµi,x

a+ b
|N t

i,x = a, St
i,x = b

]
P (N t

i,x = a, St
i,x = b)

= µi,x

∞∑
a=1

∞∑
b=0

P (N t
i,x = a, St

i,x = b) = µi,x.

Similarly, one can show that µ̂t
0 is an unbiased estimator of µ0.

Next, we show a concentration result for µ̂t
i,x in (8).

Lemma 17 For µ̂t
i,x given in Equation (8), we have P

(
|µ̂t

i,x−µi,x| ≥ ϵ
)
≤ 2 exp

(
−2(N t

i,x + St
i,x)ϵ

2
)
.

Proof

P (µ̂t
i,x − µi,x ≥ ϵ) = P

∑j∈Iti,x
1{Y t′ = 1}+

∑
s∈[St

i,x]
Y s
i,x

N t
i,x + St

i,x

≥ µi,x + ϵ


= P

 ∑
t′∈Iti,x

1{Y t′ = 1}+
∑

s∈[St
i,x]

Y s
i,x ≥ (N t

i,x + St
i,x)µi,x + (N t

i,x + St
i,x)ϵ


(a)
≤ min

λ≥0
E

exp(λ( ∑
t′∈Iti,x

(1{Y t′ = 1} − µi,x) +
∑

s∈[St
i,x]

(Y s
i,x − µi,x)

)) exp
(
− λ(N t

i,x + St
i,x)ϵ

)

= min
λ≥0

E

 ∏
t′∈Iti,x

exp
(
λ(1{Y t′ = 1} − µi,x)

) ∏
s∈[St

i,x]

exp
(
λ(Y s

i,x − µi,x)
) exp

(
− λ(N t

i,x + St
i,x)ϵ

)
(b)
= min

λ≥0

∏
t′∈Iti,x

E

[
exp

(
λ(1{Y t′ = 1} − µi,x)

)] ∏
s∈[St

i,x]

E

[
exp

(
λ(Y s

i,x − µi,x)
)]

exp
(
− λ(N t

i,x + St
i,x

)
ϵ)

(c)
≤ min

λ≥0
exp

(N t
i,xλ

2

8
+

St
i,xλ

2

8
− λ(N t

i,x + St
i,x)ϵ

)
(d)
≤ exp

(
− 2(N t

i,x + St
i,x)ϵ

2
)
.

(12)
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The inequality in (a) holds using Lemma 13. The equality in (b) is true since the terms in the
product are independent. The inequality in (c) follows from Lemma 14 where Y t′ , Y s

i,x ∈ {0, 1}.
Finally, the inequality in (d) follows after substituting the optimal λ := 4ϵ. In a similar way, it can
be shown

P
(
µ̂t
i,x − µi,x ≤ −ϵ

)
≤ exp

(
− 2(N t

i,x + St
i,x)ϵ

2
)
.

Therefore, we get

P
(
|µ̂t

i,x − µi,x| ≥ ϵ
)
≤ 2 exp

(
− 2(N t

i,x + St
i,x)ϵ

2
)
.

In the following lemma, we introduce a bound for the expectation of ST
i,x. Recall that ST

i,x :=

min
{
minj:Vj∈Ci S

T
j,i,minj:Vj /∈Ci

S̃T
j,i,x

}
where


ST
j,i := minw′

i
minx′ |OT

j (x
′,w′

i)| if Vj ∈ Ci,

S̃T
j,i,x := minw′

i
|OT

j (x,w
′
i)| if Vj /∈ Ci.

Lemma 18 LetWi be the size of the domain set of V\{Xi, Y } and pi,x := minj minw′
i
pj,i,x(w

′
i).

Moreover, define τi,x,T := max(0, 1− |V|WiT
−

p2i,x
2|V| ). Then,

E[ST
i,x] ≥

pi,x
2|V|

E[NT
0 ]τi,x,T − 1.

Proof
We define

p̂Tj,i,x(w
′
i) :=


minx′ |OT

j (x′,w′
i)|

|OT
j | if Vj ∈ Ci,

|OT
j (x,w′

i)|
|OT

j | otherwise.

where |OT
j | =

⌊
NT

0
|V|

⌋
. Moreover, let p̂Ti,x := minj minw′

i
p̂Tj,i,x(w

′
i). Using the above definition, we

have

P
(
p̂Tj,i,x(w

′
i) ≤

pi,x
2

) (a)
≤ P

(
p̂Tj,i,x(w

′
i) ≤ pj,i,x(w

′
i)−

pi,x
2

) (b)
≤ exp

(
− 2

p2i,x
4

lnT

|V|

)
= T

−
p2i,x
2|V| .

(13)
Inequality (a) holds because pi,x

2 ≤ pj,i,x(w
′
i) −

pi,x
2 and (b) follows from Lemma 15. Therefore,

we have

P
(
min
j

min
w′

i

p̂Tj,i,x(w
′
i) ≤

pi,x
2

)
≤
∑
j

∑
w′

i

P
(
p̂Tj,i,x(w

′
i) ≤

pi,x
2

) (a)
≤ |V|WiT

−
p2i,x
2|V| . (14)
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where Wi is the alphabet size of V \ {Xi, Y } and the inequality (a) follows from Equation (13).
Finally, from the definition of ST

i,x, we get

E[ST
i,x] ≥ E

[
min
j

min
w′

i

p̂Tj,i,x(w
′
i)

⌊
NT

0

|V|

⌋]
≥ 1

|V|
E

[
min
j

min
w′

i

p̂Tj,i,x(w
′
i)(N

T
0 − |V|)

]
=

1

|V|
E

[
min
j

min
w′

i

p̂Tj,i,x(w
′
i)N

T
0 −max

j
max
w′

i

p̂Tj,i,x(w
′
i)|V|

]
≥ 1

|V|
E

[
min
j

min
w′

p̂Tj,i,x(w
′
i)N

T
0

]
− 1

=
1

|V|

∞∑
n=1

nE
[
min
j

min
w′

p̂Tj,i,x(w
′
i)|NT

0 = n
]
P (NT

0 = n)− 1

≥ 1

|V|

∞∑
n=1

n
pi,x
2

P
(
min
j

min
w′

i

p̂Tj,i,x(w
′
i) >

pi,x
2
|NT

0 = n
)
P (NT

0 = n)− 1

≥ pi,x
2|V|

E[NT
0 ] max(0, 1− |V|WiT

−
p2i,x
2|V| )− 1

=
pi,x
2|V|

E[NT
0 ]τi,x,T − 1.

Lemma 19 Suppose that ai,x is not the optimal arm, i.e., a∗ ̸= ai,x. In this case, we have

E[NT
i,x] ≤

8 lnT

δ2i,x
+ 2− pi,x

2|V|
E[N l

0]τi,x,l +
π2

3
,

where l := 8 lnT
δ2i,x

+ 1. Moreover, if a∗ ̸= a0, then,

E[NT
0 ] ≤

8 lnT

δ20
+ 1 +

π2

3
.

Proof Define Et
i,x to be effective number of pulling arm ai,x at the end of time t and let Et

i,x :=

N t
i,x + St

i,x. Using this definition, we rewrite NT
i,x as follows

NT
i,x =

∑
t∈[l]

1{at = ai,x, E
t
i,x ≤ l}+

∑
t∈[l+1,T ]

1{at = ai,x, E
t
i,x > l}. (15)

Let m := max{t|Et
i,x ≤ l}, then, the first part of Equation (15) will be equal to Nm

i,x, i.e.,

NT
i,x = Nm

i,x +
∑

t∈[l+1,T ]

1{at = ai,x, E
t
i,x > l}.
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Since Nm
i,x = Em

i,x−Sm
i,x, we get Nm

i,x =
∑

t∈[m] 1{at = ai,x} = l−Sm
i,x. This allows us to rewrite

Equation (15) as
NT

i,x = l − Sm
i,x +

∑
t∈[l+1,T ]

1{at = ai,x, E
t
i,x > l},

and since m ≥ l, we have Sm
i,x ≥ Sl

i,x. Therefore,

NT
i,x ≤ l − Sl

i,x +
∑

t∈[l+1,T ]

1{at = ai,x, E
t
i,x > l}. (16)

By taking expectation on both sides of Equation (16) we have

E[NT
i,x] ≤ l −E[Sl

i,x] +
∑

t∈[l+1,T ]

P (at = ai,x, E
t
i,x > l).

Using Lemma 18, we rewrite the above inequality as

E[NT
i,x] ≤ l + 1− pi,x

2|V|
E[N l

0]τi,x,l +
∑

t∈[l+1,T ]

P (at = ai,x, E
t
i,x > l). (17)

Next, we bound
∑

t∈[l+1,T ] P (at = ai,x, E
t
i,x > l),∑

t∈[l+1,T ]

P (at = ai,x, E
t
i,x > l) ≤

∑
t∈[l+1,T ]

P (µ̄t−1
i,x ≥ µ̄t−1

a∗ , Et
i,x > l) =

∑
t∈[l,T−1]

P (µ̄t
i,x ≥ µ̄t

a∗ , E
t
i,x ≥ l).

For clarity, we use µ̂t
a(E

t
a) instead of µ̂t

a. By substituting the definitions of the UCB, the right hand
side of the equation becomes

∑
t∈[l,T−1]

P
( µ̂t

i,x(E
t
i,x)

ci,x
+

√
2 ln t

c2i,xE
t
i,x

≥ µ̂t
a∗(E

t
a∗)

ca∗
+

√
2 ln t

c2a∗E
t
a∗
, Et

i,x ≥ l
)

(a)
≤

∑
t∈[l,T−1]

P
(

max
t1∈[l+1,t]

µ̂t
i,x(t1)

ci,x
+

√
2 ln t

c2i,xt1
≥ min

t2∈[l+1,t]

µ̂t
a∗(t2)

ca∗
+

√
2 ln t

c2a∗t2

)

≤
∑
t∈[T ]

∑
t1∈[l,t−1]

∑
t2∈[l,t−1]

P
( µ̂t

i,x(t1)

ci,x
+

√
2 ln t

c2i,xt1
≥ µ̂t

a∗(t2)

ca∗
+

√
2 ln t

c2a∗t2

)
.

Inequality (a) holds because

max
t1∈[l+1,t]

µ̂t
i,x(t1) +

√
2 ln t

t1
≥ µ̂t

i,x(E
t
i,x) +

√
2 ln t

Et
i,x

,

and

min
t2∈[l+1,t]

µ̂t
a∗(t2) +

√
2 ln t

t2
≤ µ̂t

a∗(E
t
a∗) +

√
2 ln t

Et
a∗

.
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It can be shown that if none of the following hold, then
µ̂t
i,x(t1)

ci,x
+
√

2 ln t
c2i,xt1

≥ µ̂t
a∗ (t2)

ca∗
+
√

2 ln t
c2
a∗ t2

does

not hold as well,

µ̂t
i,x(t1)− µi,x ≥

√
2 ln t

t1
, (18)

µ̂t
a∗(t2)− µa∗ ≤ −

√
2 ln t

t2
, (19)

µa∗

ca∗
− µi,x

ci,x
≤ 2

√
2 ln t

c2i,xt1
. (20)

Now, we bound the probability of events in Equations (18) and (19),

P
(
µ̂t
i,x(t1)− µi,x ≥

√
2 ln t

t1

)
≤ exp

(
−22 ln t

t1
t1
)
= t−4,

P
(
µ̂t
a∗(t2)− µa∗ ≤ −

√
2 ln t

t2

)
≤ exp

(
−22 ln t

t2
t2
)
= t−4,

where we used Lemma 15 to obtain the both above inequalities. Furthermore, by assuming that
l := 8 lnT

δ2i,x
+ 1, the event in Equation (20) is false,

∑
t∈[l+1,T ]

P (at = ai,x, E
t
i,x > l) ≤

∑
t∈[T ]

∑
t1∈[l,t−1]

∑
t2∈[l,t−1]

2t−4 ≤ π2

3
. (21)

Therefore, if a∗ ̸= ai,x, using Equations (17) and (21), we obtain the following bound for NT
i,x:

E[NT
i,x] ≤

8 lnT

δ2i,x
+ 2− pi,x

2|V|
E[N l

0]τi,x,l +
π2

3
.

For the second part of the proof, suppose that a∗ ̸= a0. In this case, we decompose NT
0 in two

parts,

NT
0 =

∑
t∈[T ]

1{at = a0} =
∑
t∈[l]

1{at = a0, N
T
0 ≤ l}+

∑
t∈[l+1,T ]

1{at = a0, N
T
0 > l}.

By taking expectation from both sides of the above inequality, we get

E[NT
0 ] =

∑
t∈[l]

P (at = a0, N
T
0 ≤ l) +

∑
t∈[l+1,T ]

P (at = a0, N
T
0 > l)

≤ l +
∑

t∈[l+1,T ]

P (at = a0, N
t
0 > l).

Following the same procedure used to bound
∑

t∈[l+1,T ] P (at = ai,x, E
t
i,x > l) and for l = 8 lnT

δ20
+

1, we obtain ∑
t∈[l+1,T ]

P (at = a0, N
t
0 > l) ≤ π2

3
.
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This implies the following bound for E[NT
0 ],

E[NT
0 ] ≤

8 lnT

δ20
+ 1 +

π2

3
.

Lemma 20 If a∗ = a0, we have the following bound for E[NT
0 ],

E[NT
0 ] ≥ T − 2N(2 +

π2

3
)−

∑
i,x

8 lnT

δ2i,x
.

Proof From definition of NT
a , we know NT

0 = T −
∑

i,xN
T
i,x. If a∗ ̸= ai,x we have the following

by Lemma 19:

E[NT
i,x] ≤

8 lnT

δ2i,x
+ 2 +

π2

3
.

Then,

E[NT
0 ] ≥ T − 2N(2 +

π2

3
)−

∑
i,x

8 lnT

δ2i,x
.

Lemma 21 Suppose that a∗ ̸= a0 and let δ0 :=
µa∗
ca∗
− µ0. We also define

p̂Tj,i,x(w
′
i) :=


minx′ |OT

j (x′,w′
i)|

|OT
j | if Vj ∈ Ci,

|OT
j (x,w′

i)|
|OT

j | otherwise.

Moreover, let p̂Ti,x := minj minw′
i
p̂Tj,i,x(w

′
i), pi,x := minj minw′

i
pj,i,x(w

′
i), and p := mini,x pi,x.

Then,

P
(
|µ̂T

0 − µ0| ≥
δ0
4

)
≤ 2T− δ20

8 ,

and

P
(
|
µ̂T
i,x

ci,x
− µi,x

ci,x
| ≥ δ0

4

)
≤ |V|WiT

− p2

2|V| + 2T
−

pδ20c
2
i,x

16|V| ,

whereWi is the size of domain from which V \ {Xi, Y } takes values.

Proof By Algorithm 1, the number of times that arm a0 is pulled at the end of T rounds, denoted
by NT

0 , is at least β2 lnT and since β ≥ 1, we have NT
0 ≥ lnT . Using Lemma 15, we

P
(
|µ̂T

0 − µ0| ≥
δ0
4

)
≤ 2 exp(−2 δ

2
0

16
lnT ) = 2T− δ20

8 .
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Next, we prove the second inequality as follows.

P
(
|
µ̂T
i,x

ci,x
− µi,x

ci,x
| ≥ δ0

4

)
= P

(
|
µ̂T
i,x

ci,x
− µi,x

ci,x
| ≥ δ0

4
, p̂Ti,x ≤

p

2

)
+ P

(
|
µ̂T
i,x

ci,x
− µi,x

ci,x
| ≥ δ0

4
, p̂Ti,x >

p

2

)
≤ P (p̂Ti,x ≤

p

2
) + P

(
|
µ̂T
i,x

ci,x
− µi,x

ci,x
| ≥ δ0

4
, p̂Ti,x >

p

2

)
(22)

Now, we bound the first part in Equation (22). To do so, first, we get

P
(
p̂Tj,i,x(w

′
i) ≤

p

2

) (a)
≤ P

(
p̂Tj,i,x(w

′
i) ≤ pj,i,x(w

′
i)−

p

2

) (b)
≤ exp(−2p

2

4
.
lnT

|V|
) = T

− p2

2|V| . (23)

Note that in Equation (23), the inequality in (a) holds because p
2 ≤ pj,i,x(w

′)− p
2 and the inequality

in (b) follows from Lemma 15. Therefore,

P (p̂Ti,x ≤
p

2
) = P

(
min
j

min
w′

i

p̂Tj,i,x(w
′
i) ≤

p

2

)
≤
∑
j

∑
w′

i

P
(
p̂Tj,i,x(w

′
i) ≤

p

2

) (a)
≤ |V|WiT

− p2

2|V| ,

(24)
where the inequality in (a) follows from Equation (23).

Next, we bound the second part of Equation (22). From Algorithm 1, we have β ≥ 1, and
therefore, NT

0 ≥ lnT . Now, if p̂Ti,x > p
2 , then ST

i,x > p
2
NT

0
|V| ≥

p
2|V| lnT . Therefore, using Lemma

17 and 15 we have the following bound for the second part of Equation (22):

P
(
|
µ̂T
i,x

ci,x
− µi,x

ci,x
| ≥ δ0

4
, p̂Ti,x >

p

2

)
≤ 2 exp

(
− 2.

δ20c
2
i,x

16

p

2|V|
lnT

)
= 2T

−
pδ20c

2
i,x

16|V| . (25)

Finally, using Equations (24) and (25), we rewrite Equation (22) as follows,

P
(
|
µ̂T
i,x

ci,x
− µi,x

ci,x
| ≥ δ0

4

)
≤ |V|WiT

− p2

2|V| + 2T
−

pδ20c
2
i,x

16|V| .

Lemma 22 Assume that a∗ ̸= a0 and let δ0 = µa∗
ca∗
− µ0. If T ≥ max

{
e

32
δ0 , argmint{t

pδ20
16|V| ≥

8N(3+|V|W)
3 }

}
, whereW := maxiWi, then E[β2] ≥ 8

9δ0
.

Proof For each arm a ∈ A, let ea be the event that | µ̂
T
a
ca
− µa

ca
| ≤ δ0

4 and define e := ∩a∈Aea.
Furthermore, let ēa and ē denote the compliment of the events ea and e, respectively. Lemma 21
implies the following inequalities for a0 and every ai,x ∈ A,

P (ē0) ≤ 2T− δ20
8 ,

P (ēi,x) ≤ |V|WiT
− p2

2|V| + 2T
−

pδ20c
2
i,x

16|V| .
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Therefore, using the above equations and the union bound, we get

P (ē)
(a)
≤ 2T− δ20

8 + 2N
(
|V|WT

− p2

2|V| + 2T
− pδ20

16|V|
)

(b)
≤ 2NT

− pδ20
16|V| + 2N

(
|V|WT

− pδ20
16|V| + 2T

− pδ20
16|V|

)
= 2N(3 + |V|W)T

− pδ20
16|V| ,

where the inequality in (a) holds since ci,x ≥ 1 for every i ∈ [N ], x ∈ {0, 1} and (b) holds since
p ≤ 1, δ0 ≤ 1.

Let µ̂T
ã := maxa∈A

µ̂T
a
ca

. By the definition of ã and δ0, we have µã
cã
− µ0 ≤ δ0. If event e is true,

then

−δ0
2
≤ µ̂T

ã

cã
− µ̂T

0 + (µ0 −
µã

cã
) ≤ δ0

2

=⇒ µ̂T
ã

cã
− µ̂T

0 ≤
3δ0
2

. (26)

From Algorithm 1, at time T , we have β = min{ 2
√
2

µ̂T
ã /cã−µ̂T

0
,
√
log T}. By assuming log T ≥ 32

δ20
and

using Equation (26), we have the following bound at the end of round T

β2 ≥ 32

9δ20
.

This implies that if event e is true, then, β2 ≥ 32
9δ20

. Now, we bound E[β2]:

E[β2] ≥ 32

9δ20
P (e) ≥ 32

9δ20

(
1− 2N(3 + |V|W)T

− pδ20
16|V|

)
.

Since T
pδ20

16|V| ≥ 8N(3+|V|W)
3 , then,

E[β2] ≥ 8

9δ20
.

We are now ready to prove Theorem 5.

Theorem 5 The expected cumulative regret of Algorithm 1 is bounded by

δ0

(8 lnB
δ20

+ 1 +
π2

3

)
+
∑

δi,x>0

δi,x

(8 lnB
δ2i,x

+ 2− 8pi,x
18δ20 |V|

ln bi,x · τi,x,b +
π2

3

)
,

where bi,x := 8
δ2i,x

ln( B
maxa ca

) + 1, τi,x,b := max
{
0, 1− |V| · Wi · b

−p2i,x/(2|V|)
i,x

}
, andWi denotes

the alphabet size of variables in V \ {Xi, Y }.
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Algorithm 3 Compute µ̂i,x using observational samples
Input: ADMG G, observational samples, indices i ∈ [N ] and x ∈ {0, 1}

1: Reduce ADMG G toHi using Algorithm 4;
2: Compute D̂i,x by Algorithm 5 (useHi as input);
3: Use Equation (28) to compute µ̂i,x;
4: Return: µ̂i,x.

Proof Let TB denote the number of rounds that Algorithm 1 plays the arms before the budget B is
exhausted. Therefore, we know B

maxa ca
≤ TB ≤ B. Using Lemma 19, we get the following for TB

satisfying Lemma 22:

E[Rc(B)] ≤ δ0

(8 lnTB

δ20
+ 1 +

π2

3

)
+
∑

δi,x>0

δi,x

(8 lnTB

δ2i,x
+ 2− pi,x

2|V|
E[N l

0]τi,x,l +
π2

3

)
(a)
≤ δ0

(8 lnTB

δ20
+ 1 +

π2

3

)
+
∑

δi,x>0

δi,x

(8 lnTB

δ2i,x
+ 2− pi,x

2|V|
E[β2] · ln l · τi,x,l +

π2

3

)
(b)
≤ δ0

(8 lnTB

δ20
+ 1 +

π2

3

)
+
∑

δi,x>0

δi,x

(8 lnTB

δ2i,x
+ 2− 8pi,x

18δ20 |V|
ln l · τi,x,l +

π2

3

)
≤ δ0

(8 lnB
δ20

+ 1 +
π2

3

)
+
∑

δi,x>0

δi,x

(8 lnB
δ2i,x

+ 2− 8pi,x
18δ20 |V|

ln b · τi,x,b +
π2

3

)
,

(27)

where l = 8 lnTB

δ2i,x
+ 1, b = 8

δ2i,x
ln( B

maxa ca
) + 1, τi,x,l = max{0, 1 − |V|Wil

−
p2i,x
2|V| }, τi,x,b =

max{0, 1 − |V|Wib
−

p2i,x
2|V| }. Furthermore, the inequality in (a) follows from the fact E[N l

0] ≥
E[β2] ln l and the inequality in (b) follows from Lemma 22. The last inequality holds since B

maxa ca
≤

TB ≤ B.

Appendix C. Estimating the expected reward from observational distribution

In this section, we use a procedure (proposed by Bhattacharyya et al. (2020); Maiti et al. (2022))
to compute µ̂i,x for each ai,x using the observational data obtained by pulling arm a0. Algorithm 3
summarizes the steps of this procedure.

Algorithm 3 takes the underlying causal graph G, observational data that were collected by
pulling arm a0 for the first B

2 rounds and indices i, x as inputs. In line 1, it reduces G to Hi

using Algorithm 4. Then, it computes the Bayes-net D̂i,x in Hi using Algorithm 5 proposed by
Bhattacharyya et al. (2020) in line 2. Finally, using D̂i,x, it computes µ̂i,x by substituting the
distribution PDi,x(Y = 1,V′ = v′) in the following equation with its empirical estimation,

µi,x = PG(Y = 1|do(Xi) = x) = PHi(Y = 1|do(Xi) = x) =
∑
v′

PDi,x(Y = 1,V′ = v′), (28)

where V′ is the set of variables inHi except {Xi, Y } and v′ is an arbitrary realization of V′.
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Algorithm 4 Reducing G toHi

Input: Causal garph G and index i ∈ [N ].

1: Let Wi = Xi ∪ P̃a(Xi) ∪ Y
2: Let Gi be the graph obtained from G by considering V \Wi as hidden variables.
3: Using Projection Algorithm (Tian and Pearl, 2002a; Verma and Pearl, 1990) do the following

steps:

(a) For each observable variable Vj ∈ V in Gi, add an observable variable Vj inHi.

(b) For each pair of observable variables Vj , Vk ∈ V in Gi, add a directed edge from Vj to
Vk inHi if one of the followings hold:

1) There exists a directed edge from Vj to Vk in Gi, or

2) There exists a directed path from Vj to Vk in Gi such that it contains only unobservable
variables.

(c) For each pair of observable variables Vj , Vk ∈ V in Gi, add a bidirected edge between
Vj and Vk inHi if there exists an unobservable variable U in Gi such that there exist two
paths from U to Vj and from U to Vk in G′i such that both paths contain only unobservable
variables.

4: Return: Hi

Appendix D. Proofs of Section 4

Theorem 7 The expected simple regret of Algorithm 2 is bounded by O
(√

n(q)
B log NB

n(q)

)
.

Proof Recall

qi,x(z) = P (Xi = x, P̃a(Xi) = z),

qi,x = min
z

qi,x(z),

q = min{qi,x|qi,x > 0 : i ∈ [N ], x ∈ {0, 1}}.

When qi,x = 0 for all i, x, we define q = 1
N+1 .

For each Xi ∈ X, let ki be the size of the c-component containing Xi, and k = mini ki.
Moreover, let Zi be the size of the domain from which P̃a(Xi) takes its values and let Z :=
maxiZi. Next, we prove a lemma that is useful in the proof of Theorem 7.

Lemma 23 For every i ∈ [N ], define fi,x(z) to be one, if |q̂i,x(z) − qi,x(z)| ≥ 1
4(1 − 2−1/k)q at

the end of B
2 rounds. Let f = 1, if there exists i ∈ [N ], x ∈ {0, 1}, and z in the domain of P̃a(Xi)

and fi,x(z) = 1. Then, the following statements hold

(a) P (f = 1) ≤ 4NZ exp
(
− 1

16(1− 2−1/k)
2
q2B

)
.

(b) If f = 0, therefore, n(q̂) ≤ 2n(q) holds at the end of B
2 rounds.
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Algorithm 5 Computing D̂i,x

Input: Observational samples, i, x, Hi (with set of vertices Vi) and parameter
t.

1: for every variable Vj ∈ Ci do
2: for every realization Vj = v and Zj = z, where Zj is the set of effective parents of Vj inHi

do
3: Nz ← the number of samples that Zj = z,
4: Nz,v the number of samples that Zj = z and Vj = v,
5: D̂i,x(Vj = v|Zj = z)← Nz,v+1

Nz+2
,

6: for every variable Vj ∈ Vi \Ci do
7: for every Vj = v and Zj \Xi = z, do
8: if Xi ∈ Zj then
9: Nz ← the number of samples that Zj \Xi = z and Xi = x,

10: Nz,v ← the number of samples that Zj \Xi = z, Xi = x and Vj = v,
11: if Nz ≥ t then
12: D̂i,x(Vj = v|Zj = z)← Nz,v+1

Nz+2
,

13: else
14: D̂i,x(Vj = v|Zj \ {Xi} = z, Xi = x) = 1

2 ,
15: else
16: Nz ← the number of samples that Zj = z,
17: Nz,v ← the number of samples that Zj = z and Vj = v,
18: if Nz ≥ t then
19: D̂i,x(Vj |Zj = z)← Nz,v+1

Nz+2
,

20: else
21: D̂i,x(Vj |Zj = z)← 1

2 ,
22: ReturnD̂i,x.

Proof (a) Using Lemma 15, we get

P (fi,x(z) = 1) ≤ 2 exp
(
− 1

16
(1− 2−1/k)2q2B

)
.

Now, define fi,x to be one, if there exists z in domain of P̃a(Xi) and fi,x(z) = 1. Using union
bound, we get

P (fi,x = 1) ≤ 2Zi exp
(
− 1

16
(1− 2−1/k)

2
q2B

)
.

Next, let fi = 1 if there exists x ∈ {0, 1} and fi,x = 1. Then,

P (fi = 1) ≤ 4Zi exp
(
− 1

16
(1− 2−1/k)

2
q2B

)
Applying the union bound on the above equation, we get

P (f = 1) ≤ 4NZ exp
(
− 1

16
(1− 2−1/k)

2
q2B

)
.
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(b) First, we sort all qkii,x for i ∈ [N ] and x ∈ {0, 1} in an ascending order. Without loss of

generality, assume the sorted sequence is qk11 ≤ qk22 ≤ · · · ≤ qk2N2N . Define g1 := max{i|qkii <
1

n(q)}. The definition of n(q) implies that g1 ≤ n(q) and qkii ≥
1

n(q) for every i > g1. Therefore,

by assuming |q̂i,x(z)− qi,x(z)| ≤ 1
4(1− 2−1/k)q, we get the following for every i > g1:

(q̂i)
ki ≥

(
qi −

1

4
(1− 2−1/k)q

)ki (a)
≥
(
qi −

1

4
(1− 2−1/k)qi

)ki
≥ 2−

ki
k

n(q)
≥ 1

2n(q)
,

where the inequality in (a) holds since qi ≥ q. Hence,∑
i∈[N ]

ci1{q̂kii <
1

2n(q)
} <

∑
i∈[g1]

ci =
∑
i∈[N ]

ci1{q̂kii <
1

n(q)
} ≤ n(q) ≤ 2n(q).

The above equation implies that the following inequality holds for τ = 2n(q),∑
i∈[N ]

ci1{q̂kii <
1

τ
} ≤ τ.

Then, by the definition of n(q), we get

n(q̂) ≤ 2n(q). (29)

Lemma 24 Let ai,x ∈ A be an arbitrary arm and ϵ > 0, then P (|µ̂i,x−µi,x| > ϵ) ≤ exp(−ϵ2 q
ki
i,xB

M )
at the end of B

2 rounds, where M ≥ 1 is a constant number which is independent of the distribution
but dependent on the underlying graph.

Proof Theorem 2.5 in (Bhattacharyya et al., 2020) implies that µ̂i,x can be estimated with probability
1 − δi such that |µ̂i,x − µi,x| ≤ ϵ using O( 2ui

q
ki
i,xϵ

2
log 2ui log 1

δi
) number of samples, where ui =

2(1+ki(d+1))2. Therefore, using B = K 22ui

q
ki
i,xϵ

2
log 1

δi
samples, where K is a constant, we achieve

P
(
|µ̂i,x − µi,x| ≤ ϵ

)
≥ 1− δi.

Next, we re-write δi in terms of ϵ and B and get

P (|µ̂i,x − µi,x| > ϵ) ≤ exp
(
ϵ2

Bqkii,x
K22ui

)
≤
(
ϵ2
Bqkii,x
M

)
,

where M = max{1,K22ui}.

We are now ready to prove Theorem 7 using the aforementioned Lemmas. Let M ′ := 2k−1M
and

B1 := min
b

{√4M ′n(q)

b
log

Nb

n(q)
≥ 6

n(q)

b

}
,

B2 := min
b

{√36M ′n(q)

b
log

Nb

n(q)
≥ 4NZ exp

(
− 1

16
(1− 2−1/k)

2
q2b
)}

,
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and assume B ≥ max{B1, B2}.
For every ai,x ∈ A′, Algorithm 2 pulls each arm B

2
∑

i,x ci,x1{ai,x∈A′} additionally to recompute

µ̂i,x. Therefore, by the definition of n(q) and Lemma 23, we get the following if f = 0 (Please see
Lemma 23 for the definition of the event f ),

B

2
∑

i,x ci,x1{ai,x∈A′}
≥ B

2n(q̂)
≥ B

4n(q)
. (30)

Then, by Lemma 15, we have the following equation for every ai,x ∈ A′:

P
(
|µ̂i,x − µi,x| ≥ ϵ|f = 0

)
≤ 2 exp

(
− ϵ2

B

2n(q)

)
≤ 2 exp

(
− ϵ2

B

4M ′n(q)

)
. (31)

For each ai,x /∈ A′, we know that q̂kii,x ≥
1

n(q̂) . However, depending on qkii,x, the proof technique
varies. Below, we present the proof under two different cases:

Case 1. If ai,x /∈ A′ and qkii,x < 1
n(q) . Conditioning on f = 0, we have :

qkii,x ≥ (q̂i,x −
1

4
(1− 2−1/k)q)

ki

≥
(
(

1

n(q̂)
)
1/ki

− 1

4
(

1

n(q)
)
1/ki)ki

(a)
≥
(
(

1

2n(q)
)
1/ki

− 1

4
(

1

n(q)
)
1/ki)ki

≥ 1

2k+1n(q)
,

where the inequality in (a) follows from Lemma 23. Using the above bound for qkii,x and
Lemma 24 yield

P (|µ̂i,x − µi,x| ≥ ϵ|f = 0) ≤ exp(−ϵ2 B

2k+1Mn(q)
) = exp(−ϵ2 B

4M ′n(q)
). (32)

Case 2. If ai,x /∈ A′ and qkii,x ≥
1

n(q) . From Lemma 24, we have

P
(
|µ̂i,x − µi,x| ≥ ϵ|f = 0

)
≤ exp(−ϵ2

qkii,xB

M
) ≤ exp(−ϵ2 B

4M ′n(q)
). (33)

For a = a0, Lemma 15 gives us

P (|µ̂0 − µ0| ≥ ϵ) ≤ 2 exp(−ϵ2B) ≤ 2 exp(−ϵ2 B

4M ′n(q)
). (34)

Now, let e be an event where e = 1 if there exists an arm a ∈ A, such that |µ̂a − µa| ≥ ϵ. We
also define event ea where ea = 1 if |µ̂a − µa| ≥ ϵ. Equations (31), (32), (33) and (34) imply that
for every action a ∈ A,

P (ea = 1|f = 0) ≤ 2 exp
(
− ϵ2

B

4M ′n(q)

)
.
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Applying the union bound on the above equation implies

P (e = 1|f = 0) ≤ (4N + 2) exp
(
− ϵ2

B

4M ′n(q)

)
≤ 6N exp

(
− ϵ2

B

4M ′n(q)

)
.

Using the above inequalities and substituting ϵ =
√

4M ′n(q)
B log NB

n(q) yield

E[Rs(B)|f = 0] = E[R(B)|e = 0]P (e = 0) +E[R(B)|e = 1]P (e = 1)

≤ E[R(B)|e = 0] + P (e = 1)

≤ 2ϵ+ 6N exp(−ϵ2 B

4M ′n(q)
)

= 2

√
4M ′n(q)

B
log

NB

n(q)
+ 6

n(q)

B

≤

√
36M ′n(q)

B
log

NB

n(q)
.

(35)

Finally, Lemma 23 and Equation (35) imply

E[Rs(B)] = E[R(B)|f = 0]P (f = 0) +E[R(B)|f = 1]P (f = 1)

≤ E[R(B)|f = 0] + P (f = 1)

≤

√
36M ′n(q)

B
log

NB

n(q)
+ 4NZ exp

(
− 1

16
(1− 2−1/k)

2
(p′)2B

)
≤ 2

√
36M ′n(q)

B
log

NB

n(q)
.

Therefore, E[Rs(B)] ∈ O(
√

n(q)
B log NB

n(q)).

Appendix E. Discussion on simple regret bounds in no-backdoor graphs

Remark 25 Consider the special case of no-backdoor graphs (causal graphs with no unblocked
backdoor paths from intervenable variables to the reward variable Y ). This graphical constraint
ensures that for all X ∈ X, E[Y |do(X = x)] = E[Y |X = x]. This is due to the second rule of
do-calculus (Pearl, 1995). For causal MABs with no-backdoor graphs, µi,x can be estimated using
observation as follows

∑B/2
t=1 yt1{xti = x}/

∑B/2
t=1 1{xti = x}. When the interventions have non-

uniform costs, redefining q̂i,x = 2
B

∑B/2
t=1 1{xti = x} yields drastically lower regrets. This special

case and our improvements are discussed in Appendix E.

Proof In general graphs, we estimate qi,x = minz P (Xi = x, P̃a(Xi) = z) by

q̂i,x =
2

B
min
z

{ B/2∑
t=1

1
{
xti = x, P̃a

t
(xi) = z

}}
.
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In no-backdoor graphs, we redefine qi,x = P (Xi = x) and q̂i,x = 2
B

∑B/2
t=1 1{xti = x}. Through

out this section, we denote the redefined qi,x and q̂i,x by qnewi,x and q̂newi,x .
Following the same procedure as in the proof of Theorem 7, it is straightforward to show that

Algorithm 2, using qnewi,x and q̂newi,x , achieves Rs(B) ∈ O
(√

n(qnew)
B log NB

n(qnew)

)
. Herein, we show

that n(qnew) ≤ n(q) which implies that in the no-backdoor setting, the new definitions guarantee
better regret bound for Algorithm 2.

Note that for every i ∈ [N ], x ∈ {0, 1} and z in the domain of P̃a(Xi), we have

P (Xi = x, P̃a(Xi) = z) = P (P̃a(Xi) = z|Xi = x)P (Xi = x) ≤ P (Xi = x).

Therefore, qi,x = minz P (Xi = x, P̃a(Xi) = z) ≤ P (Xi = x) = qnewi,x for every i, x. From
definition of n(q) we get

∑
i,x

ci,x1
{
qi,x < (

1

n(q)
)
1/ki}

≤ n(q),

and since qi,x ≤ qnewi,x ,

∑
i,x

ci,x1
{
qnewi,x < (

1

n(q)
)
1/ki}

≤
∑
i,x

ci,x1
{
qi,x < (

1

n(q)
)
1/ki}

.

Therefore, the following inequality holds for τ = n(q)

∑
i,x

ci,x1
{
qnewi,x < (

1

τ
)
1/ki}

≤ τ.

On the other hand, from the definition, we know that n(qnew) is the smallest τ which holds in the
above equation. Therefore, n(qnew) ≤ n(q).

Remark 26 Nair et al. (2021) studies the causal MAB problem with no-backdoor graphs and an
additional constraint on the costs that is ci,x = c > 1 for all i and x and c0 = 1. Note that
this setting does not satisfy the non-budgeted assumption in Maiti et al. (2022). Moreover, their
algorithm uses a different exploration set than A′ that seems to result in both worse performance
and theoretical bound. Specifically, the threshold for determining the infrequent arms in Nair et al.
(2021) is given by m′(q) := min{τ |

∑
i,x 1{pi,x < 1

τ } ≤ τ}. As we show in Appendix E, in this
setting, n(q) ≤ cm′(q) for all c > 1 and q. Nair et al. (2021) shows that the expected simple

regret of their algorithm is bounded by O
(√

cm′(q)
B log NB

cm′(q)

)
. Given that n(q) ≤ cm′(q) for

all c > 1, even in the special setting of Nair et al. (2021), our algorithm achieves better expected
simple regret. This is also shown empirically in our experiment in Section 6.2.

Proof Recall pi,x = P (Xi = x). Similar to Remark 6, we denote pi,x by qnewi,x . By assuming
ci,x = c for all i ∈ [N ] and x ∈ {0, 1}, and all variables are observable in the underlying causal
graph, we aim to show that n(qnew) ≤ m′(qnew). Note that since all the variables are observable,
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the size of the c-component for every Xi is equal to one, i.e., ki = 1. By the definition of m′(qnew),
we have ∑

i,x

1{qnewi,x <
1

m′(qnew)
} ≤ m′(qnew).

Moreover, we have ∑
i,x

1{pi,x <
1

cm′(qnew)
} ≤

∑
i,x

1{qnewi,x <
1

m′(qnew)
}.

Using the above equations, we can write c
∑

i,x 1{qnewi,x < 1
cm′(qnew)} ≤ c.m′(qnew). Finally, using

the definition of n(qnew) implies that n(qnew) ≤ c.m′(qnew).

Appendix F. Cumulative Regret Lower Bound:

We need the following technical lemmas.

Lemma 27 (Bretagnolle–Huber inequality) Let P and Q be probability measures on the same
measurable space, and let A be an arbitrary event. Then

P (A) +Q(Ac) ≥ 1

2
e−D(P ||Q),

where D and Ac denote the KL-divergence and the complement of A, respectively.

Lemma 28 (Lattimore and Szepesvári (2020), Lemma 15.1) Let v = (P1, ..., Pk) be the reward
distributions associated with one k-armed bandit, and let v′ = (P ′

1, ..., P
′
k) be the reward distribu-

tions associated with another k-armed bandit. Choose a particular policy π and let Pπ and P ′
π be

the probability measures on the canonical bandit model induced by the n-round interconnection of
π and v and v′, respectively. Then,

D(Pπ||P ′
π) =

k∑
i=1

Eπ,v[Ni(n)]D(Pi||p′i).

Lemma 29 Let {Pθ : θ ∈ R} be a parametric family of distributions such that Pθ has mean θ.
Suppose that the densities are twice continuously differentiable. Then, there exists x0 such that
|x0| ≤ |δ| and

D(Pθ||Pθ+δ) =
I(θ + x0)

2
δ2,

where I(x) denotes the Fisher information of the family Pθ at x.

Proof Using a Taylor expansion of h(x) := D(Pθ||Pθ+x) around x = 0, we get

h(x) = h(0) + h′(0)x+ h′′(x0)
x2

2
,
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where |x0| ≤ |x|. We have h(0) = 0, h′′(x0) = I(θ + x0), and

h′(0) =
∂

∂x
D(Pθ||Pθ+x)

∣∣∣
x=0

=

∫
∂

∂x
log

dPθ

dPθ+x

∣∣∣
x=0

dPθ = −
∫

∂

∂x
log

dPθ+x

dPθ

∣∣∣
x=0

dPθ

= −
∫ ∂

∂x

(dPθ+x

dPθ

)
dPθ+x

dPθ

∣∣∣
x=0

dPθ = −
∫

∂

∂x

(dPθ+x

dPθ

)∣∣∣
x=0

dPθ = −
∂

∂x

∫ (dPθ+x

dPθ

)
dPθ

∣∣∣
x=0

= − ∂

∂x

∫
dPθ+x

∣∣∣
x=0

= − ∂

∂x
1
∣∣∣
x=0

= 0.

To establish the result, we use an analogous argument as in the classical multi-arm bandits and
how any algorithm suffers Ω(

√
⌊B/c⌋KN) regret on a specific causal graph G0 depicted in Figure

5 with predefined reward distributions P1 and P2 and the uniform costs C0 := {ci,x = c}.

X1 X2 · · · XN

Y

Figure 5: The ADMAG G0 over V = {X1, ..., XN , Y }.

In this causal bandits setting, we assume that all variables can take values in [K] = {1, ...,K}
and consider two different distributions over the reward variable Y belonging to a parametric family
of distributions that have twice differentiable density functions, e.g., Gaussian distributions. Dis-
tribution P1 is selected such that E1[Y |do(Xi = x)] = b for constant b, for all i ∈ [N ], and all
x ∈ [K] and E1[Y ] = b +

√
KN

w⌊B/c⌋ for constant w to be defined later. Hence, the best action to
play in this setting would be a0, i.e., no intervention.

Let AB be an arbitrary adaptive algorithm that selects the actions possibly based on its previous
interactions with the problem and the total budget B and let PA,1 be the resulting distribution of
applying this algorithm when the rewards are distributed according to P1. In order to design the
second distribution, we select the least played action by AB and assign a higher expected reward to
it. To be more precise, let

ai∗,x∗ := argmin
ai,x

EA,1[N
B
ai,x ],

where NB
ai,x denotes the number of times that arm ai,x is played by the algorithm using all its budget

B (since all arms have the same cost c, that is equivalent to playing the arms over a time horizon
⌊B/c⌋) and the expectation is taken with respect to PA,1. Note that

∑
ai,x∈ANB

ai,x = ⌊B/c⌋, the
total number of actions are |A| = NK + 1, and thus

EA,1[N
B
ai∗,x∗

] ≤ ⌊B/c⌋
NK

. (36)

Now, we can design the second distribution P2 that is identical to P1 except at index ai∗,x∗ and at

this index it has E2[Y |do(Xi∗ = x∗)] = b + 2
√

KN
w⌊B/c⌋ . Therefore, the optimal arm under this
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distribution is ai∗,x∗ . We have

Rc(AB,G0, P1, C0) =
∑

ai,x∈A
EA,1[N

B
ai,x ]δi,x = EA,1[⌊B/c⌋ −NB

a0 ]

√
KN

w⌊B/c⌋

≥ PA,1(N
B
a0 ≤ ⌊B/c⌋/2)⌊B/c⌋

2

√
KN

w⌊B/c⌋
,

Rc(AB,G0, P2, C0) =
∑

ai,x∈A
EA,2[N

B
ai,x ]δi,x ≥ EA,2[N

B
a0 ]

√
KN

w⌊B/c⌋

≥ PA,2(N
B
a0 > ⌊B/c⌋/2)⌊B/c⌋

2

√
KN

w⌊B/c⌋
,

where Rc(AB,G, P, C) denotes the cumulative regret of algorithm A on a causal graph G with the
distribution P over the rewards and the cost set C. Combining the above inequalities and using the
Bretagnolle–Huber inequality (Lattimore and Szepesvári, 2020), we have

2max{Rc(AB,G0, P1, C0), Rc(AB,G0, P2, C0)} ≥ Rc(AB,G0, P1, C0) +Rc(AB,G0, P2, C0)

≥
(
PA,1(N

B
a0 ≤ ⌊B/c⌋/2) + PA,2(N

B
a0 > ⌊B/c⌋/2)

)⌊B/c⌋
2

√
KN

w⌊B/c⌋

≥ ⌊B/c⌋
4

√
KN

w⌊B/c⌋
e−D(PA,1||PA,2).

From the definition of P1 and P2 and using Lemma 28, we get

D(PA,1||PA,2) = EA,1[N
B
ai∗,x∗

]D(P1(ai∗,x∗)||P2(ai∗,x∗)).

Using (36) and Lemma 29, we get

D(PA,1||PA,2) ≤
⌊B/c⌋
NK

I(b+ ϵ)

2

(
2

√
KN

w⌊B/c⌋

)2

=
2I(b+ ϵ)

w
,

where ϵ ≤ 2
√

KN
w⌊B/c⌋ . By selecting w large enough, we can ensure that 2I(b + ϵ) < w. Note

that I(b + ϵ) is a constant and depends on the family distribution. For instance, for the family of
Gaussian distributions with unit variance and mean θ, we have I(b+ ϵ) = 1. Combining the above
inequalities leads to

max
GN ,P,C

Rc(AB,GN , P, C) ≥ max{Rc(AB,G0, P1, C0), Rc(AB,G0, P2, C0)} ≥
⌊B/c⌋
8e

√
KN

w⌊B/c⌋
.

This inequality holds for any arbitrary adaptive algorithm AB .
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Figure 6: Causal graph of experiments in Section 6.1.
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Figure 7: Causal graph of experiments in Figure 8.

Appendix G. Additional Experiments

G.1. Additional Experiments on Cumulative Regret in General Graphs

Figure 6 illustrates the underlying causal graph of the experiment in Section 6.1, which we used to
compare the performance of Algorithm 1 with CRM and F-KUBE.

As mentioned before, since CRM is not designed for graphs with hidden variables, we did not
include CRM for comparison in graphs with hidden variables.

Herein, we compare Algorithm 1 with F-KUBE when the model is constructed as explained in
Section 6.1. The underlying graphs are demonstrated in Figure 7, which has 2 hidden variables.
The left plot in Figure 8 illustrates the performance of algorithms in terms of cumulative regret
versus budget when the cost of pulling each arm was selected randomly from {2, 3}. By increasing
the budget, the cumulative regret of all of the algorithms increases. Although, our algorithm has a
lower growth rate than F-KUBE and CRM.

Moreover, the right plot compares the performance of the algorithms when the budget is fixed to
1000, and the cost of all interventional arms is equal to c, such that c ∈ {2, 3, . . . , 20} and the cost
of the observational arm is equal to 1. As shown in this Figure, the cumulative regret of Algorithm
1 grows substantially slower than others.

G.2. Additional Experiments on Simple Regret in No-backdoor Graphs

Since γ-NB is designed for settings with uniform costs over the arms, to have a fair comparison
between Algorithm 2 and γ-NB, we included an extra experiment in this section. In this experiment,
the cost of pulling each interventional arm ai,x for i ∈ [N ], x ∈ {0, 1} is set to be 4, and the cost of
the observational arm is 1. The other setting of this experiment is similar to the one in Section 6.2.

Figure 9 illustrates the result of this experiment and it shows that when the cost of pulling
interventional arms is uniform, by increasing the budget, our proposed algorithm converges quicker
to zero than the others.
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Figure 8: Performances of different algorithms on a general graphs with N = 6 depicted in Figure
7.
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Figure 9: Performance of different algorithms on parallel graphs with N = 50.

We also included an experiment on a smaller parallel graph (with 7 intervenable variables) to be
able to compare our algorithm with Successive Rejects. To construct the underlying model, we used
the same setting as in Section 6.2. Figure 10 illustrates the performance of different algorithms in
terms of their simple regret. For simple regret vs. budget, we set the cost of each interventional arm
randomly from {2, 3, 4, 5}. This figure shows that Algorithm 2 convergence is faster to zero than
the other algorithms. For simple regret vs. the cost of doing an intervention, the budget is set to
1500, and the cost of all interventional arms is equal to c ∈ {1, 2, . . . , 20}. This figure demonstrates
that by increasing c, Algorithm 2 has a slower growth rate than others.

G.3. Additional Experiments on Simple Regret in General Graphs

Herein, we present the underlying causal graph of the experiments in Section 6.3. As shown, this
graph is not a no-backdoor graph as it has unblocked backdoor paths from intervenable variables to
the reward variable. Furthermore, it has two hidden confounders.

We also provided additional experiments on a different graph illustrated in Figure 12 with N = 5
and one hidden confounder. Note that this graph also includes unblocked backdoor paths from
intervenable variables to the reward variable. We constructed the underlying model similar to the
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Figure 10: Performance of different algorithms on a parallel graph with N = 7.
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Figure 11: Causal graph of experiments in Section 6.3 with N = 7.

one in Section 6.1. The left plot in Figure 13 compares the performance of algorithms in terms of
their simple regret when the cost of pulling each interventional arm was selected randomly from
{5, 6, 7}. As depicted, by increasing the budget, Algorithm 2 converges to zero faster. The right
plot in Figure 13 shows that when the cost of all interventional arms is equal to c, the simple regret
increases by increasing c as expected, but our algorithm’s regret grows at a lower rate.
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Figure 12: Causal graph of the additional experiments.
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Figure 13: Performance of different algorithms on the general graphs depicted in Figure 12.

Appendix H. Discussion on the previous work

In (Nair et al., 2021), Eq. (17) in the proof of Lemma B.6 (crucial for Theorem 3 pertaining to
cumulative regret bound) reads as follows

N i,x
T ≤ max(0, l −

∑
t∈[T ]

1{a(t) = a0, Xi = x}) +
∑
t∈T

1{a(t) = ai,x, E
i,x
t ≥ l}

which is wrong. As a counterexample, suppose that T = 3 and the pulled arms are {a(0) =
ai,x, a(1) = aj,x′ , a(2) = a0, a(3) = a0}, where j ̸= i and observed Xi = x at both times t = 2, 3.
In this case, for l=2, the inequality becomes 1 ≤ 0.
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