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Abstract
Offline reinforcement learning (RL) aims to improve the target policy over the behavior policy
based on historical data. A major problem of offline RL is the distribution shift that causes over-
estimation of the Q-value due to out-of-distribution actions. Most existing works focus on either
behavioral cloning (BC) or maximizing Q-Learning methods to suppress distribution shift. BC
methods try to mitigate the shift by constraining the target policy to be close to the offline data,
but it makes the learned policy highly conservative. On the other hand, maximizing Q-Learning
methods adopt pessimism mechanism to generate actions by maximizing Q-value and penalizing
Q-value according to the uncertainty of actions. However, the generated actions might be arbi-
trary, resulting in the predicted Q-values highly uncertain, which will in turn misguide the policy
to generate the next action. To alleviate the adverse effect of the distribution shift, we propose
to constrain the policy implicitly and explicitly by unifying Q-Learning and behavior cloning to
tackle the exploration and exploitation dilemma. For the implicit constraint approach, we propose
to unify the action space by generative adversarial networks that dedicate to make the actions of the
target policy and behavior policy indistinguishable. For the explicit constraint approach, we pro-
pose multiple importance sampling (MIS) to learn an advantage weight for each state-action pair
which is then used to suppress or make full use of each state-action pair. Extensive experiments
on the D4RL dataset indicate that our approaches can achieve superior performance. The results
on the Maze2D data indicate that MIS addresses heterogeneous data better than single importance
sampling. We also found that MIS can stabilize the reward curve effectively.
Keywords: Q-Learning, behavior cloning, pessimism mechanism, multiple importance sampling.

1. Introduction

Offline RL requires the agent to learn from historical data without interaction with the environment
when trial-and-error actions are expensive or dangerous, e.g. autonomous driving and medical ex-
periments. A long-standing problem of offline RL is the distribution shift (Kumar et al., 2020). This
means that the action space of the target policy deviates from the offline data. Such actions are called
out-of-distribution (OOD) actions. Without online interactions with the environment to correct the
agent policy, the bootstrapping (extrapolation) error of the predicted Q-value caused by OOD ac-
tions will accumulate over time (Kumar et al., 2019). When the horizon is long, this becomes a
considerable problem and the performance of the agent may be affected severely. To tackle this
problem, existing work focuses on either behavior cloning (BC) or maximizing Q-Learning (Mnih
et al., 2015). BC methods try to mitigate the distribution shift by constraining the target policy to be
close to the offline data, thus reducing the overestimation of Q-values and the accumulation of the
bootstrapping errors. A common practice is to add a Kullback–Leibler divergence to the policy loss
to shrink the distributional discrepancy between the target policy and the behavior policy. Although
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BC methods can reduce the extrapolation error incurred by OOD actions, they make the learned
policy highly conservative, i.e. the learned policy tends to be a copy of the behavior policy. Besides,
the limited exploration of the action space exacerbates the deployment of the learned policy in the
online environment.

Maximizing Q-Learning methods prompt the agent to explore the action space by maximizing
the Q function without policy regularization, assuming the Q function can accurately predict the Q-
value of the state-action pair. However, without policy regularization, the generated actions based
on the current states may be arbitrary, resulting in highly uncertain Q-values. Since the Q function
is trained on the offline data, it supports actions near the data well but wildly extrapolates on actions
deviating far from the data. Overestimated Q functions will, in turn, misguide the policy for gen-
erating the next action. To solve this problem, Wu et al. (2021); An et al. (2021); Bai et al. (2022)
adopt maximizing Q-Learning methods without explicitly constraining the target policy to be close
to the behavior policy. They use a pessimistic mechanism to penalize the OOD actions, with degree
of penalization proportional to the uncertainty of the Q-values. As a consequence, the penalization
will favour in-distribution actions and suppress OOD actions, so the target policy’s action space can
stay within the offline data manifold.

Besides the distribution shift, another problem of offline RL is the heterogeneity of the data.
Existing algorithms assume the offline data are homogeneous and use a single distribution to fit the
data. But in practice, the data may be collected under various scenarios and are thus a mixture of
diverse distributions, such as the Maze2D data in D4RL (Fu et al., 2020). Some data may be a
mixture of human demonstration, hand-designed controllers and expert/random policies, resulting
in multi-modal data. What’s worse, the data trajectories may also be non-Markovian, e.g. if the
action decisions are made based on external human knowledge, which makes it difficult to model
the trajectories by a Markovian decision process. Since the agent knows nothing about the external
knowledge when learning from offline data, it is hard to fit the behavior policy. As a result, the
target policy is under- or overestimated when we use importance sampling to weigh the biased
behavior policy (Chen et al., 2023). This bias is aggravated when the data is high-dimensional and
continuous where offline data only covers a minority of the whole feature space. To handle the
heterogeneous trajectories, we propose multiple importance sampling to alleviate the discrepancy
between the learned policy and the data. Inspired by Gaussian mixture models, we use multiple
functions to fit the target policy for heterogeneous data.

Maximizing Q-Learning methods can prompt exploration since the action-generating process
is guided by maximizing the Q function without cloning the behavior of offline data. In contrast,
BC methods can be seen as exploitation since they try to imitate the offline data and make full use
of them. On the one hand, it is critical for the target policy to stay close to the behavior policy to
circumvent the extrapolation error caused by OOD actions. On the other hand, it is also important to
make the agent fully exploring the environment, i.e. trying new OOD actions so that the target policy
can improve over the behavior policy. But OOD actions will cause overestimation of Q-values,
even though the pessimistic mechanism that penalizes highly uncertain Q-values can mitigate this
problem to a degree. So we still need to constrain the policy to enforce the generated actions to
be in-distribution. Therefore, it is necessary to carefully trade off exploitation and exploration for
different experimental environments.

With this motivation in mind, we propose to unify maximizing Q-Learning with BC in an im-
plicit and an explicit way to balance exploration and exploitation. For the implicit approach, termed
ImBC, we adopt generative adversarial networks (GANs) as the BC item to unify the action space
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of the target policy and offline data, making them indistinguishable with the help of a discrimina-
tor. GANs thus implicitly make the action space of the target policy and the behavior policy to
stay on the same manifold. We conduct extensive experiments on the locomotion data MuJoCo (Fu
et al., 2020) and the results show that ImBC exceeds previous state of the art (SOTA) performance
obtained by EDAC (An et al., 2021). For the explicit approach, termed ExBC, we combine max-
imizing Q-Learning with advantage-weighted BC methods where the weight for each state-action
pair is learned via MIS. Experiments on the heterogeneous navigation data Maze2D (Fu et al., 2020)
show that MIS stabilizes reward curves and handles heterogeneous data better than single impor-
tance sampling.

To summarize, the main contributions of our work are: (1) we proposed ImBC based on GANs;
(2) ExBC based on advantage-weighted BC where the weights are learned via MIS; (3) we propose
the topK loss for ensemble Q-values to stabilize reward curves.

2. Related Work

Maximizing Q Learning. For Offline RL (Levine et al., 2020), the policy optimization can be
roughly divided into two categories: maximizing Q-Learning and behavior cloning. The first
method learns a Q function using offline data, then utilizes the Q function to guide the policy to gen-
erate optimal actions that maximize the Q-values. A common approach of maximizing Q-Learning
is to adopt the pessimistic mechanism that penalizes Q-values of OOD actions. BCQ (Fujimoto
et al., 2019) uses a VAE model to generate actions that are close to the data, then trains the policy
to choose an action from a neighborhood of generated actions, thus restricting the action space to
be close to the data while maximizing the Q-value. CQL (Kumar et al., 2020) learns the lower
bound of Q-values by maximizing Q-values of in-distribution actions and minimizing the Q-values
of OOD actions. There are some publications that try to enforce generated actions to be within the
support of the behavioral policy while maximizing the Q-value (Kumar et al., 2019; Wang et al.,
2020). These approaches use KL-divergence, maximum mean discrepancy (MMD) or MSE (Fuji-
moto and Gu, 2021) to explicitly regularize the policy to reduce the extrapolation error incurred by
OOD actions. Another line of research doesn’t reduce the OOD actions, but penalizes the Q-values
of OOD actions, which is referred to as pessimistic mechanism. Pessimistic methods penalize the
Q-value of state-action pairs with high uncertainty. EDAC (An et al., 2021) also uses ensemble Q
networks to penalize Q-values with high uncertainty but they found that the performance of the tar-
get policy degrades significantly when the ensemble Q networks share similar parameters, so they
diversify the gradients of different Q networks and use the minimum of the Q-values to guide the
policy optimization.

Behavior Cloning. For BC (also called weighted regression) methods, the target policy tries
to learn selectively from offline data to improve over the behavior policy. A common practice is
to learn an importance weight such as IQL (Kostrikov et al., 2022), for each state-action pair to
filter low quality state-action pairs and to make full use of high quality state-action pairs. Pure BC
methods like IQL avoid overestimation of Q-values arising from unseen actions. But a noticeable
flaw is that BC depends on expert data. It would be difficult for a pure BC method to improve
the target policy for low quality data such as the dataset halfcheetah-random of D4RL. IQL
(Kostrikov et al., 2022) uses the estimated advantage of actions to optimize the weighted behavior
policy without querying OOD actions. The advantage is estimated by the difference of Q-values
and state values learned from the expectile regression. The latent-variable generative model VAE
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(Kingma and Welling, 2014), (which first encodes the state into a latent variable enforced to be close
to a standard Gaussian noise and then decodes it into an action) has been used to replace Gaussian
policies (Wu et al., 2022; Chen et al., 2022). In SPOT (Wu et al., 2022), the coefficient of the VAE
loss is a fixed value. In LAPO (Chen et al., 2022), the VAE loss is weighted by the advantage of the
action. LAPO learns the importance weight similar to IQL, the difference is that LAPO replaces the
BC item with a VAE and adds a maximizing Q-value item. It is demonstrated that VAEs can better
represent multiple modalities of the data. Transformer architectures have also been used to model
distributions of the trajectories (Janner et al., 2021; Chen et al., 2021).

3. Preliminaries

We formulate the RL sequential decision-making problem as a discounted Markov Decision Pro-
cess (MDP) specified by a tuple ⟨S,A,R, p, ρ0, γ⟩, where S and A are the state and action spaces,
p(s′|s, a) is the transition dynamics, R : S × A 7→ R is the reward function at a transition, ρ0
is the initial state distribution and γ ∈ [0, 1) is the discount factor. The agent performs an action
with a policy π : S 7→ A, then receives a reward r(s, a) and moves to the next state s′. Per-
forming actions repeatedly, the agent will generate a trajectory τ : (st, at, rt)t≥0. The goal of
RL is to obtain a policy π(a|s) that maximizes the discounted cumulative reward max

π
J(π) =

Es0∼ρ0,at∼π(·|st),st+1∼p(·|st,at)
∑∞

t=0 γ
trt(st, at). Since, at time t0, we don’t know future rewards

rt, t > t0, we cannot obtain the cumulative reward J(π) directly. Instead, a value function
Q(s, a) is used to estimate the discounted cumulative reward. Starting from time t, we want
Q(st, at) =

∑∞
k=t γ

k−trk to hold. If the Q function can predict the cumulative reward accurately,
it would satisfy the Bellman equation Q(st, at) = rt + γQ(st+1, at+1). To that end, the objective
of the parameterized Qϕ(s, a) is the temporal difference (TD) loss (Sutton, 1988),

L(ϕ) = (r + γQϕ′ (s′, a′)−Qϕ(s, a))
2, (1)

where s′ is the next state, a′ is the next action and ϕ
′

is the target parameter of the Q function.
After the Q function has been learned, it is used in the policy optimization to guide the policy π to
maximize the Q-value. The objective of the parameterized policy πθ is

max
θ
Es∼D,a∼πθ(·|s)Qϕ(s, a), (2)

where D represents the offline data. The above procedure describes the routine of maximizing
Q-Learning methods. These methods involve bootstrapping and function approximation to obtain
accurate Q functions. Otherwise, the policy might be misguided by the Q function. In practice, the
policy-generated actions are typically OOD, which inevitably causes the overestimation problem of
Q functions (Kumar et al., 2019).

4. Methodology

We propose two kinds of behavior cloning, implicit BC and explicit BC, and combine them with
maximizing Q-Learning where the Q function is penalized by the uncertainty. Since state-action
observations are usually limited in the offline data, it is common for the Q function to encounter
extrapolation errors from OOD actions, making the Q-value estimator easily fall into a suboptimal
area (Kumar et al., 2019, 2020). We estimate the uncertainty of the Q-value estimator by ensemble
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neural networks to reduce the impact of OOD actions. We don’t compute the variance explicitly.
Instead, we use topK (the smallest K-many values) or the minimum of Q-values which has the effect
of mean minus variance. The Q-values for state-action pairs with high uncertainty will be smaller
than those with low uncertainty. This mechanism prompts a pessimistic policy against OOD actions.

4.1. Implicit BC

Implicit behavioral cloning (ImBC) is implemented by adversarial training (Goodfellow et al.,
2014). Concretely, the actions generated by the policy are forced to be close to the actions of
the data by the discriminator of the GAN. This ImBC approach favors generating actions supported
by the offline data, thus alleviating the extrapolation error problem of the Q function. The Q func-
tion is an ensemble of multiple Q networks penalized by the uncertainty of the state-action pair. The
corresponding Bellman equation is

Qϕi
(s, a) = r + γ( min

1≤j≤N
Q

ϕ
′
j
(s′, a′)− log πθ(a

′|s′)), (3)

where N is the ensemble size, s′ is the state of the next time step, a′ is the action generated by
the policy based on s′, ϕj and ϕ

′
j are parameters of the j-th Q function and target Q function and

− log πθ(a
′|s′) is the entropy regularization item of the soft actor critic policy (Haarnoja et al.,

2018a). The final Q-value is the minimum of the N ensemble Q-values, which encourages pes-
simism towards those state-action pairs with high uncertainty. Suppose Q

ϕ
′
j

follows N(µ, σ). By
using the minimum of the Q-values, without computing the variances explicitly, we can penalize
each state-action pair by its uncertainty (Royston et al., 1982; An et al., 2021):

E[ min
1≤j≤N

Q
ϕ
′
j
(s, a)] ≈ µ(s, a)− Φ−1

(
N − π/8

N − π/4 + 1

)
σ(s, a). (4)

It can be seen that the expectation of the minimum quantifies the Q-value of (s, a) which is penalized
by the uncertainty σ(s, a). State-action pairs with high uncertainty like OOD actions would have
smaller Q-values than those with low uncertainty.

Policy Optimization. For the policy, a discriminator loss is introduced to enforce the generated
actions to stay close to the behavior policy. We adopt Wasserstein GANs (Arjovsky et al., 2017) as
the behavior cloning module with the discriminator D loss being

LD = E
s,a∼D

[D(s, a)]− E
s∼D

â∼πθ(s)

[D(s, â)]. (5)

In the process of maximizing the ensemble Q-values, we propose the topK loss to stabilize the
learning process of the Q-value. As mentioned before, topK means the K smallest values of the N
Q-values, with the minimum resulting for K = 1. The final policy objective is

L(θ) = λ E
s∼D

â∼πθ(s)

[
α log πθ(â|s)−

1

K
topK({Qϕj

(s, â)}Nj=1)

]
+ (1− λ) E

s∼D
â∼πθ(s)

[D(s, â)], (6)

where log πθ(â|s) = −H(πθ) and H means entropy. λ ∈ [0, 1] is used to control the degree of
conservatism. Minimizing the loss in (6) means we want to maximize not only the cumulative
reward Q(s, â) but also the entropy H(πθ). Maximizing the entropy H(πθ) enforces the policy
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to be as stochastic as possible, thus improving the exploratory ability of the policy. α is called
temperature parameter that determines the relative importance of the entropy term in comparison to
the action return, hence α controls the stochasticity. Larger α makes the policy more sensitive to
the arbitrariness of actions. It can be optimized proportional to the entropy (Haarnoja et al., 2018b).
The objective function for α is

L(α) = Eâ∼πθ(s)

[
−α log π(â|s)− αH̄

]
. (7)

The average entropy H̄ is usually assigned to be the negative action dimension, e.g. H̄ would be
−6 for the halfcheetah task. The dynamically tuned α allows the policy to explore more in re-
gions where actions are uncertain, but to remain more deterministic in states with a clear distinction
between good and bad actions.

We use the K smallest Q-values that can stabilize the reward curve. Besides, the performance
of topK is also slightly better than that of the minimum value as is shown in Figure 1. The minimum
of Q-values is too sparse when the ensemble size N is large. Based on the minimum alone, only
the gradients of a single value (the minimum) of the N Q-values is back-propagated, while most Q
networks stay unoptimized, thus the reward curve tends to be unstable. The average method also
has a drawback since all the Q-values will be optimized including the largest ones, which should be
avoided according to the pessimistic mechanism. Therefore, we trade off the minimum and average
by only optimizing the top K smallest Q-values.

As for the discriminator term Eâ∼πθ(s)[D(â)] in (6), it can be seen as an action regularization
item that suppresses the deviation of the generated actions â from the data actions a, thus alleviating
overestimation of the Q-values. The discriminator D tries its best to discriminate the actions a and
the policy-generated actions â. The policy optimizer optimizes the generator parameters to produce
actions to deceive the discriminator, i.e. generate actions â that can’t be distinguished from a by
the discriminator. The GAN regularization is much less restrictive than mapping states to actions
directly as in ExBC, making the learned policy more exploratory than ExBC.

Q Function Optimization. In the policy loss, the Q function is used to guide the policy opti-
mization. The parameters of the Q function are updated by the observed data (s, a, r). We adopt the
pessimistic-mechanism-like equation (4) to penalize Q(s, a) by the uncertainty, which can reduce
the extrapolation errors of the Q-values. Besides, for objective (6), we have the overall policy gradi-
ent decomposed as ∂Q

∂θ = ∂Q
∂â

∂â
∂θ , where â = πθ(s),

∂Q
∂â represents the gradient w.r.t. the Q function

parameters ϕ and ∂â
∂θ represents the policy gradient w.r.t. the policy parameters θ. In order to pre-

vent ∂Q
∂â from dominating the gradient, we add a regularization term

∣∣∣∂Q∂â ∣∣∣2 to the Q-loss, thus the

policy gradient ∂â
∂θ will dominate the overall gradient so as to better optimize the policy parameters

θ. Finally, the objective for the Q function is

L(ϕi) = E
(s,a,s′)∼D

â∼πθ

[(
r + γ

(
min

1≤j≤N
Q

ϕ
′
j
(s′, â)− log πθ(â|s′)

)
−Qϕi

(s, a)
)2

+

∣∣∣∣∂Qϕi

∂â

∣∣∣∣2
]
, (8)

where ϕi is the parameter of the i-th Q function and the total loss is a summation of L(ϕi), 1 ≤ i ≤
N where N is the ensemble size.
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4.2. Explicit BC

For explicit unification, we combine maximizing Q-Learning with advantage-weighted regression
neural networks where the weights w(s, a) are learned via MIS so that contributions to the objective
of actions with high advantage will be up-weighted. The target is to maximize the cumulative reward
and simultaneously constrain the target distribution dπ(s, a) to be close to the behavior distribution
dD(s, a). The policy objective is

max
dπ

E
(s,a)∼dπ

[R(s, a)]− αDf (d
π||dD) (9)

s.t.
∑
a

dπ(s, a) = (1− γ)µ0 + γT∗d(s), ∀s ∈ S, (10)

where Df (d
π||dD) is f -divergence between dπ and dD, f is convex and usually set to be the func-

tion f(x) = x log(x) underlying KL-divergence; here T∗d(s) =
∑

s̄,ā T (s|s̄, ā)d(s̄, ā) is the trans-
posed Bellman operator, µ0 is the distribution of the initial state. The constrained equation (10)
guarantees that dπ(s, a) is the occupancy distribution of the target policy. In (9), the first term max-
imizes the reward on the target policy π(a|s) while the second term constrains the target policy to
be close to the behavior policy. α controls the strength of the constraint. We reformulate (9) and
(10) using a Lagrangian multiplier V (s):

max
dπ

min
V (s)

E
s,a∼dπ

[
R(s, a)− αDf (d

π||dD) +
∑
s

V (s)
(
(1− γ)µ0 + γT∗d(s)−

∑
a

dπ(s, a)
)]

.

(11)

Note that T∗ is adjoint to T , i.e.
∑

s V (s) · T∗d(s) =
∑

s,a d(s, a)T V (s, a). So we have

Es,a∼dπ [R(s, a)]− αDf (d
π||dD) +

∑
s

V (s)((1− γ)µ0 + γT∗d(s)−
∑
a

dπ(s, a))

= Es,a∼dπ [R(s, a)]− αEs,a∼dD

[
f

(
dπ(s, a)

dD(s, a)

)]
+Es,a∼dπ [γT V (s, a)− V (s)] + (1− γ)Es∼µ0 [V (s)]

= Es,a∼dD

[
dπ(s, a)

dD(s, a)
A(s, a)− αf

(
dπ(s, a)

dD(s, a)

)]
+ (1− γ)Es∼µ0 [V (s)], (12)

where A(s, a) = R(s, a) + γT V (s, a)− V (s) is the advantage of the (s, a) pair.
Offline data can be complicated and multi-modal. It is thus natural to assume that the data is het-

erogeneous and it is more appropriate to model the data by weighing multiple distributions (similar
to Gaussian mixture models). Our motivation for MIS is that if the original data (generated from the
behavior policy) is heterogeneous and follows multiple distributions, then the target policy should
also follow multiple distributions. In addition, multiple target policies allow the agent to perform
diverse actions under similar states s, which improves the agent’s exploratory ability. Assuming
there are M distributions (dπ1 , dπ2 , ..., dπM ) for the target policy, each dπk has its own Q-value and
state value function. The objective (12) becomes

E
(s,a)∼dD

M∑
k=1

[
βk

(
ωkAk(s, a)− αf(ωk)

)
+ (1− γ)βkEs∼µ0Vk(s)

]
, (13)
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Table 1: Comparison of our methods ImBC and ExBC with baselines for the MuJoCo data.

Task Name CQL ATAC IQL SPOT EDAC ImBC ExBC

ha
lf

ch
ee

ta
h medium-expert 62.4 95.5 86.7 86.9 ±4.3 106.3± 1.9 113.3± 2.4 96.3± 1.5

medium-replay 46.2 49.5 44.2 52.2 ±1.2 61.3± 1.9 64.0± 1.3 46.7± 0.8
medium 44.4 54.3 47.4 58.4 ±1.0 65.9± 0.6 72.0± 0.4 50.3± 0.6
random 35.4 4.8 - - 28.4± 1.0 30.4 ± 1.9 6.3± 2.5

ho
pp

er

medium-expert 111.0 112.6 91.5 99.3± 7.1 110.7± 0.1 92.7± 1.6 113.1± 1.3
medium-replay 48.6 102.8 94.7 100.2± 1.9 101.0± 0.5 104.9± 1.8 103.6± 0.7
medium 58.0 102.8 66.2 86.0± 8.7 101.6± 0.6 92.3± 4.2 65.7± 2.9
random 10.8 31.8 - - 25.3± 10.4 32.1± 3.6 10.8± 3.4

w
al

ke
r2

d medium-expert 98.7 116.3 109.6 112.0± 0.5 114.7± 0.9 118.1± 1.2 112.2± 0.8
medium-replay 32.6 94.1 73.8 91.6± 2.8 87.1± 2.3 92.8± 1.3 86.1± 0.7
medium 79.2 91.0 78.3 86.4± 2.7 92.5± 0.8 101.3± 0.7 96.7± 0.3
random 7.1 8.0 - - 16.6± 7.0 24.2± 3.1 6.8± 2.2

where ωk = dπk (s,a)
dD(s,a)

is the importance weight of (s, a), Ak(s, a) = R(s, a)+γT Vk(s, a)−Vk(s) is
the advantage of action a and βk = 1/M . When maximizing (13), deriving from the differentiation
of (13) with regard to ωk, a closed-form solution for ωk is

ωk = (f ′)−1

(
Ak(s, a)

α

)
= f ′

∗

(
Ak(s, a)

α

)
, (14)

where f∗ is the convex conjugate of f , it is defined as f∗(y) = sup
x

{xy − f(x)} (Rockafellar,

1970). If f is the function underlying KL-divergence, then (f ′)−1(x) = f ′
∗(x) = ex−1. Finally,

the overall weight ω is the mean of the weights w1, w2, ..., wK . We will use ω to weigh different
state-action pairs. Substituting all the ωk into (13), the objective (13) becomes

L(ω) = E
(s,a)∼dD

M∑
k=1

[
βkf∗ (Ak(s, a)/α) + (1− γ)βkEs∼µ0Vk(s)

]
. (15)

We will demonstrate the effect of MIS on heterogeneous data in Section 5.2.
Policy Extraction. Weighted by the ω(s, a) learned from (14), the policy extraction objective

is

max
θ

E
(s,a)∼dπ

log πθ(a|s) = max
θ

E
(s,a)∼dD

[ω(s, a) log πθ(a|s)], (16)

where ω(s, a) = 1
M

∑M
k=1 ωk. For each state-action pair (s, a) a specific weight ω(s, a) controls

the contribution of (s, a) to the policy loss. The weight ω(s, a) aims to make full use of actions with
high advantage and to reduce the impact of actions with low advantage. Considering (14) and (17),
for a state-action pair that has a large advantage, it will get a large weight and contribute more to
the policy gradient. For a state-action pair that has a small or negative advantage, it will contribute
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less to the policy gradient. Finally, the overall policy objective for ExBC is

L(θ) = λ E
s∼D
â∼πθ

[
α log πθ(â|s)−

1

K
topK

(
{Qϕj

(s, â)}Nj=1

)]
− (1− λ) E

s,a∼D
[ω(s, a) log πθ(a|s)] , â = πθ(s)

(17)

Different from ImBC in (6), here we map states to actions explicitly and assign different weights
learned from MIS in order to select highly advantageous state-action pairs and suppress less valuable
ones.

Figure 1: The effect of the topK loss. Minimum, top3 and average loss correspond to K=1,3 and N where N
is set to be 10. Shadow area means the variance of the normalized reward.

5. Experiments

We evaluate our proposed approaches against prior approaches on the D4RL benchmark (Fu et al.,
2020), with various continuous environments. Following previous publications, we use the normal-
ized average reward as the evaluation metric. λ is chosen as 0.5 and the ensemble size as 10. The
results are obtained from ten different seeds with two million training time steps.

Table 2: Comparison of our methods with baselines for Maze2D, ’-’ means no results reported in that publi-
cation.

Task Name QDT ROMI-BCQ SfBC OptiDICE ImBC ExBC

maze2d-large-v1 35.0 ± 24.2 83.1 ± 22.1 74.4 ± 1.7 155.7 191.6± 32.8 162.5 ± 11.2
maze2d-medium-v1 10.0 ± 4.7 82.4 ± 15.2 73.8 ± 2.9 145.2 176.1± 14.3 152.3 ± 10.4
maze2d-umaze-v1 54.2 ± 9.5 139.5 ± 3.6 73.9± 6.6 111.0 84.4 ± 19.2 117.6 ± 8.4
maze2d-large-dense-v1 64.5 ± 6.6 124.0 ± 1.3 - - 135.8± 24.3 128.6 ± 14.2
maze2d-medium-dense-v1 40.5 ± 9.4 102.6± 32.4 - - 132.3± 12.4 104.3 ± 11.2
maze2d-umaze-dense-v1 58.7 ± 1.9 98.3 ± 2.5 - - 110.4± 13.2 102.9 ± 10.4

5.1. Performance on the MuJoCo dataset

The MuJoCo dataset of D4RL contains three environments: halfcheetah, hopper and walker2d.
Each environment includes expert, medium-expert, medium-replay, medium and random domains.
In particular, the expert dataset contains samples from a fully trained online SAC policy (Haarnoja
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et al., 2018a). The medium data contains samples generated from the early-stopping SAC policy
with samples collected before the policy converges. The medium-expert domain means mixing
equal amounts of samples generated from the medium and expert policy. The medium-replay do-
main contains samples from the replay buffer when the policy reaches medium level. The random
domain contains samples from a random policy. Each dataset contains 1M to 2M samples and each
sample includes state, action, reward, next state and terminal signal.

Figure 2: The impact of MIS (M=10,20) in comparison to single importance sampling (M=1) on the hetero-
geneous data Maze2D.

Baselines. We compare our approach with the following baselines: EDAC (An et al., 2021),
which achieved the SOTA performance on the D4RL locomotion dataset and belongs to the max-
imizing Q-Learning methods. It adopts an ensemble-diversified actor-critic algorithm to minimize
the pairwise alignment (cosine distance) of the gradients with regard to actions, thus reducing the
ensemble size of the Q functions. The BC method IQL (Kostrikov et al., 2022) uses a state value
function and a Q-value function to learn the advantage for each state-action pair. It avoids querying
OOD actions and extracts the target policy via advantage-weighted behavior cloning. SPOT (Wu
et al., 2022) is a method that combines maximizing Q-Learning and VAEs to model the behavior
policy by latent variables. ATAC (Cheng et al., 2022) treats the target policy and behavior policy as
two players of a Stackelberg game (Rajeswaran et al., 2020) to trade off between imitation learning
and offline RL.

The results of our approaches are shown in Table 1. We can see that ImBC outperforms existing
methods in most D4RL environments. Our ImBC surpasses the SOTA method EDAC consistently
in the halfcheetah and walker2d environments. The main difference to EDAC is that ImBC
has a BC item that consists of a GAN to constrain the generated actions implicitly. This GAN item
appropriately mitigates the extrapolation error of the Q function caused by unseen actions. Although
the GAN imposes restrictions on the generated actions, it still allows the agent to explore the envi-
ronment to some degree since the GAN only enforces the generated actions to be indistinguishable
from actions in the data instead of enforcing them to be pointwise similar. Further, our method
outperforms the pure advantage-weighted BC method IQL in all domains of MuJoCo by a large
margin. Compared with our method, IQL focuses on cloning the behavior of the offline data with-
out maximizing the Q-value in the policy optimization, making it difficult to improve substantially
over the behavior policy. In Figure 3, our results indicate that it is crucial to have the maximizing
Q-value item. Without this item the agent only imitates the data behavior and has no exploratory
ability. When the data is generated by a random policy, it would be difficult to improve the target
policy by imitating such a random behavior policy. Although alleviating the extrapolation error
from OOD actions is important, the agent still needs to explore the unknown environment in order
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to improve the target policy over the behavior policy, and maximizing Q-Learning methods help us
to do just that.

topK Loss. Figure 1 shows the results of our experiments with the topK loss. We compare the
topK loss with the minimum loss for walker2d with ensemble size N = 10. From Figure 1, the
topK loss performs better than the minimum loss. The interpretation is that when the ensemble size
N is large, the minimum loss makes the gradients sparse as most Q networks cannot be optimized,
while the topK loss can alleviate this adverse effect. We also tried the average loss, i.e. using the
average of {Qϕj

}Nj=1 as the loss. In Figure 1, we can see that the corresponding performance is even
worse than for the minimum loss despite having smallest variance. The average loss optimizes not
only the lower bound but also the upper bound of the N Q-values, which contradicts the pessimism
paradigm. Therefore, it is necessary to trade off the average and the minimum loss, which is what
our topK loss does.

Figure 3: The impact of the BC item and the maxQ item on the policy loss.

5.2. Performance on Maze2D

We evaluate our methods on the navigation task Maze2D (Fu et al., 2020) which is different from
the MuJoCo task. Maze2D requires moving a force-actuated ball to a target goal along a certain path
from a random starting point. This task mainly tests the agent to stitch together different trajectories
from offline data to find the best path to the goal. Since the trajectories were generated by policies
of different optimization levels, this makes the data heterogeneous. There are three layouts (umaze,
medium, large) in this dataset, with increasing complexity. The agent needs to make full use of
expert trajectories while leveraging suboptimal trajectories selectively. Our results are shown in
Table 2. We compared our method with SfBC (Chen et al., 2023), ROMI-BCQ (Wang et al., 2021),
QDT (Yamagata et al., 2022) and OptiDICE (Lee et al., 2021), which represent the latest algorithms
for the Maze2D data. The Maze2D data is mainly used to evaluate the ExBC with MIS which is
designed specifically for heterogeneous data. It is worth noting that our ExBC approach can be
seen as the MIS-version of OptiDICE; OptiDICE learns the weight for each state-action pair by
single importance sampling while ExBC learns the weight by MIS. From Table 2, we can see that
ExBC outperforms OptiDICE in all three layouts, which demonstrates the effectiveness of MIS. MIS
overcomes the heterogeneity of the data and composes different trajectories to learn the advantage
weight better. Although ExBC outperforms the baselines, we can also see its inferiority to the ImBC
approach. The potential interpretation is that ExBC limits the policy by mapping states to actions
directly, causing the learned policy to be highly conservative, i.e. strictly imitating the behavior of
the offline data. However, the constraint of ImBC in terms of GANs is more flexible and allows the
agent to explore the action space better than ExBC. This is because based on the same state s, the
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GAN only guarantees that â and a are distributionally indistinguishable for the discriminator, which
is less restrictive than the direct mapping in ExBC that forces â to be close to a. The performance
gap of ImBC/ExBC indicates the importance of adjusting the strength of BC, i.e. the strength of
exploitation vs exploration.

Multiple Importance Sampling. We compare MIS with single importance sampling for the
heterogeneous dataset Maze2D. We set the number of distributions M to 1, 10 and 20, respectively.
From Figure 2, the overall variance of the normalized reward of MIS is much smaller than that of
single importance sampling, which demonstrates that MIS can stabilize the reward curve. Simulta-
neously, we can see that MIS outperforms single importance sampling slightly in the three layouts
of Maze2D, which verifies our conjecture that MIS adapts to heterogeneous data better than single
importance sampling. It is worth noting that although the number of parameters of MIS is N times
as large as that of single importance sampling, their training time is roughly the same, because we
combine multiple neural networks (NNs) into a single big neural network. In ensemble NNs, there is
no for-loop to compute each Q-value. For a plain NN, the shape of the weight matrix is (input dim,
output dim). For ensemble NNs, the shape is (ensemble size, input dim, output dim), which can be
seen as a larger NN that has a three-dimensional input. The 3D matrix multiplication can be done
with operators like torch.einsum. For both M = 1 and M = 10, the training takes 9 to 10
hours on a Tesla V100-SXM2 GPU card for the halfcheetah-medium-expert environment
based on 2M training steps.

5.3. Ablation Experiments

We investigate how the BC item and maximizing Q-Learning (maxQ) item of the policy loss affect
the performance. Figure 3 shows the results of our approach with and without the BC item in (6).
When λ = 1, the algorithm degrades to the pure maximizing Q-Learning method. When λ = 0, the
algorithm degrades to the pure BC method. From Figure 3 we see that maxQ+GAN outperforms
maxQ. This shows that the BC item is crucial and verifies our conjecture that the BC item helps to
mitigate the extrapolation error. As is shown by the blue curve of Figure 3, when there is only a
BC item, the normalized reward curve decreases severely. It indicates that maximizing Q-Learning
is a key item in the policy objective. Because pure BC impedes the agent to explore new actions,
resulting in the learned policy to have similar performance to the behavior policy. After combining
the maxQ item and BC item implemented by a GAN (λ = 0.5), the policy achieves remarkable
performance gains. Note that maxQ and BC represent exploration and exploitation of the agent,
respectively. The ablation results demonstrate the importance of unifying maxQ and BC to tackle
the exploration and exploitation dilemma.

6. Conclusion

We proposed implicit and explicit constraints by combining the maximizing Q-Learning approach
with GANs or advantage-weighted regression as a trade-off between exploitation and exploration.
For the implicit constraint, we treat the policy as the generator of the GAN and use a discriminator
to distinguish the actions of the data and the policy-generated actions. After the adversarial training
reaches an equilibrium, the policy can generate actions indistinguishable from the actions of the
data. We then unified the action space of the target policy and the offline data in an implicit way.
The policy objective is the sum of the GAN loss and the maximizing Q-Learning loss where the
Q-value is penalized by the uncertainty of the state-action pair. For the explicit constraint, we
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proposed to learn the advantage weight of each state-action pair by MIS. Then the weight is used
to suppress or make full use of the action. Compared with previously suggested methods, the
explicit unification approach achieves excellent performance and stabilizes the reward curve on the
heterogeneous navigation data Maze2D, which is specifically designed to test the ability of stitching
together multi-modal trajectories. Besides the implicit and explicit unifications, we also proposed
the topK loss for policy optimization. Compared with the minimum and the average of the ensemble
Q-values, we find that the topK loss can stabilize the reward curve and improve the performance.
We have carried out extensive experiments on the D4RL data, the results show that ImBC exceeds
previous SOTA approach and ExBC stabilizes the reward curves effectively.
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