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Abstract
Estimating the structure of directed acyclic graphs (DAGs) from observational data is challeng-
ing due to the super-exponential growth of the search space with the number of nodes. Previous
research primarily focuses on identifying a unique DAG under specific model constraints in lin-
ear or nonlinear scenarios. However, real-world scenarios often involve causal mechanisms with
a mixture of linear and nonlinear characteristics, which has received limited attention in existing
literature. Due to unidentifiability, existing algorithms relying on fully identifiable conditions may
produce erroneous results. Although traditional methods like the PC algorithm can be employed
to uncover such graphs, they typically yield only a Markov equivalence class. This paper intro-
duces a novel causal discovery approach that extends beyond the Markov equivalence class, aiming
to uncover as many edge directions as possible when the causal graph is not fully identifiable.
Our approach exploits the second derivative of the log-likelihood in observational data, harness-
ing scalable machine learning approaches to approximate the score function. Overall, our approach
demonstrates competitive accuracy comparable to current state-of-the-art techniques while offering
a significant improvement in computational speed.
Keywords: Causal Discovery; Additive Noise Models; Directed Acyclic Graph; Score Matching;
Identifiability; Scalability

1. Introduction

Discovering the causal relationships among concerned events is a fundamental task and contributes
across diverse scientific disciplines including finance, genetics, neuroscience, and artificial intel-
ligence (Pearl et al., 2000). To achieve this, the golden rule is conducting randomized controlled
trials (RCTs), which, while highly effective, also pose practical challenges arising from their sub-
stantial costs and ethical considerations. To address this issue, in this work, we focus on estimating
the causal relationships from purely observational data, i.e., identifying the structure of the causal
directed acyclic graph (DAG) that underlies a given dataset.
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In essence, uncovering causality from observational data presents a challenging task and it is
ill-posed: multiple generative models featuring diverse causal structures can yield the same data
distribution. Consequently, traditional solutions such as the PC algorithm (Spirtes et al., 2000), do
not yield a unique DAG but rather a Markov equivalence class. To make the problem well-posed,
additional assumptions in the generative process become essential. These restricted models behave
differently and typically lead to a setting where every DAG defines a unique model for observational
data. This has been demonstrated, for instance, in the linear non-gaussian acyclic model (LiNGAM)
(Shimizu et al., 2006), linear additive noise models (ANMs) with known or equal variance (Peters
and Bühlmann, 2014; Ghoshal and Honorio, 2018; Loh and Bühlmann, 2014), nonlinear ANMs
(Hoyer et al., 2008; Peters et al., 2014), and post-nonlinear models (Zhang and Hyvarinen, 2012).
Although these studies have demonstrated full identifiability under certain restrictions, they typi-
cally constrain the model to a single scenario, such as nonlinear or linear. Yet, real-world scenarios
often involve causal mechanisms with a mixture of linear and nonlinear characteristics. Apply-
ing the above mentioned linear or nonlinear ANMs to such data may produce erroneous results
due to model misspecification. Although classic methods like the PC algorithm can be employed
to uncover such graphs, they typically yield only a Markov equivalence class, leaving many edge
orientations undetermined.

In this paper, we consider the more practical scenario with mixed linear and nonlinear ANMs,
and propose a novel causal discovery approach that extends beyond the Markov equivalence class,
aiming to uncover as many edge directions as possible when the causal graph is not fully identi-
fiable. This is achieved by exploiting the second derivative of the log-likelihood in observational
data and harnessing scalable machine learning approaches to approximate the score function. We
demonstrate that in a causal system involving a combination of linear and nonlinear ANMs, it is
possible to identify most directions by analyzing the associated observational score. In addition,
our approach enables parallel processing to enhance the overall scalability.

Our contributions can be summarised as follows:

• We examine a more practical setting involving data from an underlying causal model with
mixed linear and nonlinear causal mechanisms. In this context, our approach identifies more
directions compared to traditional algorithms like the PC algorithm, which is limited to iden-
tifying up to the Markov Equivalence class.

• We design an algorithm for inferring the causal graph underlying an ANM comprising both
non-identifiable and identifiable components. By eliminating common hypotheses (e.g. equal
variance) assumed in the identifiable linear Gaussian additive model, our approach broadens
the scope of applicability for causal discovery. This provides a comparable method to current
state-of-the-art techniques with theoretical guarantees, especially in critical settings where
validating the variances of Gaussian noise assumption is challenging.

• Our algorithm avoids the need for exhaustive combinatorial searches and mitigates concerns
related to multiple testing. Simultaneously, it facilitates parallel processing effectively reduc-
ing the computational complexity with a larger number of variables.

2. Related Work

In traditional causality research, algorithms for discovering causal relationships are categorized into
three classes (Glymour et al., 2019; Schölkopf et al., 2021). Constraint-based approaches, exem-
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plified by PC (Spirtes and Glymour, 1991), fast causal inference (FCI) (Spirtes, 2001), and SGS
(Spirtes et al., 2000), evaluate the conditional independence between variables and search for graph
structures that satisfy these conditions under a faithfulness assumption. However, these approaches
do not produce a unique DAG but rather an equivalence class that may include more than one DAG.
The main bottleneck of these approaches lies in the difficulty of conditional independence testing
(Shah and Peters, 2020). Score-based methods define a suitable score function and search for the
graph that best fits the data within an extensive graph space. Greedy approaches like greedy equiv-
alence search (GES) (Chickering, 2002; Huang et al., 2018) are employed for this exploration, but
the scalability is limited due to the super-exponential growth of the space with the number of nodes.
The inference of causal relations from observational data typically encounters non-identifiability
issues, necessitating additional assumptions.

Causal discovery for non-linear ANMs. Hence, previous studies have investigated identifi-
able classes of DAG models by placing constraints on distributions. Models are identifiable when
link functions are assumed to be twice continuously differentiable, and each variable is determined
by a nonlinear function of its parents and an error term (Hoyer et al., 2008; Mooij et al., 2009;
Peters et al., 2012). The causal additive model (CAM) (Bühlmann et al., 2014) assumes an ad-
ditive structure for the link functions. They estimate a topological order by greedily maximizing
data likelihood and subsequently pruning the DAG using sparse regression techniques. Recently,
Rolland et al. (2022) introduced an order-based approach using score matching to identify causal
graph leaves with linear time complexity in the number of nodes. However, the final graph is ob-
tained through classical pruning techniques used in CAM with high time complexity. Building on
this, Montagna et al. (2023b) eliminates the time-consuming pruning step. Yet, both methods prove
ineffective in identifying the causal graph when assuming a linear additive model with Gaussian
noise.

Causal discovery for linear ANMs. Linear non-Gaussian ANMs are proven identifiable,
where each variable is determined by a linear function of its parents plus an independent error
term (Shimizu et al., 2006; Zhang and Hyvarinen, 2012). Specifically, models are identifiable if
one of its parents or error terms belongs to a set of some non-Gaussian distributions. In terms of
linear Gaussian additive noise models, Peters and Bühlmann (2014) proves its identifiability under
equal or unknown error variances. Recent work by Ghoshal and Honorio (2018) demonstrates the
identifiability of linear Gaussian Structural Equation Models (SEMs) with unknown heterogeneous
error variances under certain assumptions. However, assumptions about error variances may be un-
realistic in real-world data, and the assumptions about all non-Gaussian error distributions and all
nonlinear dependency functions might be similarly impractical.

Score matching in causal discovery. To approximate the score of the data distribution, Rolland
et al. (2022) extends recent work on score matching and density gradient estimation over an RBF
kernel (Li and Turner, 2017). The score function is generally learned by fitting a neural network that
minimizes the empirical Fisher divergence (Hyvärinen and Dayan, 2005; Song and Ermon, 2019;
Zheng et al., 2023). While effective, such a method is computationally expensive and requires tuning
multiple training parameters. Similar to Rolland et al. (2022), we choose to instead minimize the
kernelized Stein discrepancy which provides a closed-form solution and allows fast estimation at all
observations. This method performs similarly to score matching in practice while being significantly
faster. The asymptotic consistency of the Stein gradient estimator and its relation to score matching
was thoroughly analyzed in Barp et al. (2019).
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The remainder of the paper is organized as follows: Section 3 introduces notations and defines
the problem. Section 4 presents LNMIX (Linear and Nonlinear Mixture model), an algorithm for
causal graph inference based on the model introduced in Section 3. Section 5 details experimental
performance against benchmarks, and Section 6 concludes the work and future directions.

3. Preliminaries

In this section, we introduce our notations and formalize the problem of learning a mixture of linear
and nonlinear SEMs from observational data.

Let G = (V,E) represent a DAG, consisting of a set of vertices V = {1, . . . , d} and a set
of directed edges E ∈ V × V. (i, j) ∈ E indicates that there exists a directed edge from vertex
i to vertex j, i.e. i → j. In G, we use PAi and CHi to denote the set of parents and the set
of children of the i-th vertex, respectively. The spouse set of the i-th vertex is defined as SPi =
{k ∈ PAj | j ∈ CHi}. The Markov blanket of the i-th vertex is defined as MB(i) = PAi∪CHi∪SPi.
Let Gm represent a moral graph of G, including undirected edges connecting variables if there exists
a directed edge between them, and if they are parents of the same node in G. In other words, the
moral graph of a DAG takes the form of an undirected graph where each node is now linked to its
Markov Blanket. A vertex i ∈ V is a terminal vertex in G if CHi = ∅. A vertex j is a descendant
of i if there exists a directed path from i to j in G and the set of descendants of the i-th vertex
is denoted by DEi. For each i ∈ V, there is a random variable Xi ∈ R and X ∈ Rn×d is a
data matrix consisting of n i.i.d. observations of the random vector X = (X1, . . . , Xd). For any
set Z ⊂ V, we denote XZ = {Xi : i ∈ Z}. For any matrix M, we denote its support set as

Supp(M) = {(i, j) ∈ V ×V |Mi,j ̸= 0}. Additionally, we denote the set −i def
= V\ {i}.

Model definition. The random vector X follows an ANM and the SEM is as follows

Xi = fi(XPAi) +Ni ∀i ∈ V, (1)

where noise variables Ni ∼ N (0, σ2
i ) , and Ni ⊥⊥ X1, . . . , Xi−1. The noise variables are indepen-

dent such that the joint distribution is p(N) =
∏d

i=1 pi(Ni). The link function fi : R|PAi| → R can
be either a linear or nonlinear function of the variables in its parent set. If the link function fi is
nonlinear, we assume that it is continuously twice differentiable. Figure 1 illustrates an example of
the model involving a combination of linear and nonlinear additive Gaussian noise SEMs.

The work relies on several fundamental assumptions: Causal Sufficiency, the Causal Markov
Condition, and Faithfulness. Causal Sufficiency implies that all confounders of the relevant vari-
ables are observed in the given dataset. The Causal Markov Condition states that a variable X is
independent of every other variable (except X’s effects) conditional on all its direct causes. Let P
represent the probability distribution over the vertices in V generated by the causal structure repre-
sented by G. G and P satisfy the faithfulness if and only if every conditional independence relation
true in P is entailed by the Causal Markov Condition applied to G.

Given the SEM, the joint distribution p(x) is fully determined and factorized according to the
DAG structure G as follows:

p(x) =
d∏

i=1

pi(xi |xPAi), (2)

where pi is the probability density function of Xi.
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X1

X2

X3 X4

X5

X1 = f1(N1)
def
= N1,

X2 = f2(X1, N2)
def
= sin(4X1) +N2,

X3 = f3(X2, N3)
def
= −1.1X2 +N3,

X4 = f4(X2, X5, N4)
def
= 0.7X2 + 1.4X5 +N4,

X5 = f5(X2, N5)
def
= 0.2X2

3 +N5.

Figure 1: An illustrative example of the mixture model comprises a combination of linear and
nonlinear additive Gaussian noise models. The equations represent the structural equation model
governing the data, and the ground truth Directed Acyclic Graph (DAG) is depicted on the left.
Nodes represented in blue denote a causal mechanism where these nodes are linear functions of
their respective parent nodes. In contrast, unfilled nodes indicate a causal mechanism characterized
by nonlinear functions concerning their parent nodes.

4. Causal discovery via Jacobian of the score function

In this section, we demonstrate the process of recovering the causal graph from the score function,
considering a combination of linear and nonlinear causal mechanisms defined in Equation (1). The
proposed methodology comprises three steps. It first identifies the moral graph from observational
data. Then the algorithm addresses the orientation of edges in the moral graph, distinguishing
between parents and children in the context of linear and nonlinear ANMs. Finally, V-structures are
identified within fully connected triangles.

4.1. Identifying the Moral Graph

According to the model defined in Equation (1), the log-likelihood of the joint distribution function
is as follows:

log p(x) = log
d∏

i=1

pi(xi |xPAi) =
d∑

i=1

log pi(xi |xPAi). (3)

The i-th component of the score function s(x) ≡ ∇x log p(x) with respect to the data point x is

si(x) =
∂

∂xi

log pi(xi |xPAi) +
∑

j∈CHi

log pj(xj |xPAj )


=

∂

∂xi
log pi(xi |xPAi) +

∑
j∈CHi

∂fj(xPAj )

∂xi

∂

∂xj
log pj(xj |xPAj ).

(4)

With conditioning on parents, the marginal of Xi is equivalent to the distribution of Ni shifted
by the value of the mechanism fi(xPAi). Alternatively, pi(xi |xPAi) can be replaced by p(ni =
xi − fi(xPAi) |xPAi), which allows to rewrite the score function as:
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si(x) =
∂

∂ni
log pi(ni) +

∑
j∈CHi

∂fj(xPAj )

∂xi

∂

∂nj
log pj(nj). (5)

When Ni ∼ N (0, σ2
i ) with a probability density function of p(ni) = 1

σ
√
2π
e−

1
2(

ni
σ )

2

, the i-th
component of the score function s(x) ≡ ∇ log p(x) is:

si(x) = −
∂

∂ni

1

2

(
ni

σi

)2

+
∑

j∈CHi

∂fj(xPAj )

∂xi

∂

∂nj

1

2

(
nj

σj

)2

= −xi − fi(xPAi)

σ2
i

+
∑

j∈CHi

∂fj(xPAj )

∂xi

xj − fj(xPAj )

σ2
j

.

(6)

An observation from Equation (6) is that if node j is part of the Markov blanket of node i, then
∂si(x)
∂xj

̸= 0. The following lemma demonstrates that this condition offers a reliable way to identify
the moral graph using the Jacobian of the score function.

Lemma 1. Let p be the probability density function of a random variable X defined via an additive
Gaussian noise model, and let s(x) ≡ ∇ log p(x) be the associated score function. Then, ∀j ∈
{1, . . . , d},

∂si(x)

∂xj
= 0 ⇐⇒ j /∈ MB(i),

and the Markov Blanket is unique under the faithfulness assumption.

Detailed proof is given in Appendix A. By employing Lemma 1, we can derive the moral graph
from observational data. To clarify the derivation of the moral graph, if the Jacobian of the score
between two variables is zero, there is no edge between them, and vice versa. Therefore, this method
only requires computing the support of the Jacobian of the score function, i.e. Supp(∂

2 log p(x)
∂xixj

). This
eliminates the need for the extensive conditional independence testing involved in the well-known
PC algorithm (Spirtes and Glymour, 1991). As a result, this substantially speeds up the computation
process.

4.2. Edge Orientation from the Jacobian of the Score Function

The method outlined above determines the moral graph under observational data and returns a set
of edges without identifying the parents, children, or spouses. This graph closely resembles the
original causal graph as it contains all arcs as undirected edges, and additionally links spouses
together. The subsequent step is to transform it into a partially oriented causal DAG by performing
arc orientation and removing spouse links.

To convert the moral graph into a partially oriented causal DAG based on observational data
from mixed linear and nonlinear models, we introduce the following lemmas to identify the orien-
tation of undirected edges within the moral graph.

Lemma 2. (Partially linear additive Gaussian noise model) Let p be the joint probability density
function of random variables X ∈ Rd defined via a model involving a combination of linear and
nonlinear additive Gaussian noise ANMs. Suppose Xj’s causal model fj is nonlinear, and all
children of node j have linear causal models. Then the following three statements hold:

61242



CAUSAL DISCOVERY WITH MIXED LINEAR AND NONLINEAR ADDITIVE NOISE MODELS

(i) ∀xj , ∂sj(x)
∂xj

= c, with c ∈ R independent of x, and hence, Varx[
∂sj(x)
∂xj

] = 0.

(ii) ∀k ∈ PAj , sj(x) depends on xk, and hence, Varx[
∂sj(x)
∂xk

] ̸= 0.

(iii) ∀k ∈ CHj ,
∂sj(x)
∂xk

= c, with c ∈ R independent of x, and hence, Varx[
∂sj(x)
∂xk

] = 0.

The detailed proof of Lemma 2 is available in Appendix B. Lemma 2 establishes the feasibility
of distinguishing between parents and children in a model that includes a mixture of linear SEMs and
nonlinear SEMs. According to the lemma, when the variance of the Jacobian of the score function
in the diagonal term is a constant, non-constant variances of the Jacobian for the off-diagonal entries
indicate corresponding parents of the node. Conversely, if the variance of the Jacobian of the score
function is constant, the node must be a child. Examining the structure of the variance of the
Jacobian of score function allows us to identify some directions when a mixture of linear SEMs and
nonlinear SEMs is present in the local graph. Furthermore, in instances where local causal structure
involves only nonlinear functions, the Jacobian of the score function remains a valuable tool for
identifying the nonlinear terminal nodes along with their associated parents, as demonstrated in
Lemma 3 and Lemma 4.

Lemma 3. (Adopted from Rolland et al. (2022)) Let p be the probability density function of a ran-
dom variable X defined via a nonlinear additive Gaussian noise model, and let s(x) = ∇x log p(x)
be the associated score function. Then, ∀j ∈ {1, . . . , d}, we have:

(i) j is a leaf⇔ ∀x, ∂sj(x)
∂xj

= c, with c ∈ R independent of x, i.e., Varx[
∂sj(x)
∂xj

] = 0.

(ii) If j is a leaf, i is a parent of j⇔ sj(x) depends on xi, i.e., Varx[
∂sj(x)
∂xi

] ̸= 0.

Lemma 4. (Adopted from Montagna et al. (2023b)) Let p be the probability density function of a
random variable X defined via a nonlinear additive Gaussian noise model. Let s(x) = ∇x log p(x)
be the associated score function. Then, ∀j ∈ {1, . . . , d}, for a given leaf l, we have,

E
[∣∣∣∣∂sl(x)∂xj

∣∣∣∣] ̸= 0 ⇐⇒ j ∈ PAl.

Lemma 3 illustrates that in nonlinear additive Gaussian noise models, only leaf nodes exhibit
the characteristic of having a constant diagonal element in the score’s Jacobian. This feature offers
a way to identify a leaf in the causal graph by utilizing knowledge of the variance of the score’s
Jacobian diagonal elements. The second criterion in Lemma 3 serves as a tool to identify the parents
of these leaf nodes, and Lemma 4 presents a theoretically equivalent but more practically robust
formulation. Relying on the sample mean of the absolute value of the score’s Jacobian entries
is a more robust practical choice for identifying the parents of leaf nodes. Estimating a lower
moment results in a lower error, as estimating variance necessitates estimating the mean first, and
any statistical error in the mean estimator affects the variance estimator. Thus, it becomes the
preferable choice. By iteratively applying this method and removing the identified leaves, we can
identify the directions of nonlinear components in the graph.

Definition 1. (Linear block). Let p be the joint probability density function of a random variable X
defined via a model involving a combination of linear and nonlinear additive Gaussian noise SEMs.
The linear block is defined as follows:
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(i) j is a root vertex and it has only one child k and Xk is a linear function of Xj plus an
independent error term.

(ii) j is a terminal vertex and it has only one parent k and Xj a linear function of Xk plus an
independent error term.

(iii) vertexes {i, j, k} form a V-structure and there exists only one node l in G connected to one of
the vertexes {i, j, k} e.g., xj and xl is a linear function of xj plus an independent error term
or xj is a linear function of xl plus an independent error term.

Regarding the criteria (i) and (ii) in the definition 1, we can identify the vertexes using the
score’s Jacobian. In the score’s Jacobian, ∂sj(x)

∂xi
̸= 0 for i ∈ {j, k}. ∀x, ∂sj(x)

∂xj
= c and ∂sj(x)

∂xk
= c,

with c ∈ R independent of x, and thus, Varx[
∂sj(x)
∂xj

] = Varx[
∂sj(x)
∂xk

] = 0. Regarding criterion
(iii) in definition 1, we can identify them again using the score’s Jacobian. In the fully connected
triangle in the moral graph, two of the nodes with Varx[

∂sj(x)
∂xj

] = Varx[
∂sj(x)
∂xi

] = Varx[
∂sj(x)
∂xk

] =

Varx[
∂sj(x)
∂xl

] = 0. The linear blocks are the ones where we cannot identify the directions due to
non-identifiability in the linear Gaussian additive model. Therefore, it is necessary to remove them
to further orient more directions. The terminal vertices and linear blocks are removed at the end of
each iteration. In the next iteration, it will orient more edges involving the combination of linear
and nonlinear causal mechanisms with Lemma 2. Removing the nonlinear terminal vertexes results
in the children becoming purely linear and satisfying the condition in Lemma 2. Additionally,
removing the terminal vertexes or roots does not affect the calculation of the score’s Jacobian. By
repeating this process, we can identify most of the directions in the graph.

4.3. Identifying V-Structure from the Jacobian of the Score function

A V-Structure represents a local probabilistic model involving three variables i, j, and k in the form
of i→ k ← j. In this structure, vertices i and j are considered spouses as they share a common child
k. Within the moral graph, only triangles can hide spouse links or V-structure. Therefore, assuming
the accuracy of the moral graph identification in Section 4.1, the search can be focused solely on
fully connected triangles, i.e., cliques of three nodes, by leveraging the following definition.

Definition 2. (Collider set) Suppose that Gm = (V,E) is the moral graph of the DAG representing
the causal structure of a faithful dataset. Let Tri(i − j) represent the set of vertices forming a
triangle with vertices i and j, where i, j ∈ V and (i, j) ∈ E . We use Tri(Xi −Xj) to denote the
corresponding variables for Tri(i− j).

Tri(Xi −Xj) = {Xk | k ∈ V, (i, k) ∈ E, (j, k) ∈ E}.
A set of vertices Z ⊆ Tri(i− j) then has the Collider Set property for the pair (i, j) if it is the

largest set that fulfills

∃S ⊆ V\{i, j}\Z : (Xi⊥⊥ Xj |XS),

and
∀Zi ∈ Z : (Xi ⊥̸⊥ Xj |XS∪{Zi}).

The set Z is then a collider set for vertex pair i and j, indicating that the vertices in set Z are
common children of the vertex pair i and j.
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Lemma 5. Let p be the joint probability density function of random variables X ∈ Rd. Consider
the local distribution of Xi, Xj , and XZ. Assume it is part of a larger network that {i, j,Z} ⊆ V,
we have

Xi ⊥⊥ Xj |XZ ⇐⇒ ∂ log p(xi, xj , xZ)

∂xi∂xj
= 0. (7)

The detailed proof of Lemma 5 is available in Appendix C. Utilizing Lemma 5, we can employ
the Jacobian of the core function to identify collider sets between each pair of nodes and remove
spouse links accordingly in the moral graph. Two considerations must be taken into account during
the search for collider sets. First, there might be other active paths between vertices i and j that do
not pass through any node of Tri(i − j), leading to a dependency between Xi and Xj . Second,
the included nodes should not contain any descendant of potential colliders. Otherwise, this would
result in a dependency between Xi and Xj , causing the score’s Jacobian to be non-zero even when
excluding the collider. Given these considerations, we propose Algorithm 5 to identify the collider
sets.

Assuming consistent estimation of the Jacobian of score functions, Algorithm 5 correctly iden-
tifies all V-structures and all spouse links for faithful and causally sufficient datasets in the large
sample limit.

A detailed proof is given in Appendix E. Instead of searching for the separating set as that
in Pellet and Elisseeff (2008), we directly search for the collider set. Assuming the moral graph
has been correctly estimated, only triangles can involve spouse links and V-structures. Hence,
Algorithm 5 only iterates through fully connected triangles. For instance, considering a link i − j
within these triangles, the collider set can be inferred by including nodes on a path with length
greater than 2 between vertices i and j and excluding nodes in Tri(i − j) and their descendants
during the calculation of the score’s Jacobian of Xi and Xj . If it is not a spouse link, the collider set
Cij remains as its default value, null. Otherwise, Cij becomes the collider set for vertrices i and j.
The search process offers three main benefits. Firstly, it only searches the fully connected triangles
in the moral graph. Secondly, the procedure can be parallelized by allocating triangles into multiple
cores in a processor or set of processors. Lastly, for each connected pair Xi − Xj in a triangle,
decisions regarding potential spouse links and arc orientation are made simultaneously, resulting in
a more efficient process. A detailed example elucidating the identification of a collider set in Figure
4 is available in Appendix D.

After orienting all directions that can be identified with the above procedure, Meek rules (Meek,
2013) are then applied as the final step to further complete the edge orientation. The overall algo-
rithm of the proposed methodology is provided in Appendix G.

4.4. Estimation of Score’s Jacobian

In this section, we discuss the estimation for the score function s(x) ≡ ∇logp(x) and the Jacobian
of the score function ∂ log p(x)

∂xixj
of distribution with density p(x) given an i.i.d. sample {xk}k=1,...,n.

Our approach aligns with methods proposed in Rolland et al. (2022) and Li and Turner (2017). First,
we estimate the first-order derivative of log p(x) using Stein’s Identity (Stein, 1972):

E
[
h(x)∇ log p(x)T +∇h(x)

]
= 0, (8)

where h : Rd → Rd′ is any test function such that limx→∞h(x)p(x) = 0.
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Following Li and Turner (2017), we present the estimator for the point-wise first-order par-
tial derivative corresponding to Equation (8), denoted as G ≡ (∇ log p(x1), . . . ,∇ log p(xn))T ∈
Rn×d. The estimator of G is:

Ĝ = −(K+ ηI)−1 ⟨∇,K⟩ ,

where H = (h(x1), . . . ,h(xd′)) ∈ Rd′×n,∇h = 1
n

∑n
k=1∇h(xk), K = HTH, Kij = κ(xi,xj) =

h(xi)Th(xj), ⟨∇,K⟩ = nHT∇h, ⟨∇,K⟩ij =
∑n

k=1∇xk
j
κ(xi,xj), where κ(·, ·) can be any ker-

nel satisfying Stein’s identity and η ≥ 0 is a regularization parameter.
Once the first-order derivative∇ log p(x) is estimated, we proceed to estimate the Hessian using

the second-order Stein’s identity:

E
[
h(x)∇2 log p(x)T

]
= E

[
∇2h(x)− h(x)∇ log p(x)∇ log p(x)T

]
. (9)

Following Rolland et al. (2022), we now present the estimator for the point-wise second-order
partial derivative corresponding to Equation (9), denoted as J ≡ (∇2 log p(x1), . . . ,∇2 log p(xn))T ∈
Rd×n×d. The estimator of J is:

Ĵ = −ĜĜT + (K+ ηI)−1
〈
∇2,K

〉
,

where H = (h(x1), . . . ,h(xn)) ∈ Rd′×n, ∇2h = 1
n

∑n
k=1∇2h(xk), (∇2h(x))ij =

∂2hi(x)
∂x2

j
, K =

HTH, Kij = κ(xi,xj) = h(xi)Th(xj),
〈
∇2,K

〉
= nHT∇h,

〈
∇2,K

〉
ij
=
∑n

k=1∇2
xk
j

∂2κ(xi,xj)

(∂xk
j )

2 ,

where κ(·, ·) can be any kernel satisfying Stein’s identity and η ≥ 0 is the regularization parameter.
Choice of Kernel Estimating the score’s Jacobian requires the selection of a kernel κ. The

Radial Basis Function (RBF) kernel, κs(x, y) = e−
∥x−y∥22

2ss , is commonly used, with the bandwidth
parameter s playing an important role.This bandwidth influences the smoothness of the kernel, de-
termining how rapidly it changes and controlling the range over which a data point affects others.
Typically, the median heuristic, i.e., the median of pairwise distances between vectors in X , is cho-
sen as the bandwidth (Garreau et al., 2017). However, to mitigate the influence of data variance,
we use the inverse of the standard deviation for each variable as its corresponding bandwidth. It’s
important to note that when using Algorithm 1 for causal discovery, the kernel lengthscale is re-
calculated each time nodes are removed from the data matrix. The regularization parameters are
set to 1e−6, and the coefficient c is chosen to be the value that induces a kernel matrix rank almost
equivalent to the number of samples.

Algorithm 1 Kernel computation in estimating the Jacobian of the score

Input: Observational data: X ∈ Rn×d , regularizer parameter η > 0, coefficient c
Output: Kernel matrix K ∈ Rn×n

1: for i = 1 to d do
2: s← c

std(X[:,i]) ▷ Compute local scale
3: local kernel← RBF(X[:, i]) with local scale s ▷ Compute local RBF kernel
4: K← K⊙ local kernel ▷ Element-wise multiplication
5: end for
6: return K
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Figure 2: SHD, Precision, Recall, F1 Score v.s. number of nodes d ∈ {10, 20, 50, 100} for different
methods on sparse ER2 (upper) and dense ER4 (lower) graphs. For higher values of d, some meth-
ods are missing as they were too much time expensive to run. Number of observations is 1000.

5. Experiments

Setup. We generate synthetic data from SEMs based on Equation (1), employing random DAGs
generated through the Erdős-Re̋nyi (ER) graphical model (Erdős et al., 1960). The number of nodes
d is selected from the set {10, 20, 50, 100}. Two scenarios are considered: sparse graphs ER2 and
dense graphs ER4, representing graphs with 2d and 4d directed edges, respectively. The choice of
the link function fi between linear and nonlinear components is made randomly with a probability
of 0.5 in the data-generating process. For linear components, edge weights in the generated DAG
follow a Uniform distribution U([−1.5,−0.5] , [0.5, 1.5]), and noises are simulated from N (0, σ2

i ),
where σ ∈ [0.2, 0.5]. Nonlinear components use link functions randomly chosen from sin, cos,
tanh, sigmoid, polynomial, and their combinations.

Methods Considered. We compare several methods for learning DAGs: (PC-KCI) PC algo-
rithm (Spirtes et al., 2000) with Kernel-based Conditional Independence test. (Zhang et al., 2012)
(PC-Fisherz) PC algorithm with Fisher-z conditional independence test (Pearson, 1913) (GES-
GS) Greedy Equivalence Search (GES) (Chickering, 2002) with Generalized Score (GS). (Huang
et al., 2018). (SCORE) Topological-based algorithm (Rolland et al., 2022) with CAM pruning
(Bühlmann et al., 2014). (NoTears) Gradient-based algorithm for linear data models with least-
squares loss (Zheng et al., 2018). (NoTears-MLP) Gradient-based algorithm using neural network
modeling for non-linear causal relationships (Zheng et al., 2020).

Results. We evaluate performance using Structural Hamming Distance (SHD), precision, recall,
F1 score (Figure 2), along with run time in seconds (Figure 3). The results are averaged over 10 trials
with different random seeds. As the number of variables increases, some methods experience failure
due to timeouts (>1 day) or memory issues. Comparative results with varying numbers of variables
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and a sample size of 1000 show that our approach, LNMIX, along with SCORE, consistently outper-
forms other methods. An illustrative example is provided in Figure 1, LNMIX successfully recovers
the ground truth DAG by leveraging the score’s Jacobian structure. In contrast, constraint-based,
score-based, and optimization-based methods only manage to recover up to their equivalence class.
LNMIX consistently performs better than SCORE across different numbers of variables in data
generated through both ER2 and ER4 graphs. Although the performance gap between LNMIX and
SCORE in ER2 diminishes compared to ER4, potentially due to the reduced chance of a mixture
model when fewer edges are presented. Furthermore, experimental results suggest some robustness
in SCORE, allowing it to handle linear nodes with children, contrary to theoretical expectations of a
zero variance in the score’s Jacobian for linear nodes with children. Nonetheless, LNMIX has a bet-
ter recall in both ER2 and ER4 graphs, which means that our algorithm is able to identify a greater
number of edges presented in the ground truth DAG. The robust performance of LNMIX not only
underscores the efficacy of our moral graph but also establishes a solid foundation for subsequent
steps.
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Figure 3: Run-time comparison on ER4.

The overall time complexity of our algorithm
is O(d2n3 + 32m(d + e)), considering the esti-
mation of the score’s Jacobian involving inverting
d2 kernel matrices of size n × n. Nonetheless,
the computation of the score’s Jacobian for each
node can be parallelized across multiple proces-
sors. This parallelization brings about a substantial
reduction in the overall processing time, making it
applicable even to larger graphs. The complexity
of iterating over all triangles is O(32m), where m
is the number of triangles in the moral graph and
the worst case time complexity for finding all paths
between two vertices isO(d+e) using Depth First
Search (DFS) traversal.

However, the search for v-structures hidden in these triangles can also be parallelized by allo-
cating triangles to multiple processors. Moreover, we orient most of the edges in section 4.2, and
thus make this more efficient. The constraint-based and score-based approaches raise an NP-hard
problem that the complexity of the PC algorithm and GES is exponential to the number of nodes.
Continuous-based algorithms NoTears and NoTears-MLP require less time than constraint-based
and search-based methods, but their performance degrades with an increasing number of nodes.
SCORE is a more scalable causal discovery approach, but its final complexity isO(dn3+dr(n, d))
due to the bottleneck pruning step where r(n, d) is the complexity of fitting a generalized additive
model using n data points in d dimensions and amounting to O(nd2) using Iteratively Reweighted
Least Squares (Minka, 2003).

6. Conclusion

In our study, we demonstrate the theoretical recovery of an accurate causal graph under an ANM
with Gaussian noise that incorporates both linear and nonlinear causal mechanisms from observa-
tional data. Our approach utilizes the score function’s Jacobian to initially identify the moral graph
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of variables and reveal the direction of a significant portion of edges. The methodology proves
effective in scenarios characterized by a mixture of linear and nonlinear components, as well as
involving purely nonlinear relationships. We also identify V-structures by examining the Jacobian
of the score on local distribution. However, scalability challenges arise, especially in dense graphs
with numerous spouse links. This issue is addressed by parallelizing the resolution of V-structures.
Our analysis resulted in an algorithm that significantly accelerates practical applications compared
to established causal discovery algorithms, maintaining a comparable level of accuracy. It’s impor-
tant to note, however, that our scalability experiments were limited to synthetic data, and our model
currently assumes additive noise. Consequently, we aim to broaden our methodology to include
input variables beyond our current model’s scope, emphasizing the exploration of nonparametric
models and addressing latent confounders.

Acknowledgments

This research was undertaken using the LIEF HPC-GPGPU Facility hosted at the University of
Melbourne. This Facility was established with the assistance of LIEF Grant LE170100200. WL
was supported by Melbourne Research Scholarship from the University of Melbourne. EG was
supported by an Australian Government Research Training Program (RTP) Scholarship. MG was
supported by ARC DE210101624. HB was supported by ARC FT190100374.

References

Lazar Atanackovic, Alexander Tong, Jason Hartford, Leo J Lee, Bo Wang, and Yoshua Bengio.
Dyngfn: Bayesian dynamic causal discovery using generative flow networks. arXiv preprint
arXiv:2302.04178, 2023.

Alessandro Barp, Francois-Xavier Briol, Andrew Duncan, Mark Girolami, and Lester Mackey. Min-
imum stein discrepancy estimators. Advances in Neural Information Processing Systems, 32,
2019.
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Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-
based neural dag learning. arXiv preprint arXiv:1906.02226, 2019.

Yingzhen Li and Richard E Turner. Gradient estimators for implicit models. arXiv preprint
arXiv:1705.07107, 2017.

Po-Ling Loh and Peter Bühlmann. High-dimensional learning of linear causal networks via inverse
covariance estimation. The Journal of Machine Learning Research, 15(1):3065–3105, 2014.

Christopher Meek. Causal inference and causal explanation with background knowledge. arXiv
preprint arXiv:1302.4972, 2013.

Thomas P Minka. A comparison of numerical optimizers for logistic regression. Unpublished draft,
pages 1–18, 2003.

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
Causal discovery with score matching on additive models with arbitrary noise. arXiv preprint
arXiv:2304.03265, 2023a.

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
Scalable causal discovery with score matching. arXiv preprint arXiv:2304.03382, 2023b.

Joris Mooij, Dominik Janzing, Jonas Peters, and Bernhard Schölkopf. Regression by dependence
minimization and its application to causal inference in additive noise models. In Proceedings of
the 26th annual international conference on machine learning, pages 745–752, 2009.

Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
19(2):3, 2000.

Karl Pearson. On the probable error of a coefficient of correlation as found from a fourfold ta-
ble. Biometrika, 9(1/2):22–33, 1913. ISSN 00063444. URL http://www.jstor.org/
stable/2331798.
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Appendix A. Proof of Lemma 1

Proof. (Sufficient Condition). Consider a random variable X in the observational data. The score
function can be expressed as:

si(x) = −
xi − fi(xPAi)

σ2
i

+
∑

j∈CHi

∂fj(xPAj )

∂xi

(
xj − fj(xPAj )

σ2
j

)
. (10)

Here, when k ∈ MB(i), k can be a parent, a child, or a spouse node of node i.
When k ∈ PAi, Equation (10) becomes

∂si(x)

∂xk
=

1

σi2
∂fi(xPAi)

∂xk
+

∑
j∈{CHi∩CHk}

∂

∂xk

{
∂fj(xPAj )

∂xj

xj − fj(xPAj )

σ2
j

}
.

When k ∈ CHi, Equation (10) becomes

∂si(x)

∂xk
=

1

σ2
k

∂fk(xPAk
)

∂xi
.

When k ∈ SPi, Equation (10) becomes

∂si(x)

∂xk
= −

∑
j∈{CHi∩CHk}

1

σ2
j

∂fj(xPAj )

∂xi

(
∂fj(x{k}∪PAj\{k})

∂xk

)
.

Hence, ∂si(x)
∂xk

̸= 0 if k ∈ MB(i). When ∂si(x)
∂xj

= 0, we have j /∈ MB(i).
(Necessary Condition). Suppose we have j /∈ MB(i). Then

Xi ⊥⊥ Xj |XMB(i). (11)
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This follows that the joint probability density of V with respect to a tensor product Lebesgue mea-
sure must factor as

p(x) =
∏

j∈V\{i}\MB(i)

p(xi |xMB(i))p(xj |xMB(i))p(xMB(i)). (12)

Therefore, it follows from Eq.(12) that ∂2 log p(x)
∂xixj

= ∂si(x)
∂xj

= 0.

Appendix B. Proof of Lemma 2

Proof. (Sufficient Condition). Considering the SEMs outlined above, the score function of Xj is
as follows,

sj(x) = −
xj − fj(xPAj )

σ2
j

+
∑
i∈CHj

∂fi(xPAi)

∂xj

xi − fi(xPAi)

σ2
i

. (13)

Since fj is a nonlinear function of the parents of node j. ∀k ∈ PAj ,

∂sj(x)

∂xk
=

1

σj2
∂fj(xPAj )

∂xk
−

∑
i∈{CHj∩CHk}

∂

∂xk

{
∂fi(xPAi)

∂xj

fi(xPAi)

σ2
i

}
.

Note that, we do not exclude the case that node k can also be a spouse of node i. Since fj is a
nonlinear function and all children of node j are linear functions of Xj and their associated parents
which means that fi are linear functions, we have

∂sj(x)

∂xk
=

1

σj2
∂fj(xPAj )

∂xk
+ c, (14)

where the second term on the right-hand side of the equation (14) is a constant that does not
depend on any variable. Since fj(xPAj) is a nonlinear function of xk, ∂sj(x)

∂xk
depends on xk and

hence, Varx[
∂sj(x)
∂xk

] ̸= 0.
Since all the children are linear functions of their parents, ∀k ∈ PAj ,

∂sj(x)

∂xk
=

1

σ2
k

∂fk(xPAk
)

∂xj
−

∑
i∈{CHj∩CHk}

∂

∂xk

∂fi(xPAi)

∂xj

fi(xPAi)

σ2
i

. (15)

Note that, we do not exclude the case that node k can also be a spouse of node i. Since all children
are linear functions of their parents, we have

∂sj(x)

∂xk
= c, (16)

where c ∈ R is a constant that does not depend on any variable and hence, Varx[
∂sj(x)
∂xk

] = 0.
For the node itself, since all children are linear functions of Xj and their parents,

∂sj(x)

∂xj
= − 1

σ2
j

−
∑
i∈CHj

1

σ2
i

(
∂fi(xPAi)

∂xj

)2

. (17)
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Since fi(xPAi) is a linear function of its parents, the derivative with respect to xj will be a
constant that does not depend on any variable and hence, Varx[

∂sj(x)
∂xk

] = 0. If fj is a nonlinear
function of all parents of node j, and all children of node j are linear functions of Xj and their
associated parents, then for the non-zero entries in the j-th row of the score matrix, in the j-th row
of the score’s Jacobian matrix, the variance of j-th entry and the entries corresponding to children
of node j will be zero while the variance of the entries corresponding to parents of node j will be
nonzero.

(Necessary Condition). We prove this by contradiction. Suppose that the children of Xj are
nonlinear functions of their parents and that ∀x, ∂sj(x)

∂xj
= c.

sj(x) = cxj + h(x−j), (18)

where h(x−j) can depend on any variables but xj . Let jc be a child of j and fjc be a nonlinear
function of xj . Equation (13) can be written as

sj(x) = −
xj − fj(xPAj )

σ2
j

+
∂fic(xPAic

)

∂xj

xic − fic(xPAic
)

σ2
ic

+
∑

i∈ch(j),i ̸=ic

∂fi(xPAi)

∂xj

xi − fi(xPAi)

σ2
i

.
(19)

Since equation (17) and equation (19) are equivalent, we can get,

∂fic(xPAic
)

∂xj

xic − fic(xPAic
)

σ2
ic

− h(x−j) = (c+
1

σ2
j

)xj +
fj(xPAj )

σ2
j

−
∑

i∈CHj ,i ̸=ic

∂fi(xPAi)

∂xj

xi − fi(xPAi)

σ2
i

.
(20)

Since the right hand side of equation (20) does not depend on variable xic , taking the differentiation
with respect to xic , we get

∂

∂xic

[
∂fic(xPAic

)

∂xj

xic − fic(xPAic
)

σ2
ic

− h(x−j)

]
= 0.

∂fic(xPAic
)

∂xj
= σ2

ic

h(x−j)

∂xic
.

Since h(x−j) does not depend on xj ,
∂fic (xPAic

)

∂xj
does not depend on xj . It means that fic(xPAic)

is a linear function of xj which contradict the assumption that fic is a nonlinear function of xj .
Moreover, to demonstrate that the structure of the Jacobian of the score functions corresponds

exclusively to the SCMs outlined in Lemma 2, we consider three scenarios: (1) fj is a linear function
of all parents of node j and all children of node j are linear functions of Xj and their associated
parents. For this case, all entries in the j-th row of the score’s Jacobian are constant, resulting in
zero variances. This is due to the linearity of all functions in sj(x), and their derivatives of these
functions being constant. (2) fj is a nonlinear function of all parents of node j and all children of
node j are nonlinear functions of Xj and their associated parents. As proven in lemma 3, the j-th
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entry of the score’s Jacobian in the j-th row, i.e. diagonal, is constant only if node j is a terminal
vertex. However, since it has children that are nonlinear functions of it, the j-th diagonal term of the
score’s Jacobian is not constant. (3) fj is a linear function of all parents of node j while all children
of node j are nonlinear functions of Xj and their associated parents. For (1), all entries in j-th row
of the score’s Jacobian are constant and hence the variances are zero. Similar to scenario (2), the
score’s Jacobian of the j-th diagonal term is non-constant as the children are nonlinear functions of
it. We systematically enumerate all scenarios in which a mixture model could be, establishing that
only the one outlined in Lemma 2 yields the corresponding score’s Jacobian structure.

Appendix C. Proof of Lemma 5

Proof. Sufficient Condition. Suppose we have Xi ⊥⊥ Xj |XZ,

∂ log p(xi, xj , xz)

∂xi∂xj
=

∂ log p(xi |xz)p(xj |xz)p(xz)
∂xi∂xj

=
∂

∂xj

{
∂

∂xi
[log p(xi |xz) + log p(xj |xz) + log p(xz)]

}
=

∂

∂xj
h(x1,...,j−1, xj+1,...,d)

= 0.

since h : Rn−1 → R is a function does not depend on xj .
Necessary Condition. By taking integration on both sides with respect to xj in the right-hand

side of equation (7), we have∫
∂ log p(xi, xj , xz)

∂xi∂xj
dxj =

∂ log p(xi, xj , xz)

∂xi
= f(xi, xz), (21)

where f : R(d+1) → R is a function that does not depend on xj . By further taking the integration
on both sides of the equation (21) with respect to xi, we have

log p(xi, xj , z) =

∫
∂ log p(xi, xj , xz)

∂xi
dxi

= f(xi, xz) + g(xj , xz).

where h, g : Rd+1 → R are functions that do not depend on xj and xi, respectively. Therefore, this
follows that Xi ⊥⊥ Xj |XZ and there is no edge between vertices i and j in the graph.

Appendix D. An illustrative example of Algorithm 5

This procedure is best illustrated with a graphical example. Consider the sample local structure in
Figure 4 and assume it is part of a larger network, We aim to find a collider set for vertices i and
j, and {z} is such a set in the ground truth DAG in Figure 4a. To see how the algorithm identifies
it, the search procedure starts at line 2 in Algorithm 5 given the moral graph in Figure 4b. We have
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Figure 4: Sample local causal structure (a) and its corresponding moral graph (b). Collider set
search in Algorithm 5 for the linked pair i− j yields spouse link and orientation information (c)

Tri(i − j) = {l, k} which is the possible collider set of i and j and paths with length greater than
2 between i and j in the moral graph are paths(i− j) = {i− l− n− j, i−m− k− j}. Iterating
over subsets in Tri(i− j), for instance, starting from the potential collider set {k}, the score of the
distribution will be calculated in terms of variables {Xi, Xl, Xj , Xm, Xn} which include the set of
vertices path(i− j) but excluding the possible collider set {k}. However, the score’s Jacobian of
Xi and Xj will still not be zero because {m} is a descendant of the collider k. In the nested loop at
lines 11 to 19. As we perform an extra search on the possible descendants of k, eventually we will
exclude m in addition to k. This will lead to a zero in the score’s Jacobian of Xi and Xj and in turn,
allow us to identify the link i− j as a spouse link and orient the arcs in Figure 4c.

Appendix E. Proof of Theorem 4.3

In a moral graph, a node Xi is connected to its parents, children, and spouses. For instance, vertices
i and j are spouses and they have at least one common child, i.e. Z. The common children Z is
called a collider set of i and j. Furthermore, if vertices i and j are non-adjacent in the full graph,
then Z are unshielded colliders for i and j such that Xi ⊥̸⊥ Xj |XZ and Xi ⊥⊥ Xj . Considering the
local causal structure {i, j,Z}, by removing all common children Z, the score’s Jacobian of Xi and
Xj in the local structure will be zero according to the lemma 5. The spouse link Xi −Xj can then
be removed, and for each Z ∈ Z, we orient the triplet as i→ Z ← j. This is equivalent to searching
for the d-separating set S for vertices i and j where Xi ⊥⊥ Xj |XS (Pellet and Elisseeff, 2008; Pearl
et al., 2000), whereas we are in a reverse direction, directly searching for the collider set. The proof
boils down to providing that the proposed search procedure always identifies the collider set for i
and j when there is one.

If all colliders of i and j are unshielded colliders, then the link i−j is a spouse link by definition
of a moral graph, which implies that i and j have a non-empty set of common children Z. Each Z
is linked to both i and j and is thus in Tri(i− j) by definition 2. Consider the local causal structure
{i, j,Z,S} where S are the nodes on a path of length 2 between i and j. Assume that all colliders of
i and j are unshielded colliders, including one of the unshielded collider or its descendant will yield
non-zero in the score’s Jacobian of Xi and Xj in the local distribution. In algorithm 5, all possible
colliders and descendants of current conjectured colliders undergo a subset search in line 5 and 13,
such that there will always be one iteration where all colliders and their descendants will be left out
of the local distribution in calculating the score’s Jacobian.
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Appendix F. Experiments

F.1. Synthetic data

In this section, we present the results of experiments conducted with LNMIX using synthetic data,
as discussed in section 5. The data was generated by creating DAGs through Erdős-Rényi (ER)
graphical models. Our experiments include scenarios involving both sparser ER2 graphs (refer to
Table 1) as well as denser ER4 graphs (refer to Table 2).

Table 1: Experiments on ER2 data.

Method SHD Precision Recall F1 Time [s]

LNMIX (Ours) 2.36 ± 1.20 0.93 ± 0.07 0.92 ± 0.08 0.92 ± 0.06 4.19 ± 0.23
GES-GS 20.33 ± 6.60 0.52 ± 0.00 0.75 ± 0.07 0.61 ± 0.05 90.94 ± 8.13
PC-Fisherz 13.80 ± 2.93 0.43 ± 0.11 0.37 ± 0.13 0.41 ± 0.12 0.05 ± 0.02

d=10 PC-KCI 13.80 ± 2.14 0.46 ± 0.13 0.42 ± 0.06 0.40 ± 0.09 226.57 ± 89.00
NoTears 14.62 ± 2.78 0.67 ± 0.13 0.44 ± 0.10 0.53 ± 0.10 1.33 ± 2.01
NoTearsMLP 11.75 ± 2.63 0.68 ± 0.09 0.68 ± 0.07 0.68 ± 0.07 28.46 ± 65.38
SCORE-CAM 3.33 ± 0.94 0.99 ± 0.04 0.83 ± 0.05 0.91 ± 0.03 7.96 ± 0.15

LNMIX (Ours) 5.79 ± 1.21 0.91 ± 0.02 0.91 ± 0.05 0.90 ± 0.02 26.51 ± 15.44
GES-GS 46.0 ± 2.16 0.48 ± 0.07 0.71 ± 0.13 0.57 ± 0.01 426.25 ± 35.03
PC-Fisherz 34.9 ± 4.09 0.45 ± 0.09 0.36 ± 0.02 0.38 ± 0.07 1.18 ± 0.05

d=20 PC-KCI 45.80 ± 1.72 0.45 ± 0.05 0.30 ± 0.05 0.33 ± 0.05 926.22 ± 299.42
NoTears 48.38 ± 21.74 0.40 ± 0.26 0.28 ± 0.17 0.32 ± 0.21 11.67 ± 33.84
NoTearsMLP 55.5 ± 38.24 0.35 ± 0.28 0.40 ± 0.30 0.40 ± 0.27 149.00 ± 279.87
SCORE-CAM 8.00 ± 4.97 0.96 ± 0.04 0.81 ± 0.12 0.87 ± 0.08 32.90 ± 2.34

LNMIX (Ours) 22.16 ± 4.3 0.85 ± 0.02 0.86 ± 0.04 0.85 ± 0.07 760.4 ± 1.18
GES-GS 163.0 ± 4.97 0.47 ± 0.01 0.67 ± 0.01 0.55 ± 0.01 5180.56 ± 209.76
PC-Fisherz 84.03 ± 10.75 0.40 ± 0.07 0.30 ± 0.06 0.35 ± 0.02 1.69 ± 0.52

d=50 PC-KCI 63.60 ± 5.00 0.37 ± 0.03 0.30 ± 0.03 0.33 ± 0.03 10017.13 ± 383.47
NoTears 111.50 ± 14.82 0.24 ± 0.19 0.19 ± 0.24 0.21 ± 0.23 34.76 ± 46.86
NoTearsMLP 122.75 ± 18.59 0.23 ± 0.14 0.24 ± 0.23 0.27 ± 0.17 212.03 ± 340.12
SCORE-CAM 33.00 ± 6.38 0.91 ± 0.03 0.71 ± 0.07 0.80 ± 0.05 1272.88 ± 126.64

LNMIX (Ours) 68.16 ± 4.74 0.83 ± 0.03 0.81 ± 0.03 0.82 ± 0.05 1405.85 ± 465.28
GES-GS − − − − −
PC-Fisherz 187.00 ± 23.62 0.33 ± 0.07 0.28 ± 0.07 0.28 ± 0.07 5.22 ± 1.90

d=100 PC-KCI − − − − −
NoTears 280.88 ± 107.44 0.13 ± 0.07 0.09 ± 0.11 0.08 ± 0.14 96.73 ± 70.72
NoTearsMLP − − − − −
SCORE-CAM 80.67 ± 10.40 0.86 ± 0.01 0.66 ± 0.04 0.75 ± 0.03 4818.33 ± 231.9

F.2. Real data

We conducted a comparative analysis of algorithms using a well-known real-world dataset provided
by Sachs et al. (2005) for causal discovery with 11 nodes, 17 edges, and 853 observations. Our
method demonstrated a slightly better performance on the this dataset, achieving a Structural Ham-
ming Distance (SHD) of 11, outperforming SCORE, DAS, and CAM, which has SHD of 12, and
GraN-DAG, which has SHD of 13. Examining the resulting DAG, we observed some edges that
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Table 2: Experiments on ER4 data.

Method SHD Precision Recall F1 Time [s]

LNMIX (Ours) 17.01 ± 4.03 0.90 ± 0.02 0.77 ± 0.11 0.84 ± 0.07 15.51 ± 7.33

GES-GS 36.76 ± 6.42 0.65 ± 0.08 0.49 ± 0.05 0.55 ± 0.05 117.78 ± 9.23

PC-Fisherz 34.96 ± 2.14 0.34 ± 0.10 0.15 ± 0.05 0.20 ± 0.06 0.17 ± 0.03
d=10 PC-KCI 35.5 ± 2.08 0.34 ± 0.14 0.13 ± 0.05 0.19 ± 0.07 856.64 ± 176.99

NoTears 29.94 ± 7.36 0.77 ± 0.14 0.29 ± 0.21 0.46 ± 0.17 19.8 ± 32.02

NoTearsMLP 20.75 ± 6.32 0.65 ± 0.15 0.56 ± 0.18 0.58 ± 0.13 181.23 ± 223.66

SCORE-CAM 23.36 ± 2.96 0.99 ± 0.03 0.42 ± 0.07 0.59 ± 0.07 6.14 ± 0.27

LNMIX (Ours) 48.14 ± 6.15 0.81 ± 0.06 0.46 ± 0.11 0.57 ± 0.08 28.45 ± 1.99

GES-GS 89.10 ± 7.55 0.45 ± 0.04 0.47 ± 0.04 0.45 ± 0.03 641.79 ± 133.03

PC-Fisherz 75.26 ± 4.80 0.31 ± 0.10 0.13 ± 0.04 0.18 ± 0.06 1.58 ± 0.67
d=20 PC-KCI 73.00 ± 5.00 0.33 ± 0.10 0.14 ± 0.04 0.20 ± 0.06 6101.58 ± 19.77

NoTears 80.44 ± 5.20 0.36 ± 0.20 0.07 ± 0.13 0.17 ± 0.17 22.94 ± 65.59

NoTearsMLP 112.62 ± 17.33 0.24 ± 0.11 0.36 ± 0.23 0.22 ± 0.11 198.75 ± 337.96

SCORE-CAM 50.66 ± 3.77 0.96 ± 0.03 0.37 ± 0.05 0.54 ± 0.05 32.94 ± 2.31

LNMIX (Ours) 142.08 ± 12.35 0.72 ± 0.04 0.45 ± 0.06 0.52 ± 0.04 1431.51 ± 21.45

GES-GS 243.25 ± 12.40 0.38 ± 0.04 0.43 ± 0.05 0.40 ± 0.04 12353.43 ± 4078.12

PC-Fisherz 189.70 ± 8.03 0.30 ± 0.06 0.14 ± 0.03 0.19 ± 0.04 15.93 ± 6.08
d=50 PC-KCI 186.00 ± 0.00 0.36 ± 0.00 0.16 ± 0.00 0.22 ± 0.00 30604.94 ± 0.00

NoTears 200.60 ± 3.03 0.23 ± 0.21 0.01 ± 0.00 0.01 ± 0.01 28.33 ± 54.51

NoTearsMLP 251.00 ± 5.20 0.21 ± 0.07 0.01 ± 0.01 0.02 ± 0.01 253.06 ± 216.46

SCORE-CAM 151.00 ± 5.61 0.89 ± 0.04 0.30 ± 0.03 0.44 ± 0.03 1308.91 ± 167.01

LNMIX (Ours) 286.00 ± 12.22 0.71 ± 0.04 0.39 ± 0.02 0.49 ± 0.03 4080.01 ± 78.12

GES-GS − − − − −
PC-Fisherz 374.50 ± 11.49 0.16 ± 0.03 0.10 ± 0.02 0.13 ± 0.02 94.95 ± 24.52

d=100 PC-KCI − − − − −
NoTears 400.44 ± 0.98 0.07 ± 0.14 0.00 ± 0.00 0.00 ± 0.00 421.69 ± 472.38

NoTearsMLP − − − − −
SCORE-CAM 325.46 ± 6.68 0.81 ± 0.01 0.25 ± 0.02 0.43 ± 0.02 9987.87 ± 160.70

were either identified or missed by different approaches. An illustrative instance is the correct iden-
tification of the edge in our method, which was not captured by SCORE, DAS, and CAM. Plotting
the data revealed a nonlinear relationship between variable 1 and variable 5, while variable 5 and
variable 6 exhibited a clear linear pattern. This accurate representation in the final graph highlights
our method’s capability of Lemma 2 in mixed linear and nonlinear scenarios. Nonetheless, several
edges coincided with SCORE and CAM, indicating that, upon plotting the data pairs, missing edges
were consistent with the absence of correlation in the plots. Furthermore, the correct partial graph
consistently exhibited clear relationships between pairs of variables in all cases. However, utilizing
a more refined real dataset, characterized by stronger associations between variables, could poten-
tially yield improved results.
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Appendix G. Algorithms

In this section, we present the overall algorithm for discovering the underlying causal graph from
observational data generated by the model as described in Equation (1).

Algorithm 2 Causal Discovery with score’s Jacobian

Input: Observational data: X ∈ Rn×d

Output: Partially Oriented DAG: G
1: Compute the moral graph for X according to Algorithm 3 ▷ Step1: Skeleton Discovery
2: d← number of remaining nodes
3: while d > 0 do ▷ Step2: Edges Oriented
4: Orient Edges according to Algorithm 4
5: Remove leaves and linear blocks at the tail of the graph
6: end while
7: Orient collider sets according to Algorithm 5 ▷ Step3: Colliders Oriented
8: Orient edges according to Meek orientation rules ▷ Step4: Meek Rules
9: return G

Algorithm 3 Moral Graph Discovery with score’s Jacobian

Input: Observational data: X, complete undirected graph G, threshold k
Output: Moral graph: Gm

1: d← number of nodes
2: Estimate the score function si(x) =

∂ log p(x)
∂xi

3: Estimate score’s Jacobian hij(x) =
∂ log p(x)
∂xi∂xj

4: for i in d do
5: for j in i do
6: if hij(x) < k then
7: Remove link Xi −Xj

8: end if
9: end for

10: end for
11: return Gm

Appendix H. Additional Discussions

H.1. Comparisons with Jacobian-based methods

The Jacobian matrix is widely utilized in generative and inference models for identifiability and
causal discovery. Various approaches also leverage the Jacobian matrix for different aspects of
causal inference. In the line of causal discovery, LiNGAM (Shimizu et al., 2006) uses the Jacobian
for inferring DAGs in linear scenarios. In contrast, Lachapelle et al. (2019) computes the Jacobian
of the inference network for enforcing acyclicity in nonlinear additive models. Similarly, Rolland
et al. (2022) focuses on the Jacobian of the score function within the same model class. Addition-
ally, Atanackovic et al. (2023) proposes a Bayesian approach for causal discovery in dynamical
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Algorithm 4 Edges orientation in the combination of nonlinear and linear models
Input: Moral Graph Gm or partial DAG G
Output: G : Partial DAG

1: d← number of remaining nodes
2: Compute Ṽ : ṽij = var(∂ log p(x)

∂xi∂xj
) with the remaining nodes

3: for i in d do
4: if ṽii = 0 then
5: for j ∈ MB(i) do
6: if ṽij ̸= 0 then
7: Orient edge (i, j) as j → i ▷ Nonlinear leaf node
8: else
9: Orient edge (i, j) as i→ j ▷ Mixture nodes

10: end if
11: end for
12: end if
13: end for
14: return G

systems using the Jacobian of the SEMs. Meanwhile, Zheng et al. (2023) establish a Markov struc-
ture learning algorithm based on the Jacobian of the data generating process. The use of Jacobian
properties extends into identifiability, where Independent Mechanism Analysis (IMA) assumes the
generative model’s Jacobian has orthogonal columns (Gresele et al., 2021). Reizinger et al. (2022)
employs the Jacobian of the inference model for causal models with unconstrained function classes
and non-i.i.d. data, providing identifiability guarantees. Our approach builds upon the Jacobian
of the score function, extending the work of Rolland et al. (2022) to encompass mixed linear and
nonlinear data. For a concise summary, see Table 3, an extension of Table 5 in Reizinger et al.
(2022).

H.2. Comparisons with SCORE and DAS

SCORE algorithm (Rolland et al., 2022) initiates the process by efficiently recovering the topologi-
cal order through the estimation of the Jacobian of the score function (i.e.,∇x log p(x)). Leaf nodes
are identified by locating terms with zero variance in the diagonal of the score’s Jacobian. The fully
connected DAG is then pruned using the method proposed in Bühlmann et al. (2014). Recogniz-
ing the computational demands of the pruning step, Montagna et al. (2023a) proposed DAS, which
eliminates this step by solely relying on the Jacobian of the score, resulting in enhanced efficiency.

In the scenario where all causal mechanisms fi are purely linear in the model (as described in
Equation (1)), ∀i ∈ {1, · · · , d}, both SCORE and DAS algorithms fail to identify the causal graph.
The topological ordering methods fail as the topological ordering between variables itself does not
disambiguate the direction of edges in the DAG. For example, in the case of an SCM defined in
Equation (1) with linear functions fi, the Jacobian of the score function ∂si

∂xi
= − 1

σ2
i
+ c for every

node i rather than for leaves only, the criterion of identifying the leaf node (Lemma 3 and Lemma
4) does not hold anymore, leading to a failure of the topological ordering method for the linear
case. However, with purely linear data, the Markov Equivalence class can still be attained in our
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Algorithm 5 Orient the Collider Sets
Input: G : Partially Oriented DAG: the Markov blanket information for each node i ∈ V and some

oriented edges from Algorithm 4
Output: G : Partially Oriented DAG

1: for each edge i− j part of a fully undirected connected triangle do
2: Cij ← null
3: B← {nodes on a path of length greater than 2 between X and Y}
4: for each S ⊂ Tri(i− j) do ▷ possible collider subset search
5: Z← B\S
6: if ∂ log p(xi,xj ,xz)

∂xi∂xj
= 0 then

7: Cij ← S
8: break to line 20
9: end if

10: D← B ∩ {nodes reachable by S}
11: Z′ ← Z\D
12: for each S′ ⊂ D do ▷ search for possible descendants of collider
13: Z← Z′ ∪ S′

14: if ∂ log p(xi,xj ,xz)
∂xi∂xj

= 0 then
15: Cij ← S
16: break to line 20
17: end if
18: end for
19: end for
20: if Cij is not null then ▷ orientation directive
21: remove spouse link of i− j in G
22: for each k ∈ (Cij) do
23: G ← G ∪ {(i→ k ← j)}
24: end for
25: end if
26: end for
27: return G
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Table 3: Comparisons with Jacobian-based approaches: The table includes columns denoted as
follows: Column f signifies constraints on the function class of the SEMs, the Data column enu-
merates restrictions on the data distribution, J describes the Jacobian of the employed function,
CD indicates its application in causal discovery, and the Id. column denotes whether the method
provides identifiability guarantees. For detailed information on Assumption 2 and Proposition 1,
please refer to Reizinger et al. (2022) for specifics on Assums.2 and F.1.

Method f Data J CD Identifiability

Shimizu et al. (2006) Linear Non-Gaussian Jf−1 ✓ ✓

Lachapelle et al. (2019) Additive Gaussian Jf−1 ✓ ✗

Gresele et al. (2021) IMA All Jf ✗ ✓

Zheng et al. (2023) Sparse All Jf ✗ ✓

Rolland et al. (2022) Additive Gaussian J∇x log p(x) ✓ ✗

Atanackovic et al. (2023) Cyclic (ODE) All Jf ✓ ✗

Reizinger et al. (2022) All Assums.2, F.1 Jf−1 ✓ ✓

Ours Mixed Linear & Nonlinear Gaussian J∇x log p(x) ✓ Partial

work using Lemma 1 to derive the Markov Network and Lemma 5 to address colliders, similar
to the methodologies employed in constraint-based and score-based approaches. Nevertheless, our
approach demonstrates superior scalability as the number of nodes increases.

On the other hand, in the context of mixed linear and nonlinear data, both SCORE and DAS
again encounter challenges due to the non-identifiability of linear Gaussian data, where the variance
of the Jacobian of the score function becomes zero, except for the nonlinear leaf nodes. Conse-
quently, our approach significantly broadens the scope of applicability for causal discovery, pro-
viding theoretical guarantees in situations that pose difficulties for other existing methods. Overall,
both SCORE and DAS are only suitable for a nonlinear additive Gaussian noise model, whereas our
method can handle linear (up to the Markov Equivalence Class), nonlinear, and mixed linear and
nonlinear scenarios.

H.3. Comparison with PC algorithm

Lemma 1, used to compute the moral graph, corresponds to the step of determining adjacencies
in the PC algorithm. Lemma 5 utilizes the Jacobian of the score function to infer V-structures,
equivalent to the orientation rule in the PC algorithm. However, Lemma 2 enhances our ability to
ascertain directions, even in non-collider scenarios.

To illustrate this enhancement, consider a simple 3-node example: a chain i→ j → k. Consider
the corresponding Structural Causal Model (SCM) as follows, fj is a nonlinear function of variable
Xi, and fk is a linear function of Xj . Lemma 2 allows us to recover the true underlying DAG in this
case. However, the PC algorithm can only recover up to the Markov Equivalence class, resulting in
i− j− k. This underscores the additional inferential power provided by our approach. Importantly,
our method ensures that the set of causal structures compatible with our final partially oriented graph
is a subset of the causal structures within the Markov equivalence class.

Furthermore, our approach exhibits superior scalability as the number of nodes increases. Constraint-
based methods, such as PC (Spirtes and Glymour, 1991), fast causal inference (FCI) (Spirtes, 2001),
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and SGS (Spirtes et al., 2000), assess the conditional independence among variables and seek graph
structures that satisfy these conditions under a faithfulness assumption. However, the main bottle-
neck in these methods lies in the challenging nature of conditional independence testing (Shah and
Peters, 2020). On the other hand, score-based techniques involve defining a suitable score func-
tion and searching for the graph that best fits the data within an extensive graph space. Greedy
approaches like greedy equivalence search (GES) (Chickering, 2002; Huang et al., 2018) are em-
ployed for this exploration, but their scalability is hampered by the super-exponential growth of the
space with the number of nodes.
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