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Abstract
Deep Generative Models (DGMs) are versatile tools for learning data representations while ad-
equately incorporating domain knowledge such as the specification of conditional probability
distributions. Recently proposed DGMs tackle the important task of comparing data sets from
different sources. One such example is the setting of contrastive analysis that focuses on describing
patterns that are enriched in a target data set compared to a background data set. The practical
deployment of those models often assumes that DGMs naturally infer interpretable and modular
latent representations, which is known to be an issue in practice. Consequently, existing methods
often rely on ad-hoc regularization schemes, although without any theoretical grounding. Here, we
propose a theory of identifiability for comparative DGMs by extending recent advances in the field
of non-linear independent component analysis. We show that, while these models lack identifiability
across a general class of mixing functions, they surprisingly become identifiable when the mixing
function is piece-wise affine (e.g., parameterized by a ReLU neural network). We also investigate
the impact of model misspecification, and empirically show that previously proposed regularization
techniques for fitting comparative DGMs help with identifiability when the number of latent vari-
ables is not known in advance. Finally, we introduce a novel methodology for fitting comparative
DGMs that improves the treatment of multiple data sources via multi-objective optimization and that
helps adjust the hyperparameter for the regularization in an interpretable manner, using constrained
optimization. We empirically validate our theory and new methodology using simulated data as well
as a recent data set of genetic perturbations in cells profiled via single-cell RNA sequencing.
Keywords: non-linear ICA; deep generative models; variational inference; disentanglement;

1. Introduction

Since the introduction of Variational Auto-Encoders (VAEs) (Kingma and Welling, 2014; Rezende
et al., 2014), these so-called Deep Generative Models (DGMs) have established themselves as a
go-to tool for learning representations of heterogeneous data sets. Their applications span financial
time-series analysis (Bergeron et al., 2022), speech analysis and synthesis (Girin et al., 2021), as well
as biological data analysis (Lopez et al., 2020). Their natural ability to deal with multi-modal (Wu
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Figure 1: Presentation of the comparative deep generative models considered in this work.

and Goodman, 2018), temporal (Girin et al., 2021) and spatial data sets (Yuan et al., 2019) makes
them a powerful framework for extracting informative representations of data at a massive scale.
Learning informative and compact representations from data is a milestone for applications driven by
goodness of fit, or specific downstream prediction tasks. For many other cases, however, learning
representations that are modular and have semantic meaning is crucial for reasons of interpretability.

This paper is concerned with the problem of comparative analysis, which seeks to model the
similarities and differences across multiple data sets. This analytical approach is often driven by
scientific applications, where researchers routinely juxtapose observations from a condition of interest
(e.g., a disease) with a control condition (e.g., healthy).

A particular form of comparative analysis is termed contrastive analysis1. This methodology
aims to characterize how a target data set differs from a background data set (Zou et al., 2013)
(Figure 1, left). In achieving this, a generative model that incorporates two sets of latent variable
(z, s) ∈ Rp×Rq is learned from data (Abid and Zou, 2019; Jones et al., 2022). Here, the background
variables z represent patterns inherent to the background data set, while the salient variables s
capture nuances unique to the target data set. Contrastive analysis methods have been widely
adopted in scientific research, with notable applications in omics data analysis (Boileau et al., 2020;
Weinberger et al., 2023) and brain imaging studies (Louiset et al., 2023). Another approach within
comparative analysis involves learning both shared and group-specific data representations using
a single generative model (Davison et al., 2019; Weinberger et al., 2022b). We refer to it as the
multi-group analysis setting (Figure 1, right).

The widespread success and adoption of these methods is somewhat surprising. Indeed, DGMs
face important challenges in learning interpretable representations (Locatello et al., 2019), and usually
require ad-hoc regularization schemes in order to yield satisfactory performance (Higgins et al.,
2017; Kim and Mnih, 2018; Lopez et al., 2018b). Similarly, successful inference of comparative
DGMs also requires the engineering of regularization approaches (Weinberger et al., 2022a). This
brings up the important theoretical question of why such regularization strategies are necessary. A
plausible hypothesis is that the model itself is not identifiable, and that regularization helps constrain
the function class used to fit the model. Here, non-identifiability means that given some data and
a ground truth generating process, there exists an alternative model that has equal data likelihood,
but such that the subspaces recovered from it are different. We note that identifiability is also an

1. This is a distinct line of work from the field of contrastive learning, that aims at distinguishing between positive and
negative pairs of data points, as used in self-supervised learning.
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important question of its own, because it is a necessary condition to interpret and attribute semantic
meaning to the learned representations, which is the end goal of real-world scientific applications.

We therefore explore the question of identifiability of comparative DGMs. To the best of our
knowledge, such theoretical developments have been completely unexplored in the related literature.
As a starting point, we highlight that data sets from different sources may be interpreted as the
result of a do intervention on the graphical model (Pearl, 2009). This allows us to build upon recent
advances in causal representation learning and non-linear ICA theory (Khemakhem et al., 2020;
Lachapelle et al., 2022; Kivva et al., 2022) to prove the (block-wise) identifiability of comparative
DGMs under the assumption of a piece-wise affine mixing function (e.g., parameterized by a ReLU /
Leaky ReLU neural network). This demonstrates, for the first time, the identifiability of many recently
published contrastive DGMs (Jones et al., 2022; Severson et al., 2019; Weinberger et al., 2023), and
multi-group DGMs (Severson et al., 2019; Weinberger et al., 2022b). We also provide empirical
evidence of this point with numerical experiments. This result is surprising, because of the practical
need for regularization. To reconcile this apparent contradiction, we illustrate that identifiability
guarantees are lost when the numbers of latent variables in each block are misspecified, as is often
the case in real-world data analysis. In numerical experiments, we assess that existing regularization
strategies considerably help mitigate this effect. Finally, motivated by this theoretical analysis, we
also propose a new methodology for fitting comparative DGMs based on recent advances in multi-
objective optimization (Sener and Koltun, 2018), and constrained optimization (Gallego-Posada
et al., 2022).

After briefly introducing the background (Section 2), we present our novel theory of identifiability
for comparative DGMs (Section 3). We then discuss limitations of the theory in the case of model
misspecification in Section 4. We propose novel algorithmic methodology (Section 5), and conduct
numerical experiments on simulations as well as a recent data set from a genetic screen profiled via
single-cell RNA sequencing (Section 6). Discussion of related works appears in Appendix A.

2. Background

This paper is concerned with the modular recovery of latent variables of a comparative analysis model
that initially generated the data (Figure 1). Therefore, we briefly introduce the field of comparative
analysis, and then present recent results on the identifiability of non-linear Independent Component
Analysis (ICA), one of the prominent methods for latent variable recovery.

2.1. Comparative Analysis with Deep Generative Models

Contrastive Analysis Zou et al. (2013) introduced the goal of contrastive analysis, and the first
algorithmic approaches (e.g, based on mixture models). Abid et al. (2018) proposed a contrastive
principal component analysis (cPCA) method that captured intriguing variations from the target
data set that do not appear in the background data set. Subsequent endeavors (Li et al., 2020; Jones
et al., 2022) steered towards the creation of probabilistic latent variable models tailored to contrastive
analysis, with a recent focus on deep generative models (Severson et al., 2019; Abid and Zou, 2019;
Ruiz et al., 2019; Weinberger et al., 2023). In this setting, a contrastive DGM has two sets of latent
variables (Figure 1, left): the salient variable s ∈ Rp and the background latent variable z ∈ Rq. The
target data set is generated by sampling both sets of latent variables from an isotropic Gaussian prior
distribution, passing them through a mixing function f and sampling the data x from the exponential
family distribution EXPFAM, using f(z, s) as the parameter. The background data set is generated
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similarly, but by setting s = 0 to make sure that s is utilized only for describing the target data set.
We denote this distribution as a hard intervention pθ (x | do(s = 0)) (Pearl, 2009) in order to draw
parallels with interventional causal representation learning (Ahuja et al., 2023).

In terms of inference procedure, all methods rely on the contrastive Variational Auto-Encoder
(cVAE) framework (Abid and Zou, 2019). For each sample in the target data set (resp. the background
data set), the variational distribution is qϕ(z | x)qϕ(s | x) (resp. qϕ(z | x) only, as s = 0). Then,
the composite evidence lower bound (ELBO) is derived as

Eqϕ(z|x) log
pθ(x, z,0)

qϕ(z | x)
+ Eqϕ(z|x)qϕ(s|x) log

pθ(x, z, s)

qϕ(z | x)qϕ(s | x)
. (1)

This composite ELBO corresponds to the sum of two individual ELBOs for each of the two data sets
(background and target). It may be used as an objective function for maximization, in conjunction
with adequate regularization of the neural networks parameterizing the variational distribution as a
function of the input data. In Abid and Zou (2019), an additional regularization term specifically
promotes independence of the two sets of latent variables.

Multi-group Analysis Recently, several models have been designed to distinguish patterns that
are shared by all data sets, versus the ones that are specific to each data set (Davison et al., 2019;
Weinberger et al., 2022b). We provide more details about the generative model and the inference
mechanism in Appendix B.

2.2. Identifiability of Non-linear Independent Component Analysis

ICA assumes that x ∈ Rd is generated using p independent latent variables z = (z1, . . . , zp), called
independent components (Hyvärinen et al., 2002). More precisely, observations x are defined as
x = f(z) + ϵ with f a mixing function and ϵ an exogenous noise variable. The ICA literature
established that in the general case of a non-linear mixing function f , the model is unidentifiable
from i.i.d. observations of x (Hyvärinen and Pajunen, 1999), and therefore the original z may not be
recovered. Given this negative result, several papers introduced identifiable forms of non-linear ICA
models (Harmeling et al., 2003; Sprekeler et al., 2014; Hyvärinen and Morioka, 2016, 2017), based
on the observability of an additional auxiliary random variable. However, such auxiliary variable
is not always available in practice. More recently, Kivva et al. (2022) proposed a new theory of
identifiability based on the assumption that f is a piece-wise affine function. Their main result is that
many previously proposed deep generative models parameterized with ReLU / Leaky ReLU neural
networks and additive Gaussian observation noise, a commonly used architecture, are identifiable up
to a linear transformation of the mixing function. Our work directly builds upon this line of work to
assess the identifiability of comparative DGMs.

3. A Theory of Identifiability for Comparative Analysis Models

For the sake of conciseness and ease of notation, we focus on the contrastive analysis case in
this section. Definitions, theorem statements, and proofs for the multi-group setting appear in
Appendix C.3.
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3.1. Subspace Identifiability

Identifiability is a critical property to understand whether a model’s parameters can be uniquely
inferred from observations (Ran and Hu, 2017). Within the context of contrastive analysis, our
concern is not the recovery of latent variables at the component level. Rather, our interest lies in the
retrieval of specific subspaces, namely the blocks Z = Rp and S = Rq. To introduce this concept,
we first define a general criterion for compatibility of the Cartesian product of subspaces by a map.

Definition 1 (Compatible map) Let (E1, . . . , En) be n Euclidean spaces, and let E =
∏n

i=1En

designate the Cartesian product space. A map ϕ : E → E is said to be compatible with the Cartesian
product E =

∏n
i=1En if there exist maps

(
ϕ̄1, . . . , ϕ̄n

)
of the subspaces (E1, . . . , En) such that for

all e = (e1, . . . , en) ∈ E, we have that ϕ(e) =
(
ϕ̄1(e1), . . . , ϕ̄n(en)

)
.

Now, if we denote the support of latent variables for the background data set (resp. the target data
set) as Db = Z × {0} (resp. Dt = Z × S), we define the subspace disentanglement condition as
follows.

Definition 2 (Subspace Disentanglement) Let f be the ground truth mixing function, and f̃ be a
learned mixing function. Let us also assume that f(Db) = f̃(Db), f(Dt) = f̃(Dt), and that the
map v = f−1 ◦ f̃ is well-defined. f̃ is said to be subspace-disentangled with respect to f if v is
compatible with respect to the Cartesian product Dt = Z × S.

When this property is not verified, the learned mixing function f̃ and the background f provide
distinct decompositions of the signal from the feature space X into Z and S . Related definitions that
appear in previous works such as Von Kügelgen et al. (2021) are discussed in Appendix A. We may
now outline our definition for subspace identifiability of contrastive DGMs.

Definition 3 (Subspace Identifiability) A contrastive analysis model with ground truth mixing
function f is subspace identifiable from data if for all other mixing functions f̃ that yield the same
background and target data distributions, we have that f̃ is subspace-disentangled with respect to f .

When such a model is subspace identifiable, and we observe data x, we are guaranteed that the
learned representations (z̃, s̃) = f̃−1(x) are given by a transformation of each of the original spaces:
z̃ = hz(z), and s̃ = hs(s), and therefore semantic meaning can be attributed to those subspaces.

Although the fact that we observe two data sets is potentially helpful in breaking symmetry in
the roles played by the shared latent variables z and s, it is not true in general that all contrastive
analysis models are subspace identifiable.

Example 1 (Counterexample) For p = 2 and q = 1, let us consider the following map of R3:

Φ :

 z1
z2
s

 7→

 z1 cos s− z2 sin s
z1 sin s+ z2 cos s

s

 . (2)

For any non-trivial mixing function f , we define f̃ = f ◦ Φ. f̃ and f generate the same data distri-
butions because Φ is a diffeomorphism that preserves volume, and distance to the origin. However,
f̃ is not subspace disentangled with respect to f . The complete proof appears in Appendix C.1.
Example 1 may be seen as an extension of the classical counter-example of identifiability for linear
ICA (Hyvärinen et al., 2002), exploiting the rotational invariance of the Gaussian distribution but
with a non-constant rotation angle.

5872



LOPEZ HUETTER HAJIRAMEZANALI PRITCHARD REGEV

3.2. Identifiability Result for Piece-wise Affine Mixing Functions and Noiseless Observations

The counterexample presented above suggests that we must restrict the function class for f in order
to potentially obtain identifiability. We propose to build upon recent work on identifiability of
DGMs with mixing functions specified as multilayer perceptrons (MLP) with ReLU / Leaky ReLU
activations (Kivva et al., 2022) to obtain the first result of identifiability of comparative analysis
models.

Theorem 1 (Identifiability Theorem) Let the ground truth mixing function f and the learned
mixing function f̃ both be continuous and injective piece-wise affine mixing functions such that
f(z, s)

d
= f̃(z, s) and f(z,0)

d
= f̃(z,0). Then, f̃ is subspace disentangled with respect to f and the

noiseless version of the contrastive analysis model is subspace identifiable.

The proof appears in Appendix C.2, and consists of two steps. First, we apply the result of Kivva
et al. (2022) to each of the target and background data distributions to obtain the linear identifiability
of the mixing function on each domain. Then, we rely on the geometry of affine transformations
to prove that the disentanglement criterion must hold on both data domains. Because this is an
instance of linear disentanglement, this implies that v is a linear transformation. We also note that the
assumptions of isotropic Gaussian distributions for p(z) and p(z, s) for Theorem 1 could be relaxed
to members of an exponential family of distributions, as long as the densities are analytic functions,
and the family is closed under additive transformation (Kivva et al., 2022).

Because the problem of identifiability of non-linear ICA with additive Gaussian noise can be
reduced to the noiseless case (Khemakhem et al., 2020), Theorem 1 and its multigroup variant,
Theorem 3, are readily applicable to several real-world models. In the special case where f is
linear injective, these results yield the identifiability of probabilistic contrastive principal component
analysis (Li et al., 2020), and multi-study factor analysis (De Vito et al., 2019). The non-linear
version provides the identifiability of the cross-population VAE (Davison et al., 2019), and of the
contrastive VAE (cVAE) (Abid et al., 2018).

3.3. Extensions towards models with Observational Count Noise

The results from Theorem 1, and to the best of our knowledge, all previous results on identifiability
of non-linear ICA models2 only apply to noiseless measurements, or to Gaussian observation noise.
However, many real-world applications of DGMs (Lopez et al., 2020), and especially comparative
DGMs, have been proposed to deal with count data, such as the contrastive generalized latent
variable model (CGLVM) (Jones et al., 2022), ContrastiveVI (Weinberger et al., 2023) and multi-
GroupVI (Weinberger et al., 2022b). We therefore now show that the non-linear ICA identifiability
problem with Poisson or negative binomial noise reduces to the noiseless one.

Theorem 2 (Reduction from observational count noise to the noiseless setting)
Let u ∼ Normal (0, Ip). Let f = σ ◦ g (resp. f̃ = σ ◦ g̃) be the composition of a scalar link
function σ, valued in R+ (applied component-wise), with a piecewise affine function g (resp. g̃). Let
x ∼ px(f(u)) and x̃ ∼ px(f̃(u)) such that px is Poisson or negative binomial with fixed shape. If
σ is a bicontinuous bijection, then,

x̃
d
=x =⇒ f̃(u)

d
= f(u) =⇒ g̃(u)

d
= g(u). (3)

2. The initial version of Khemakhem et al. (2020) presented a proof of identifiability for categorical variables that has
since been removed due to a mistake in the write-up.
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The proof appears in Appendix D.2. Our proof appeals to calculation and identification of the
Laplace transformation of the distribution of random variables x and x̃. We note that more general
versions of this theorem were introduced in early identifiability theory (Sapatinas, 1995; Teicher,
1961). From Theorem 2, we conclude to the block-identifiability of the comparative analysis models
mentioned above in the setting of observational count noise and invertible link function.

Additionally, we prove that identifiability does not hold in the case of Bernoulli observational
noise without further assumptions. Explicit counterexamples appear in Appendix D.3, disproving
a conjecture in Khemakhem et al. (2020). We instead hypothesize that non-identifiability holds in
general, for any observational distribution with fixed finite support.

4. Impact of Misspecification

Our main results (Theorems 1 and 2) implicitly assume that the observed data have been simulated
from the generative model pθ(x). However, this may be impossible to verify in practice, as there are
many assumptions that might be unknown to practitioners. Examples of such assumptions include the
specification of the graphical model, a function class for the mixing function f , as well as the number
of latent variables. Given any source of such model misspecification, the theory above unfortunately
does not apply.

We focus in this work on a discussion of the impact of a misspecification of the number of
latent variables. This is an important starting point, because it is easy to illustrate, and it is known
that overestimating the number of latent variables induces severe entanglement in practice, making
regularization necessary (Weinberger et al., 2022a). Beside empirical work, theoretical developments
are needed to understand how this occurs in the contrastive analysis setting.

To illustrate this, let p′ ≥ p and q′ ≥ q be the estimated dimensions of the background space and
salient space, respectively, with p′ + q′ > p+ q. Further, denote by z̃ = (z,u) and s̃ = (s,v) the
respective latent variables, where u and v are additional variables of dimensions p′ − p and q′ − q,
respectively. We consider data x̃ = f̃(z̃, s̃), generated by a learned mixing function f̃ . Compared
to our previous setting, we cannot assume injectivity of f̃ under equality of the data generating
distributions. Indeed, if we assume that f̃(z̃, s̃) d

= f(z, s), then the support of those distributions
must be equal f̃(Rp′+q′) = f(Rp+q) and have the same manifold dimension. But because of the
dimension mismatch, f̃ cannot be injective. In particular, the lack of injectivity of f̃ implies that it
does not have a well defined inverse, and makes theoretical analysis challenging.

We therefore first seek to characterize the case where both f and f̃ are linear functions. Surpris-
ingly perhaps, we show that entanglement does not occur in this scenario.

Proposition 1 (Block-wise identifiability under misspecification for the linear case)
Let the ground truth mixing function f be injective linear, and the learned function f̃ be a linear
function such that f(z, s) d

= f̃(z̃, s̃) and f(z,0)
d
= f̃(z̃,0). Then, there exist surjective linear

functions hz and hs such that (z, s) = v(s̃, z̃) = (vs(s̃), vz(z̃)), where v = f−1 ◦ f̃ .

The proof appears in Appendix E.1 and builds upon the proof of identifiability for factor analysis.
This result is interesting, as it may explain why regularization is not used for linear comparative
analysis models, but was introduced with the first applications of DGMs to this setting (Abid and
Zou, 2019). We introduce a broad class of examples of non-identifiable models with non-linear and
non-injective mixing functions in Appendix E.2.
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Although the discussion above is important to define what the lack of identifiability could imply,
it ignores the impact of the variational inference procedure. This is a central point, because the
regularization approaches introduced for comparative DGMs impose independence constraints for
the aggregated variational posterior (Salakhutdinov and Larochelle, 2010). For the target data set, the
aggregated posterior is defined as q̂tϕ(z̃, s̃) = Epdata(x) [qϕ(z̃ | x)qϕ(s̃ | x)] , and the regularizer aims
to enforce the independence statement q̂tϕ(z̃) ⊥⊥ q̂tϕ(s̃) (Abid and Zou, 2019). Other regularization
approaches are described in Appendix E.3.

Interestingly, the independence constraint may not be enough to restore identifiability in general.
Our conjecture is that it does contribute to reducing entanglement by constraining the inference
network, and therefore restricting the space of admissible mixing functions. We demonstrate in later
sections empirical evidence that it indeed improves disentanglement, but leave theoretical analysis to
future work.

5. Multi-Objective Constrained Optimization for Contrastive VAEs (MO-CO-cVAEs)

The standard routine for fitting comparative DGMs consists in casting the inference problem as an
optimization problem by maximizing a lower bound on the likelihood, following the principles of
variational inference (Jordan et al., 1999). By more closely inspecting the nature of the optimization
problem at hand, we present here a novel method for fitting contrastive DGMs.

5.1. Maximum Likelihood Across Data Sets Using Multi-Objective Optimization

Existing methodology for fitting comparative analysis models typically derives one evidence lower
bound (ELBO) for each data set, specifically, LB(θ, ϕ) for the background LT (θ, ϕ) for the target
data set. The objective function is then defined as the sum of these ELBOs as in Equation 1.
We refer to this approach as the Single Objective cVAE (SO-cVAE). In this scenario, optimizing
one loss may negatively impact the optimization of the other, a common challenge in multi-task
learning (Sener and Koltun, 2018). Moreover, our theoretical insights indicate that the learned
parameters for the generative model should be optimal across all considered data sets. As a result,
we advocate for framing this problem of inference across multiple data sets as a multi-objective
optimization problem: minθ,ϕ

(
−LB(θ, ϕ),−LT (θ, ϕ)

)
, that we solve using the Multiple-Gradient

Descent Algorithm (Désidéri, 2012), where at each step t, the direction δt used for the descent is a
convex combination of the gradient of each ELBO:

δt = −αt∇LB(θt, ϕt)− (1− αt)∇LT (θt, ϕt) (4)

αt = argmin
α∈[0,1]

∥α∇LB(θt, ϕt) + (1− α)∇LT (θt, ϕt)∥22, (5)

where the quadratic optimization problem in Equation 5 admits a closed-form solution (Appendix F.1).
This procedure provably converges to a Pareto-optimal design point in the batch setting (Zhou et al.
(2022) discusses the stochastic setting). In our implementation, we solely rely on gradients of the last
layer of the decoder to approximately calculate the optimal weight α, and have observed satisfactory
performance. We refer to this approach as the Multiple Objective cVAE (MO-cVAE).

5.2. Interpretable Hyperparameter Selection via Constrained Optimization

The most common approach to regularize models in the comparative analysis literature involves
adding a penalization term to the ELBO, leading to solving an unconstrained optimization problem
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(U-cVAE). For example, independence constraints are typically enforced via penalization of mutual
information approximations, estimated either via the density-ratio trick (Abid and Zou, 2019), or
kernel-based embedding of distributions (Weinberger et al., 2022a). This approach has two significant
drawbacks. First, it necessitates the calibration of the Lagrangian multiplier. Currently, the only
methods available involve either using a preset value (Abid and Zou, 2019) or comparing the scales
of loss functions (Weinberger et al., 2022b). Second, the primary goal of the optimization procedure
is not to minimize the mutual information between the latent variables, but for the mutual information
to be sufficiently low for practical considerations.

For these reasons, we instead explore the design of a constrained optimization problem that
enhances interpretability and automation for the selection of the Lagrangian parameter:

min
θ,ϕ

L(θ, ϕ) = −LB(θ, ϕ)− LT (θ, ϕ) such that CKA (q̂ϕ(z, s)) ≤ β, (6)

where β > 0 is a scalar , and CKA (q̂ϕ(z, s)) is the centered kernel alignment metric (Kornblith
et al., 2019), a non-parametric measure of correlation between random vectors. Given two positive
definite kernels k : Rp × Rp → R, and l : Rq × Rq → R, we may define the cross-covariance
operator Cz,s that embeds the joint distribution q̂ϕ(z, s) as a linear operator in the RKHS obtained
from both kernels (Gretton et al., 2012). Similarly, we may embed each marginal distribution q̂ϕ(z)
and q̂ϕ(s) as linear operators Cz,z and Cs,s. Then, the CKA is defined as:

CKA (q̂ϕ(z, s)) =
∥Cz,s∥2HS

∥Cz,z∥HS∥Cs,s∥HS
, (7)

where ∥.∥HS designates the Hilbert-Schmidt norm of a linear operator in the RKHS. When the kernels
are linear, the CKA metric becomes related to the RV-coefficient (Robert and Escoufier, 1976) as
well as Tucker’s congruence coefficient (Tucker, 1951), both practically used to estimate correlations
between pairs of random vectors. Throughout this manuscript, we use a maximal CKA value of
β = 0.05 to obtain satisfactory performance. To solve the constrained optimization problem, we
consider the following equivalent Lagrangian (details appear in Appendix F.2),

min
θ,ϕ

max
λ≥0

Lλ(θ, ϕ) = L(θ, ϕ) + λ
(
∥Cz,s∥2HS − β∥Cz,z∥HS∥Cs,s∥HS

)
. (8)

We perform simultaneous gradient descent on (θ, ϕ) and projected gradient ascent on the Lagrangian
λ associated with the constraint (Lin et al., 2020):

[θt+1, ϕt+1] = [θt, ϕt]− ηprimal∇Lλ(θt, ϕt) (9)

λt+1 =
[
λt + ηdual

(
∥Cz,s∥2HS − β∥Cz,z∥HS∥Cs,s∥HS

)]
+
, (10)

where [a]+ = max(0, a). We obtain a stochastic estimate of the gradient ∇Lλ(θt, ϕt) by subsam-
pling data points, as well as latent variables from the variational distribution. We estimate the
Hilbert-Schmidt norms using the Hilbert-Schmidt Independence Criterion (Gretton et al., 2012).
More precisely, from samples (zi, si)Mi=1 from q̂ϕ(z, s), the kernel matrices Kz (and Ks) are defined
as Kij = k(zi, zj), and the HSIC is defined as HSIC(K,L) = (M − 1)−2Tr(KHLH), where
H = I − 1

M 11⊤ is a centering matrix. Then, HSIC (Kz,Ks) is an unbiased estimator for ∥Cz,s∥2HS,
and we proceed similarly for the remaining terms (Gretton et al., 2012).
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In our experiments, we use the Adam optimizer (Kingma and Ba, 2015) for the gradient step
described in Equation 9, with a learning rate of ηprimal = 0.001 and gradient ascent with a learning
rate of ηdual = 1 for updating the Lagrangian coefficient in Equation 10. We refer to this method
as the COnstrained cVAE (CO-cVAE). The reader will notice that this approach may be combined
with the multi-objective optimization approach described above, in which case we refer to it as
MO-CO-cVAE.

6. Experiments

We present empirical evidence of our theory of identifiability with a simulation framework, where
data is generated with a piece-wise linear mixing function. Then, we apply our proposed optimiza-
tion framework to a real-world example from single-cell perturbation data analysis. We base our
experiments upon the implementation of contrastive DGMs presented in Weinberger et al. (2023).
All results are reported with mean and standard deviation over 5 random initializations. Additional
experimental results and supplementary metrics appear in Appendix F.9.

6.1. Synthetic Data Experiments

In order to provide empirical evidence for our theory of identifiability, we generated synthetic data in
the contrastive analysis framework, according to the generative model described in Figure 1, where
f is a four-layers Leaky ReLU neural network (details in Appendix F.4).

Verification of Identifiability Our theory dictates that if the number of latent variables in each
space is known, then the contrastive model is identifiable. In addition, we know that the latent
variables should be linear transformations of each other, with no leakage between the distinct spaces.
To verify this claim, we generated data with p = q = 5, and fitted a contrastive DGM with the same
estimated number of latent dimensions (no regularization). We refer to those unregularized models
as MO-cVAE and SO-cVAE, depending on whether the multi-objective optimization procedure was
applied or not. We quantified the level of disentanglement using the Pearson Mean Correlation
Coefficient after a linear transformation (MCC) between ground truth latent variables, and estimated
latent variables (Appendix F.5). More specifically, we calculated the Pearson MCC between ẑ and z,
ŝ and s (higher is better), but also between ẑ and s, and ŝ and z (lower is better). As an aggregated
metric, we define the δ-MCC ∈ [0, 1] as

δ-MCC =
1

2
(MCCẑz + MCCŝs) +

1

2
(MCCŝz − MCCẑs) . (11)

The results highlight high conservation of each individual latent space, and remarkably low leakage
between latent spaces, for both Poisson, and negative binomial observation models (Table 1). For
reference, we also fitted a vanilla VAE, with the same architecture and noise model. Because
the VAE only yields one set of latent variables, we ran the method with p + q number of latent
variables and used contrastive PCA to split the latent space into the background or the salient space
(Appendix F.6). We observe poor performance of the VAE for this task, likely because it treats
all samples as independent and identically distributed, and ignores additional knowledge about
the background data set. This suggests, as expected, that the additional assumptions enforced by
contrastive DGMs are necessary for identifiability.
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Table 1: Identifiability under assumptions of known dimensions of latent spaces. Best in bold.

Model Noise MCCẑz (↑) MCCẑs (↓) MCCŝz (↓) MCCŝs (↑) δ-MCC (↑)

MO-cVAE
Poisson

0.91± 0.01 0.08± 0.01 0.07± 0.01 0.94± 0.01 0.85± 0.01
SO-cVAE 0.93± 0.01 0.13± 0.01 0.07± 0.02 0.92± 0.01 0.83± 0.01
VAE 0.87± 0.04 0.17± 0.9 0.14± 0.07 0.92± 0.04 0.74± 0.12

MO-cVAE Negative
binomial

0.93± 0.01 0.10± 0.01 0.06± 0.01 0.94± 0.01 0.83± 0.01
SO-cVAE 0.92± 0.01 0.08± 0.01 0.07± 0.01 0.94± 0.01 0.83± 0.01
VAE 0.81± 0.10 0.46± 0.18 0.37± 0.18 0.80± 0.10 0.39± 0.28

Impact of Misspecification Then, we wanted to illustrate the fact that disentanglement performance
drops in the setting of misspecification of the number of latent variables. Towards this goal, we
maintained p and q to 5 in the simulation framework, but augmented q̂, the dimensionality of s in the
inference method. We noticed a strong degradation in the performance, as highlighted in the drop in
δ-MCC (Table 2). Careful examination of the individual MCC scores revealed a high leakage from
the ground truth background variables z into the estimated salient variables ŝ (Table 8 and 9).

Information Constraints Improve Performance We then explored how much the independence
constraints could help improve the performance in the case q̂ = 10. Towards this end, we applied
the HSIC penalty with a fixed scaling factor λ, denoted as U-SO-cVAE and U-MO-cVAE (U stands
for unconstrained), as well as the constrained optimization procedure with β = 0.05, denoted
as CO-SO-sVAE and CO-MO-cVAE. We report values of the δ-MCC for different values of the
regularization strength in Table 3. Although regularization helped partially restore the performance
in some sensible range of λ, the constrained optimization approach is more practical as λ is adjusted
automatically during training, and achieved competitive performance.

Comparison with other Regularizers In order to justify that the HSIC penalty is a competitive
regularizer, we also assessed the performance of the regularization from both ConstrastiveVI (Wein-
berger et al., 2023), as well as the original cVAE (Abid and Zou, 2019) on the same benchmark in
the experiment from Table 3. The ContrastiveVI regularization seems to help (δ-MCC value of 0.75),
but its performance remains lower than CO-MO-cVAE. cVAE achieves a poorer result (δ-MCC value
of 0.69), slightly improving over the unregularized method.

Multi-objective Optimization We also note that the approach that used multi-objective optimiza-
tion systematically performed better throughout this benchmark (Tables 1, 2, and 3).

Table 2: Impact of misspecification of latent
dimensionality on δ-MCC.

q̂ SO-cVAE MO-cVAE

5 0.83± 0.01 0.85± 0.01
7 0.73± 0.03 0.81± 0.01
10 0.66± 0.01 0.75± 0.01
15 0.58± 0.02 0.70± 0.02

Table 3: Impact of regularization on δ-MCC un-
der misspecification.

Regularization SO-cVAE MO-cVAE

U (λ = 0) 0.66± 0.01 0.75± 0.01
U (λ = 10) 0.70± 0.02 0.78± 0.01
U (λ = 50) 0.76± 0.01 0.79± 0.02
U (λ = 100) 0.66± 0.08 0.80± 0.01
U (λ = 200) 0.32± 0.10 0.34± 0.13
CO 0.77± 0.01 0.80± 0.01
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Table 4: Results on real data.

ARI (↑) NMI (↑) ASW (↑) cMCC-P (↓) cMCC-S (↓)

MO-CO-cVAE 0.34± 0.05 0.40± 0.03 0.10± 0.01 0.28± 0.04 0.28± 0.04
SO-CO-cVAE 0.31± 0.06 0.38± 0.03 0.08± 0.01 0.28± 0.02 0.28± 0.02
MO-cVAE 0.32± 0.09 0.39± 0.06 0.07± 0.05 0.36± 0.06 0.36± 0.06
SO-cVAE 0.27± 0.02 0.31± 0.04 0.04± 0.01 0.40± 0.01 0.40± 0.01
ContrastiveVI 0.30± 0.06 0.38± 0.05 0.06± 0.03 0.34± 0.04 0.34± 0.05
cVAE 0.27± 0.10 0.31± 0.08 0.05± 0.04 0.36± 0.02 0.36± 0.02
VAE 0.28± 0.05 0.34± 0.05 0.06± 0.02 0.76± 0.10 0.74± 0.11

6.2. Single-cell Perturbation Analysis

As an application to real data, we present an experiment focused on characterizing the effect of
genetic perturbations on single-cell gene expression levels, a central problem in modern molecular
biology (Dixit et al., 2016; Norman et al., 2019). In these data sets, we observe two important sources
of variation. First, cells react to the genetic perturbation they were exposed to, and modulate the
expression level of their genes. Second, there is some inherent variation in gene expression levels
that happens due to the cells going through biological processes such as stages of the cell cycle,
or simply due to heterogeneity in the initial population of cells. An important problem therefore
consists in disentangling these effects, and ContrastiveVI (Weinberger et al., 2023) was conceived
with this goal in mind.

We focus on a recent data set (Norman et al., 2019) that contains expression profiles from 33, 820
erythroleukemia (cancer) cells, after interventions targeting each of 105 genes, as well as 131 pairs
of those same genes. Each measurement from a single-cell combines the identity of the intervention
(target genes) and a count vector where each entry is the expression level of each gene in the genome.
Because of experimental limitations (Grün et al., 2014), we observe signal only for a subset of several
thousand genes out of the approximately 20, 000 genes in the genome. Here we selected d = 2, 000
genes. The goal of the experiment was to manipulate gene pairs and measure the resulting changes
in cell state to gain insights into how complex phenotypes emerge and identify genes that interact to
promote differentiation to a specific cell state.

To assess the performance of each method, we first evaluated how well the salient space captures
the effect of perturbations. Specifically, we clustered cells based on their salient embeddings and
assessed how well those clusters overlap with known biological labels attributed to each of the
perturbations, following Weinberger et al. (2023). We reported the Adjusted Rand Index (ARI), the
Normalized Mutual Information (NMI), as well as the Average Silhouette Width (ASW). In addition,
we assessed the overlap in content between the two latent spaces by training a linear regression model
from one space to the other, and reporting the MCC (cMCC-P refers to the Pearson correlation and
cMCC-S to the Spearman correlation).

We applied our evaluation pipeline for the VAE, MO-CO-cVAE, SO-CO-cVAE, as well as non-
regularized variants that we note as MO-cVAE and SO-cVAE (Table 4). We observed again that the
multi-objective variant outperforms the single-objective method, and that constrained optimization
provided an effective regularization strategy. As a point of comparison, we also reported the
performance of ContrastiveVI and the original cVAE, and noticed that MO-CO-cVAE performed
better. This suggests that our novel methodology is effective in practice. Qualitative comparisons
appear in Appendix F.8.
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7. Conclusion

This study examines the identifiability properties of recently proposed Deep Generative Models
(DGMs) for comparative analysis. Our analysis highlights the block-wise identifiability of many
recent contrastive and multi-group DGMs, drawing connections between data from differing sources
and the broader landscape of causal representation learning. A significant contribution is the extension
of non-linear ICA results to count distributions, an area previously less explored. We further assess the
challenges associated with estimating the number of latent variables and provide empirical evidence
that regularization is beneficial under those specific circumstances. Building on our theoretical
findings, we introduce a methodology grounded in multi-objective and constrained optimization
principles. As the field continues to employ DGMs in diverse scientific applications, it is crucial to
emphasize the dual objectives of accurate model fit and interpretability, ensuring that the generated
models are both robust and scientifically valuable.
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Appendix A. Related Work

Interventional Causal Representation Learning Several recent works have investigated the
setting of learning from multiple data sets with interventional shifts in latent space. For example,
Lachapelle et al. (2022) proposed an identifiable non-linear ICA based on the assumption that a
rich set of interventional data is available, where each intervention shifts the sparse set of sufficient
statistics of the latent variable prior distribution. Lopez et al. (2023) proposed an application of this
theory to the setting of modeling single-cell perturbation data, and reported empirical evidence, based
on simulations, that the identifiability guarantee might hold for count data. Our work is distinct from
these as it considers the setting of a small number of data sets, and is mainly concerned with subspace
identification, but it does provide a first line of attack towards extending the results from Lachapelle
et al. (2022) for counting observational noise. Ahuja et al. (2023) recently proposed a framework for
proving identifiability of noiseless auto-encoders under the assumption of a large set of interventions,
and a polynomial decoder. Buchholz et al. (2023); von Kügelgen et al. (2023); Jiang and Aragam
(2023) are concerned with the identifiability of non-linear ICA, under interventional data and with a
general class of non-linear mixing functions (either parametric, or non-parametric). However, the
assumptions made by these works are restricted to stochastic interventions, which makes them not
applicable to our problem. Interestingly, Lemma 8, Appendix D.1 from Buchholz et al. (2023) points
out that non-stochastic interventions create some form of unidentifiability. Consequently, they did
not study it in detail (unlike our work). Also, such works require the availability of data from as
many interventions as the number of the latent dimensions, while our work solely considers two
separate environments.

Identifiability of Modular Representations Several recent works specifically investigated the
prospect of block-wise identifiability. Lachapelle and Lacoste-Julien (2022) proved that under a
relaxation of the assumptions from Lachapelle et al. (2022), we may obtain only disentanglement by
block (when interventions do not dissect enough the latent space to recover the ground truth mixing
function). Lachapelle et al. (2023) investigated the setting of additive decoders, where each decoder
uses only a block of latent variables. In this setting, the goal is to prove the block-wise identifiability
of the latent variables. The definitions of block-wise identifiability in these recent works (Lachapelle
et al., 2023; Von Kügelgen et al., 2021) are essentially equivalent to the ones considered in this
manuscript. Kong et al. (2022) applied non-linear ICA theory to the domain adaptation problem, and
showed block-wise identifiability of the effect of the domain with the predicted outcome under their
latent variable model.

Source Matching Across Domains In the classical linear ICA problem, we are interested in
learning z from data generated as x = Wz + ϵ. Framing the contrastive analysis problem in the
paradigm of linear ICA, we would observe background data xb = W bz + ϵb as well as target data
xt = W ts +W bz + ϵt. The target data set has been generated with additional sources s that we
would like to identify collectively and to separate from the background sources z. In the case of
genomics, the parameters W t are also relevant, as they encode which genes are associated with
which components of the novel sources s. For example, in Boileau et al. (2020) the sparse entries of
the matrix W t are used to identify genes associated with leukemia. The problem of matching sources
across different ICA models is treated in Sturma et al. (2023), although in the context of the more
general problem, in which the two data sets may be composed of different observable quantities (=
modalities). Their solution considers an idealized scenario with a linear mixing function, and no
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observation noise, but could provide a reasonable baseline derived from linear ICA. We found that
the performance of the method was not competitive on the simulated data, likely because the mixing
function used for generating the data is not linear.

Appendix B. Multi-group DGMs

For the sake of completeness, we describe the framework of multi-group analysis (Weinberger et al.,
2022b). We note that this framework has also been referred to as cross-population deep generative
modeling in Davison et al. (2019).

B.1. Generative model

When dealing with multiple data sources (focusing on two data sets for the sake of simplicity), one
immediate question for data exploration is to enumerate patterns that are shared by all data sets
versus the ones that appear only in one of the data sets but not the other. This is the objective of a
Multi-Group analysis model (Figure 1, right). In this model, we have three blocks of latent variables.
First, latent variable

z ∼ Normal(0, Ip), (12)

that encodes shared variation between the two data sets. Then, latent variable

t1 ∼ Normal(0, Iq), (13)

encodes variation that is unique to the first data set. Similarly,

t2 ∼ Normal(0, Iq), (14)

encodes variation that is unique to the second data set. Observations x are then drawn according to
an exponential family distribution, with a mixing function f :

x ∼ EXPFAM
(
f(z, t1, t2)

)
. (15)

B.2. Data Set Definition

Interestingly, we have no data available from the distribution pθ(x), because we observe data
from either data set, where one of the variables is inactive (t1 = 0 or t2 = 0), as introduced
in Weinberger et al. (2022b) as well as Davison et al. (2019). To formalize this, we model it as a hard
intervention (Pearl, 2009), akin to interventional causal representation learning (Ahuja et al., 2023).
For example, data set 1 is generated by sampling from the distribution pθ

(
x | do(t2 = 0)

)
, and we

operate similarly for the data set 2, sampled from pθ
(
x | do(t1 = 0)

)
. The reader will notice that

the setting of contrastive analysis (Figure 1, left) is a particular instance of this model, when the
mixing function is constant with respect to one of the group-specific latent variables (e.g., t1).

B.3. Variational Inference

Both of the data likelihoods pθ
(
x | do(t1 = 0)

)
and pθ

(
x | do(t2 = 0)

)
are intractable. Therefore,

Weinberger et al. (2022b) as well as Davison et al. (2019) both proceeded to posterior approximation
with variational inference.
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For each sample in data set 1, the variational distribution is mean-field qϕ(z | x)qϕ(t1 | x).
Then, the evidence lower bound (ELBO) is written as:

L1(θ, ϕ) = Eqϕ(z|x)qϕ(t1|x) log
pθ(x, t

1,0)

qϕ(z | x)qϕ(t1 | x)
.

For each sample in data set 2, the variational distribution is qϕ(z | x)qϕ(t2 | x). Then, the evidence
lower bound is written as:

L2(θ, ϕ) = Eqϕ(z|x)qϕ(t2|x) log
pθ(x,0, t

2)

qϕ(z | x)qϕ(t2 | x)
.

Both frameworks propose to optimize the following composite ELBO:

L(θ, ϕ) = L1(θ, ϕ) + L2(θ, ϕ).

This composite ELBO may be used as an objective function for maximization, in conjunction
with adequate regularization of the neural networks parameterizing the variational distribution as a
function of the input data. In Weinberger et al. (2022a), the regularization ensures that the output of
the neural network parameterizing the variational posterior for the latent variables t1 and t2 (i.e.,
their mean and diagonal variance vector) is close to zero for data points where the value of t1 or t2

should be zero. For example, for a point x1 from data set 1, the regularization will penalize the sum
of the square mean and the variance of qϕ(t2 | x), which corresponds to the Wasserstein distance
between qϕ(t

2 | x) and the Dirac distribution centered at 0.

Appendix C. A Theory of Identifiability for Noiseless Comparative Analysis DGMs

C.1. Counterexample of Identifiability for Non-linear Contrastive Analysis

Data Generating Model Let us assume we observe the target data according to the following
contrastive deep generative model:

z ∼ Normal(0, Ip) (16)

s ∼ Normal(0, Iq) (17)

x ∼ Normal(f(z, s), σ2Id). (18)

We also observe a background data set from the distribution pθ (x | do(s = 0)). In this example, we
consider p = 2 and q = 1 to demonstrate that there exist mixing functions f that cannot be identified
from data. Towards this end, we build a function f̃ such that the resulting data distribution is identical
to that of f , but such that f̃ is not subspace disentangled with respect to f .

A Key Diffeomorphism The key idea for this counterexample consists in using a diffeomorphism
of R3 that preserves volumes, as well as Euclidean distances to the origin. We consider the following
diffeomorphism:

Φ :

 z1
z2
s

 7→

 z1 cos s− z2 sin s
z1 sin s+ z2 cos s

s

 . (19)
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To verify that Φ is norm-preserving, we denote by Rs the rotation operator in two dimensions and
simply calculate

∀z1, z2, s ∈ R3, ∥Φ(z1, z2, s)∥22 = ∥Rs((z1, z2)∥22 + s2 = ∥(z1, z2, s)∥22. (20)

To verify that Φ is volume-preserving, we may calculate the Jacobian determinant:

|DΦ(z1, z2, s)| =

∣∣∣∣∣∣
cos s − sin s 0
sin s cos s 0
0 0 1

∣∣∣∣∣∣ = 1. (21)

Next, we make use of the following lemma.

Lemma 1 Let Φ be a diffeomorphism of Rd. Let us assume that Φ preserves the Euclidean norm,
that is that for all u ∈ Rd, ∥Φ(u)∥2 = ∥u∥2. Let us also assume that Φ is volume-preserving,
meaning that for all u ∈ Rd, |DΦ(u)| ∈ {−1, 1}. Then, Φ leaves the isotropic Gaussian distribution
invariant, that is for x ∼ Normal(0, Id), x

d
=Φ(x).

Proof To show that x and x̃ = Φ(x) are equal in distribution, we will show equality of the
characteristic functions.

Let t ∈ Rd. The characteristic function ϕx̃(t) of random variable x̃ is defined as:

ϕx̃(t) = Ex̃e
it⊤x̃ =

∫
eit

⊤x̃dPx̃. (22)

Using the change of variable formula, we have:

ϕx̃(t) =

∫
Rd

eit
⊤x̃|DΦ−1(x̃)|px(Φ−1(x̃))dx̃. (23)

Now, because Φ is a volume-preserving diffeomorphism, we have |DΦ−1(x̃)| = 1 for all x̃ ∈ Rd.
And, because px is the density of the isotropic Gaussian distribution, we have that px depends only
on the distance to the origin (i.e., the Euclidean norm). However, Φ is norm-preserving so we have
px(Φ

−1(x̃)) = px(x̃) for all x̃ ∈ Rd. Therefore, we have:

ϕx̃(t) =

∫
Rd

eit
⊤x̃px(x̃)dx̃ = ϕx(t), (24)

which concludes the proof. □

Unidentifiability Because any diffeomorphism that preserves norm and volume leaves the isotropic
Gaussian distribution invariant, Φ(z, s) d

=(z, s). Furthermore, we notice that the restriction of Φ
to the domain R2 × {0} satisfies the same properties, and therefore Φ(z, 0)

d
=(z, 0). Now, for any

non-trivial f , we define f̃ = f ◦ Φ so that v = Φ. We have constructed a case of two functions
f and f̃ where the data distributions are equal, but f̃ is not subspace disentangled with respect to
f , because v is not compatible with the Cartesian product R2 × R. Indeed, the first component of
v(z, s) depends non-trivially on s.

Extension to the Multi-group setting The reader will notice that this counterexample may be
easily adapted to the multi-group setting, by rotating the block of z by and angle of t1 + t2.

23890



LOPEZ HUETTER HAJIRAMEZANALI PRITCHARD REGEV

C.2. Identifiability of ReLU Contrastive Analysis DGMs

We start by stating a general result from Kivva et al. (2022) that we will apply to the comparative
analysis setting.

Theorem 4 (Theorem D.4 from Kivva et al. (2022)) Let f, g : Rm → Rn be continuous piece-
wise affine functions such that f and g are both injective for almost every point in their respective
images f(Rm) and g(Rm). Let Z ∼

∑J
i=1 λiNormal(µi,Σi) and Z ′ ∼

∑J ′

j=1 λjNormal(µ′
j ,Σ

′
j)

be a pair of variables with GMM distribution (in reduced form). Suppose that f(Z) and g(Z ′) are
equally distributed. Let D ⊆ Rn be a connected open set such that f and g are injective onto D. Then,
there exists an affine transformation h : Rm → Rm such that h(Z)

d
=Z ′ and g(z) =

(
f ◦ h−1

)
(z)

for every z ∈ g−1(D).

We now prove our main result.

Theorem 1 (Identifiability Theorem) Let the ground truth mixing function f and the learned
mixing function f̃ both be continuous and injective piece-wise affine mixing functions such that
f(z, s)

d
= f̃(z, s) and f(z,0)

d
= f̃(z,0). Then, f̃ is subspace disentangled with respect to f and the

noiseless version of the contrastive analysis model is subspace identifiable.

Proof Let f and f̃ be two continuous injective piecewise linear functions such that f(z, s) d
= f̃(z, s)

and f(z,0)
d
= f̃(z,0). The key idea of the proof is to first study the implications of each of the two

hypotheses on equality in distribution independently. By applying the result of Kivva et al. (2022),
Theorem 4, we reduce the complexity of the problem to a linear equivalence class of functions. Then,
simple linear algebra allows us to conclude.

We start by applying the result of Kivva et al. (2022) to the target data set, as it is the most
straightforward. f and f̃ are two continuous injective piecewise affine functions. Because for the
Gaussian vector (z, s), we have f(z, s)

d
= f̃(z, s), we may apply Theorem 4 and obtain that there

exists an affine transformation h1 : Rp × Rq → Rp × Rq such that h1(z, s)
d
=(z, s), and

∀(u,v) ∈ Rp × Rq, f̃(u,v) =
(
f ◦ h−1

1

)
(u,v). (25)

Now, let us consider the background data set. Let Db = Rp × {0} denote the domain of the
latent variables that generate the background data set, and let f |Db be the the restriction of the
piecewise affine function f to the domain Db. Because f is piecewise affine, f |Db is also piecewise
affine. Because the restriction of an injective function is injective, f |Db is injective. Given that
f(z,0)

d
= f̃(z,0), we may apply Theorem 4 and obtain that there exists an affine transformation

h0 : Rp → Rp such that h0(z)
d
= z, and

∀u ∈ Rp, f̃
∣∣∣
Db

(u,0) =
(
f
∣∣
Db ◦ h−1

0

)
(u,0). (26)

Finally, we appeal to a short linear algebraic argument to conclude. Because h0 and h1 are affine
maps preserving the isotropic Gaussian distribution, they must be linear (i.e., the offset term is zero)
in order to preserve the mean. We may write the functions as

h0(u) = R0u (27)

h1(u,v) = (R11u+R12v, R21u+R22v) . (28)
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Now, because of the injectivity of the functions f and f̃ , we know that h0 and h1 are equal for all
values of u whenever v = 0. Therefore, we have that R11 = R0, and R21 = 0. We may rewrite our
functions as

h0(u) = R0u (29)

h1(u,v) = (R0u+R12v, R22v) . (30)

Now, in order to preserve the covariance of the Gaussian vector, we have(
Ip 0
0 Iq

)
=

(
R0 R12

0 R22

)(
R⊤

0 0
R⊤

12 R⊤
22

)
=

(
R0R

⊤
0 +R12R

⊤
12 R12R

⊤
22

R22R
⊤
12 R22R

⊤
22

)
. (31)

Therefore, we have that R22R
⊤
22 = I , and R22 is an orthogonal matrix. But additionally, R12R

⊤
22 = 0,

and because R22 is invertible, it implies that R12 = 0. Therefore R12 is the null function and we
have proved that v = f−1 ◦ f̃ is compatible with respect to the Euclidean decomposition Rp×Rq. □

C.3. Identifiability of ReLU Multi-Group Analysis DGMs

We start this section by introducing the notation and the definition of subspace disentanglement in
this specific setting. Let us also introduce the domains for the latent variables D1 = Z × T 1 × {0}
and D2 = Z × {0} × T 2. The subspace identifiability corresponds to:

Definition 5 (Subspace Disentanglement) A learned mixing function f̃ is said to be subspace-
disentangled with respect to the ground truth mixing function f if f(D1) = f̃(D1) and f(D2) =
f̃(D2) and the mapping v = f−1◦f̃ is a diffeomorphism such that both v|D1 and v|D2 are compatible
with respect to the subspaces D1 and D2.

When this property is not verified, this would imply that the learned mixing function f̃ does not
decompose the signal in the feature space X into the same shared Z and private spaces T 1, and T 2.
Now we proceed to a statement of the generalization of Theorem 1 to the multi-group setting.

Theorem 3 Let the ground truth mixing function f and the learned mixing function f̃ both be
continuous and injective piecewise affine mixing functions such that f(z, t1,0) d

= f̃(z, t1,0) and
f(z,0, t2)

d
= f̃(z,0, t2). Then, f̃ is subspace disentangled with respect to f and the noiseless

version of the multi-group analysis model is subspace identifiable.

Proof Let f and f̃ be two continous injective piecewise linear functions such that

f(z, t1,0)
d
= f̃(z, t1,0) and f(z,0, t2)

d
= f̃(z,0, t2). (32)

We proceed very similar to the contrastive analysis case.
Let D1 = Rp × Rq × {0} denote the domain for the latent variables that generate data set 1.

Let f |D1 be the the restriction of the piecewise affine function f to the domain D1. Because f is
piecewise affine, f |D1 is also piecewise affine. Because the restriction of an injective function is
injective, f |D1 is injective. Given that f(z, t1,0) d

= f̃(z, t1,0), we may apply Theorem 4 and obtain
that there exists an affine transformation h1 : D1 → D1 such that h1(z, t1,0)

d
=(z, t1,0), and:

∀u,v1 ∈ Rp × Rq, f̃
∣∣∣
D1

(u,v1,0) =
(
f
∣∣
DB ◦ h−1

1

)
(u,v1,0). (33)
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Applying the same argument to data set 2, we conclude that that there exists an affine transformation
h2 : D2 → D2 such that h2(z,0, t2)

d
=(z,0, t2), and:

∀u,v2 ∈ Rp × Rq, f̃
∣∣∣
D1

(u,0,v2) =
(
f
∣∣
DB ◦ h−1

2

)
(u,0,v2). (34)

Finally, we make appeal to a short linear algebraic argument to conclude. Because h1 and h2 are
affine maps preserving the isotropic Gaussian distribution, they must be linear in order to preserve
the mean. We may rewrite the definitions of the functions as:

h1(z,v
1) =

(
U11z + U12v

1, U21z + U22v
1
)

(35)

h2(z,v
2) =

(
V11z + V12v

2, V21z + V22v
2
)
. (36)

Due to the identifiability of the functions, we know that h1 and h2 overlap for all values of z when
v1 = v2 = 0. Therefore, we have that U11 = V11 = R1, and U21 = V21 = 0. Therefore, we have

h1(z,v
1) =

(
R1z + U12v

1, U22v
1
)

(37)

h2(z,v
2) =

(
R1z + V12v

2, V22v
2
)
. (38)

Now, in order to preserve the covariance of the Gaussian vector h1(z, t1), we have(
Ip 0
0 Iq

)
=

(
R1 U12

0 U22

)(
R⊤

1 0
U⊤
12 U⊤

22

)
=

(
R1R

⊤
1 + U12U

⊤
12 U12U

⊤
22

U22U
⊤
12 U22U

⊤
22

)
. (39)

Observing that U22 is an isometry, as in the contrastive case, we obtain that U12 = 0. Proceeding
similarly for h2(x, t1), we have that V12 = 0 as well. Therefore, we have proved that the restrictions
of v = f−1 ◦ f̃ to D1 and D2 are compatible with respected to the Euclidean decomposition
Rp × Rq × Rq. □

Appendix D. Identifiability Theory for Counting Observation Noise

D.1. Preliminary Results

The central argument for our proofs will rely on a generalization of the characteristic function that
we refer to as the Laplace transform:

Definition 6 Let y be a random vector valued in Rd. The Laplace transform of the random vector y
is defined as:

Cd → C

ξy : t 7→ E
[
et

⊤y
]
. (40)

The restriction of ξy to the product of the imaginary lines is the characteristic function ϕy. Similarly,
the restriction of ξy to the product of the real lines is the moment generating function.

When dealing with count distributions, it is especially interesting to consider specific results
about positive random variables. In this case, the Laplace transform is defined, and even holomorphic,
over the product of half-spaces:
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Lemma 7 Let y be a random vector valued in Rd
+. Then, the function ξy is a holomorphic function

of several variables on Hd
−, where H− = {z ∈ C | ℜ(z) < 0}.

Proof We first show that the function is well defined on its domain Hd
−. Let t = (uj + ivj)

d
j=1 with

uj < 0 for all j ∈ [d]. In this case, the integral is absolutely convergent:

E
∣∣∣et⊤y

∣∣∣ = E
∣∣∣eu⊤y+iv⊤y

∣∣∣ = Eeu
⊤y ≤ 1 (41)

Because y is positive almost surely, and u is a vector with negative values. To show that ξy is
holomorphic on Hd

−, by Osgood’s lemma, it is sufficient to prove that ξy is continuous on Hd
−, and

holomorphic in each of its variables on H−. To show that ξy is continuous, it is enough to notice that
the integrand defining ξy is uniformly bounded by an integrable function (Equation 41), and that the
function t 7→ et

⊤y is continuous, so continuity follows from the dominated convergence theorem.
To show that ξy is holomorphic on each of its variable, it is enough to show that t1 7→ ξy(t1, . . . , td)
is holomorphic on H−. Here again, we may apply the dominated convergence theorem. This is
justified because (i) the exponential function is holomorphic, (ii) for all t1 ∈ H− the integral exists
and (iii) the integrand is uniformly bounded above by an absolutely integrable function. □

Next, we derive the Laplace transform for some specific compound variables.

Lemma 8 (Poisson noise) Let y be a random vector valued in Rd
+, and let us assume that we

observe count data x generated as xj ∼ Poisson(yj) for j ∈ [d]. Then, for all t ∈ Cd such that the
Laplace transform of the random vector x is defined, it can be derived as:

ξx(t) = ξy
(
et − 1

)
, (42)

where the component-wise operations are used to assemble the vector et − 1 =
(
etj − 1

)d
j=1

.

Proof This derivation simply uses the law of total expectations,

ξx(t) = Ex[e
t⊤x] = Ey

[
Ex[e

t⊤x | y]
]
, (43)

the fact that components of x are independent conditionally on y,

ξx(t) = Ey

Ex

 d∏
j=1

etjxj | y

 = Ey

 d∏
j=1

Exj

[
etjxj | y

] , (44)

and the definition of the Laplace transform for the Poisson distribution

ξx(t) = Ey

 d∏
j=1

eyj(e
tj−1)

 = ξy
(
et − 1

)
, (45)

where component-wise operations are used to assemble the vector et − 1 =
(
etj − 1

)d
j=1

. □

Lemma 9 (Negative binomial noise) Let y be a random vector valued in Rd
+, and let us assume

that we observe count data x generated as xj ∼ NegativeBinomial(yj , θ) for j ∈ [d], where θ
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designates the shape parameter. Then, for all t ∈ Cd such that the Laplace transform of the random
vector x is defined, it can be derived as:

ξx(t) = ξy
(
− log(1− (et − 1)θ)

)
, (46)

where log is the principal branch of the complex logarithm, and component-wise operations are used
to assemble the vector log(1− (et − 1)θ) =

(
log(1− (etj − 1)θ)

)d
j=1

.

Proof In this case, we use the definition of the negative binomial distribution as a Gamma-Poisson
compound distribution:

xj ∼ NegativeBinomial(yi, θ) ⇔ ui ∼ Gamma(yi, θ), xi ∼ Poisson(ui). (47)

Following the Poisson case, we get

ξx(t) = Ey

[
Eu

[
Ex

[
et

⊤x | u
]
| y

]]
(48)

= Ey

Eu

Ex

 d∏
j=1

etjxj | u

 | y

 (49)

= Ey

 d∏
j=1

Eu

[
Ex

[
etjxj | u

]
| y

] . (50)

Then, using the definition of the Laplace transform for the Poisson distribution and the Gamma
distribution, we get

ξx(t) = Ey

 d∏
j=1

Eue
uj(e

tj−1)

 (51)

= Ey

 d∏
j=1

[
1− (etj − 1)θ

]−yj

 , (52)

where the power with a complex base ap is defined as ep log a, where log is the principal branch of the
complex logarithm. Reassambling the product into a sum of terms inside the exponential distribution,
we get

ξx(t) = ξy
(
− log(1− (et − 1)θ)

)
, (53)

where the vector log(1− (et − 1)θ) =
(
log(1− (etj − 1)θ)

)d
j=1

is put together component-wise. □

D.2. Identifiability of mixture through observational count noise

Proposition 2 (Identifiability of mixture through observational count noise) Let u be a ran-
dom variable taking values in Rp. Let f and f̃ be two functions valued in Rd

+, and let y = f(u) and
ỹ = f̃(u). If the random variables x ∼ px(y) and x̃ ∼ px(ỹ) are equal in distributions, and px is
Poisson, or negative binomial with fixed shape, then it follows that y d

= ỹ.
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Proof Because both random vectors y and ỹ are valued in Rd
+, Lemma 7 dictates that ξy and ξỹ are

holomorphic on Hd
−. Proceeding similarly for x and x̃, ξx and ξx̃ are holomorphic, and therefore

well-defined on Hd
−.

Under the assumption that x d
= x̃, we know that the characteristic functions of x and x̃ must

agree. Therefore, we have:

∀t ∈ (iR)d, ξx(t) = ξx̃(t), (54)

We now split the cases of Poisson and negative binomial distribution.
Poisson case Using Lemma 8, Equation 54 is equivalent to:

∀t ∈ (iR)d, ξy
(
et − 1

)
= ξỹ

(
et − 1

)
, (55)

Therefore, the holomorphic functions ξy and ξỹ have the same value on a sequence of points
tn = tn · 1d where tn = ei(π+

1
n
) − 1, that converges to −2 · 1d ∈ Hd

−.

Negative binomial case Using Lemma 9, Equation 54 is equivalent to:

∀t ∈ (iR)d, ξy
(
− log(1− (et − 1)θ)

)
= ξỹ

(
− log(1− (et − 1)θ)

)
, (56)

Therefore, the holomorphic functions ξy and ξỹ have the same value on a sequence of points

tn = tn · 1d where tn = − log
(
1− θ(ei(π+

1
n
) − 1)

)
, that converges to − log(1 + 2θ) · 1d ∈ Hd

−.
End of proof In both cases, by analytic continuation, we have:

∀t ∈ Hd
−, ξy(t) = ξỹ(t). (57)

Now, let us notice that ξy(t) and ξỹ(t) are holomorphic, and therefore continuous on Hd
−. For each

w ∈ Rd, we denote as twn = − 1
n · 1d + iw. We know that both functions ξy and ξỹ admit for

limit the value of their respective characteristic function evaluated at w when n → ∞, and then
by continuous extension of the function, we must have equality of the limits, and therefore of the
characteristic functions. Therefore, this is enough to guarantee y

d
= ỹ, since characteristic functions

uniquely characterize a probability distribution. □
We now proceed to the proof of the theorem.

Theorem 2 (Reduction from observational count noise to the noiseless setting)
Let u ∼ Normal (0, Ip). Let f = σ ◦ g (resp. f̃ = σ ◦ g̃) be the composition of a scalar link
function σ, valued in R+ (applied component-wise), with a piecewise affine function g (resp. g̃). Let
x ∼ px(f(u)) and x̃ ∼ px(f̃(u)) such that px is Poisson or negative binomial with fixed shape. If
σ is a bicontinuous bijection, then,

x̃
d
=x =⇒ f̃(u)

d
= f(u) =⇒ g̃(u)

d
= g(u). (3)

Proof The implication x̃
d
=x =⇒ f̃(u)

d
= f(u) is the result of Proposition 2.

To prove the second implication, we need to notice that because σ : R → R is a bicontinuous
bijection, it must be a monotonic function. Without loss of generality, we may assume it is strictly
increasing. Therefore, its inverse function σ−1 is also strictly increasing, and by monotonicity, for
every line segment [a, b] of R, we have:

∀c ∈ R, c ∈ [a, b] ⇔ σ−1(c) ∈ [σ−1(a), σ−1(b)]. (58)
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Let us consider now a hyperbox H =
∏d

i=1[ai, bi], and H ′ =
∏d

i=1[σ
−1(ai), σ

−1(bi)] its image
component-wise by σ. We have again, for every point c ∈ Rd:

c ∈ H ⇔ Ψ(c) ∈ H ′, (59)

with Ψ is defined as

Ψ : y 7→
(
σ−1(y1), . . . , σ

−1(yd)
)
. (60)

To conclude the proof, it is enough to notice that two random variables X and Y of Rd are equal in
distributions if they have the same generalized cumulative distribution function, that is if for every
hyperbox H , we have p(X ∈ H) = p(Y ∈ H).

Indeed, if we assume that f̃(u) d
= f(u), we have that for every hyperbox H , p(f̃(u) ∈ H) =

p(f(u) ∈ H). However, we have that f̃(u) ∈ H if and only if g̃(u) ∈ H ′, and similarly,
f(u) ∈ H if and only if g(u) ∈ H ′. Therefore, we have that for every image hyperbox H ′,
p(f̃(u) ∈ H ′) = p(f(u) ∈ H ′). Because σ is a bicontinuous bijection, the set of images hyperboxes
covers the set of all hyperboxes (because of monotonicity), and therefore, we have that g̃(u) d

= g(u).
□

D.3. Discussion of the Bernoulli Noise Setting

The intuition is that in the one-dimensional setting, a mixture of Bernoulli distributions is still a
distribution on {0, 1} and therefore entirely determined by its first moment. To show this, we proceed
with calculations similar to the ones conducted for the Poisson and negative binomial distribution,
but in the case of Bernoulli noise. Let y be a random vector valued in [0, 1]d, and let us assume that
we observe binary data x generated as xj ∼ Bernoulli(yj) for j ∈ [d]. For t ∈ Cd, the Laplace
transform of the random vector x can be derived as:

ξx(t) = Ey

 d∏
j=1

Exj

[
etjxj | y

] . (61)

Let us notice that because y is bounded, ξx is defined on all of Cd. Then, considering the definition
of the Laplace transform of a Bernoulli distribution, we obtain

ξx(t) = Ey

 d∏
j=1

(
(1− yj) + yje

tj
) , (62)

and we may expand the product, by identifying the subset S ⊂ {1, . . . , d} with a binary vector of
size d

ξx(t) = Ey

 ∑
S⊂{1,...,d}

d∏
j=1

(1− yj)
(1−Sj)y

Sj

j etjSj

 (63)

ξx(t) =
∑

S⊂{1,...,d}

Ey

 d∏
j=1

(1− yj)
(1−Sj)y

Sj

j

 et
⊤S . (64)
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It is important to notice here that each subset S in the sum above induces a unique monomial term.
Give this observation, if we assume ξx = ξx̃ for another data-generating process, the equality of
those two functions implies the equality of two finite complex Fourier series, and therefore their
coefficients must be equal (in fact, it is an equivalence):

∀t ∈ Cd, ξx(t) = ξx̃(t). (65)

⇔ ∀S ∈ {0, 1}d,Ey

 d∏
j=1

(1− yj)
(1−Sj)y

Sj

j

 = Eỹ

 d∏
j=1

(1− yj)
(1−Sj)y

Sj

j

 . (66)

Interestingly, the polynomial appearing in the last equation only has term with partial degree of
at most 1 (but of total degree d). Therefore, we hypothesize that it must not be true that this fully
characterizes the distribution of Y , because in general, there exist several distinct functions f that
could have the same moment of order 1.

We therefore focus on building a counter-example with p = d = 2. In this case, let us assume
z ∼ Normal(0, I2) and that y = f(z), and ỹ = f̃(z), and x is generated as xj ∼ Bernoulli(yj) for
j ∈ [d]. x̃ is generated similarly, from ỹ. Let us also assume x̃

d
=x. Based on Equation 66, we have

that 
Ey [(1− y1)(1− y2)] = Eỹ[(1− ỹ1)(1− ỹ2)]
Ey[y1(1− y2)] = Eỹ[ỹ1(1− ỹ2)]
Ey[(1− y1)y2] = Eỹ[(1− ỹ1)ỹ2]
Ey[y1y2] = Eỹ[ỹ1ỹ2]

(67)

These equations are equivalent to the constraints:{
Eyy = Eỹỹ
Eyy1y2 = Eỹỹ1ỹ2

(68)

It is possible to find examples of functions that will yield distributions y and ỹ that satisfy the
constraints in Equation 68, but have different distributions. For example, let us consider the functions
fλ for λ > 0 of the form:

fλ : (z1, z2) 7→
(
FBeta(F

−1
Normal(z1);λ, λ), FBeta(F

−1
Normal(z2);λ, λ)

)
, (69)

where FNormal denotes the cumulative distribution function (CDF) of the isotropic Gaussian dis-
tribution, and FBeta(., λ, λ) denotes the CDF of the Beta distribution with parameters (λ, λ). For
y = f1(z) and ỹ = f2(z), we do not have equality in distribution for y and ỹ, but we do have that
x

d
= x̃.

To show that this pathological case can also happen within the framework we consider in this
paper, let us consider the case f = σ ◦ g where g is a piecewise affine function. Furthermore, we
consider the case where f is separable:

f(z1, z2) = (σ(ga,b(z1)), σ(ga,b(z2))) , (70)

where σ denotes the sigmoid function, and

ga,b(w) = awδ{w ≤ 0}+ bwδ{w > 0}. (71)
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Because y1 and y2 are independent in this case, equality in the mean of each component of y is
enough to guarantee equality in distribution of y. Let us examine the function:

Φ : (a, b) 7→ E [σ(ga,b(u))] =

∫ 0

−∞
σ(aw)p(w)dw +

∫ +∞

0
σ(bw)p(w)dw, (72)

where u is a random variable distributed according to a standard Gaussian distribution, and p(w)
denotes its density evaluated at w. By continuity under the integral sign, Φ is a continuous function
on its domain.

We note that Φ cannot be injective, as it otherwise could be used to define an homeomorphism
from R2 to R, which is impossible by the invariance of domain theorem. Therefore, we must have
two distinct parameters (a, b) and (a′, b′) such that the induced functions f and f ′ generate the same
distribution. Because each set of parameters designates a unique function (if two (a, b) ̸= (a′, b′),
then fa,b ̸= fa′,b′), this is a counterexample.

Appendix E. Identifiability under Misspecification of Contrastive DGMs

E.1. Block-wise Identifiability of Misspecified Linear Model

Proposition 1 (Block-wise identifiability under misspecification for the linear case)
Let the ground truth mixing function f be injective linear, and the learned function f̃ be a linear
function such that f(z, s) d

= f̃(z̃, s̃) and f(z,0)
d
= f̃(z̃,0). Then, there exist surjective linear

functions hz and hs such that (z, s) = v(s̃, z̃) = (vs(s̃), vz(z̃)), where v = f−1 ◦ f̃ .

Proof Let us assume that the data is generated according to the contrastive analysis model, and
where f : (z, s) 7→ x = Uz + V s is a linear mixing function. Let f̃ : (z̃, s̃) 7→ x̃ = Ũ z̃ + Ṽ s̃
denote the learned mixing function.

We first note that f is a linear function, and z, s is a Gaussian vector. Similarly, f̃ is a linear
function, and z̃, s̃ are Gaussian vectors. Therefore, we have that f(z, s) and f̃(z̃, s̃) are Gaussian
vectors. Two Gaussian vectors are equal in distributions if they have the same mean and covariance
matrix. Because both are centered (with mean zero), we therefore rely on the equality of their
covariance matrices. We may proceed similarly for the random vectors f(z,0) and f̃(z̃,0)

Because all of the random vectors z, s, z̃, s̃ follow an isotropic Gaussian distribution, the equality
of the covariance matrices entails that{

UU⊤ = Ũ Ũ⊤

UU⊤ + V V ⊤ = Ũ Ũ⊤ + Ṽ Ṽ ⊤ , (73)

equivalent to {
UU⊤ = Ũ Ũ⊤

V V ⊤ = Ṽ Ṽ ⊤ . (74)

Based on identifiability of the factor analysis model, (Shapiro, 1985), we know that there exists two
matrices O1 and O2 with orthogonal rows such that{

Ũ = UO1

Ṽ = V O2
(75)

and that we have rank(U) = rank(Ũ) = p and rank(V ) = rank(Ṽ ) = q.
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We now seek to compute v† = f−1 ◦ f̃ . Let us notice that f is an injective linear function,
and therefore f−1(x) = (Wzx,Wsx), where W = [W⊤

z ,W⊤
s ]⊤ is the pseudo-inverse of [U, V ].

Substituting this into the expression for v, we have

v(z̃, s̃) = (WzUO1z̃ +WzV O2s̃,WsUO1z̃ +WsV O2s̃) . (76)

By definition of the pseudo-inverse, we have that WzU = I , WsV = I , WzV = 0, and WsU = 0.
Therefore, we may derive a simpler expression for v

v(z̃, s̃) = (O1z̃, O2s̃) . (77)

Identifying each of the matrices O1 and O2 as linear maps, we obtain the desired statement. □

E.2. Non-identifiability in the Misspecified Non-linear Case

We begin by stating the counterexample. For p = p′ = 1, q = 1 and q′ = 2, let us denote z̃ = z and
s̃ = (s, v). We define f as the identity function, and f̃ as the following mixing function:

f̃ :

 z
s
v

 7→
(

z · f(s) + v · g(s)
s

)
, (78)

with f(s) = 1(s ≥ 0) and g(s) = 1(s < 0). Below we prove the result for the piecewise constant
functions, but following the argument in proof for Example 1, the counter-example holds as long as
g(0) = 0 and f(s) + g(s) = 1 almost surely.

Equality of the target data distributions Because f is the identity function, we simply need to
show that f̃(z̃, s̃) follows an isotropic Gaussian distribution. We define u = z ·1(s ≥ 0)+v ·1(s < 0)
and seek to assess the density of u conditionally on s. In cases where s ≥ 0, we get:

p(u | s, {s ≥ 0}) = pz(u | s, {s ≥ 0}) (79)

= pz(u). (80)

We proceed similarly for s < 0

p(u | s, {s < 0}) = pv(u | s, {s < 0}) (81)

= pv(u). (82)

Therefore, we have that

p(u | s) = pv(u)

2
+

pz(u)

2
. (83)

Because pv(u) = pz(u) are both the density of the isotropic Gaussian distribution, we conclude that
u is independent from s and that u follows an isotropic Gaussian distribution.

Equality of the background data distributions Noticing that f̃(z, 0, 0) = (z, 0), we get that
f̃(z̃,0)

d
= f(z, 0).
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Entanglement If we now define (z̄, s̄) = v(z̃, s̃) = f̃(z̃, s̃), we notice that z̄ depends non-trivially
on s̃ (via v):

z̄ = z · 1(s ≥ 0) + v · 1(s < 0), (84)

and therefore we have entanglement.

E.3. Review of Existing Regularization Methods for Comparative Analysis Models

We remind the reader of the definition of the aggregated posteriors, defined for each data set,

q̂tϕ(z, s) = Epdata(x) [qϕ(z | x)qϕ(s | x)] (85)

q̂bϕ(z, s) = Epdata(x|do(s=0)) [qϕ(z | x)qϕ(s | x)] . (86)

Additionally, each of those can be used to define marginal distributions over each set of latent
variables,

q̂tϕ(z) = Epdata(x) [qϕ(z | x)] (87)

q̂tϕ(s) = Epdata(x) [qϕ(s | x)] (88)

q̂bϕ(z) = Epdata(x|do(s=0)) [qϕ(z | x)] . (89)

There are two prominent techniques for promoting disentanglement in the latent space. Abid and
Zou (2019) initially proposed to enforce an independence constraint of the form q̂tϕ(z) ⊥⊥ q̂tϕ(s).
Such constraint is enforced using an adversarial classifier that tries to distinguish samples from the
joint q̂tϕ(z, s) from samples from the marginals q̂tϕ(z), q̂

t
ϕ(s) (obtained through random shuffling of

the embeddings).
Later, Weinberger et al. (2022a) proposed to use a combination of two constraints to help with

disentanglement. The first constraint q̂tϕ(z) = q̂bϕ(z) ensures that the distribution of z is identical
between the target and the background data set. The second constraint consists in observing that the
variational distribution of s for data points in the background data set is not defined, but in principle
could be assessed using the amortization network parameterizing qϕ(s | x):

q̂bϕ(s) = Epdata(x|do(s=0)) [qϕ(s | x)] . (90)

Then, the second constraint is q̂bϕ(s) = δ0, where δ0 denotes the Dirac distribution centered at zero.
In practice, those constraints may be enforced using a maximum mean discrepancy penalty (Gretton
et al., 2012) as used in Weinberger et al. (2022a). Another option for enforcing the constraint
q̂bϕ(s) = δ0 is to penalize with the Wasserstein-2 distance. This second penalization is available in
closed-form between a Dirac and a Gaussian distribution (Villani, 2008), as introduced in Weinberger
et al. (2022b) and used in Weinberger et al. (2023).

Appendix F. Experiments

F.1. Multi-Objective Optimization: the case of Two Objectives

We recall the formulation of the multi-objective optimization problem

min
θ,ϕ

(
−LB(θ, ϕ),−LT (θ, ϕ)

)
. (91)
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The first step in the Multiple-Gradient Descent Algorithm (Désidéri, 2012) consists in calculating the
convex combination of the gradients from each loss used for the update of the parameters. In the
case of two objective functions, it is defined as:

α∗(θ, ϕ) = argmin
α∈[0,1]

∥α∇LB(θ, ϕ) + (1− α)∇LT (θ, ϕ)∥22. (92)

As pointed out by Désidéri (2012), this optimization problem in Equation 92 admits a closed-form
solution, defined as:

α∗(θ, ϕ) =

[(
∇LT (θ, ϕ)−∇LB(θ, ϕ)

)⊤∇LT (θ, ϕ)

∥∇LT (θ, ϕ)−∇LB(θ, ϕ)∥22

]τ

[0,1]

, (93)

where [a]τ[0,1] = max(0,min(a, 1)) designates the projection onto the compact [0, 1]. Taken together,
the optimization procedure can be described as:

αt = α∗(θt, ϕt) (94)

δt = −αt∇LB(θt, ϕt)− (1− αt)∇LT (θt, ϕt) (95)[
θt+1, ϕt+1

]
=

[
θt, ϕt

]
− ηδt, (96)

where we note that the gradient update in Equation 96 may be replaced with that of any first-order
stochastic optimizer.

The original framework suggests that one should use the gradient with respect to all the shared
parameters of the model in order to compute the alpha parameter in Equation 93. This requires
collecting the gradients with respect to parameters of every layer of the decoder and the encoder. In
the simulations with dx = 150, this amounts to around 180K parameters. For ease of implementation,
we calculated α using only the gradients with respect to the weights of the last layer of the decoder
(around 20K parameters), and noticed improvements over the single-objective method.

F.2. Constrained Optimization

We aim at solving the following constrained optimization problem:

min
θ,ϕ

L(θ, ϕ) = −LB(θ, ϕ)− LT (θ, ϕ) such that
∥Cz,s∥2HS

∥Cz,z∥HS∥Cs,s∥HS
≤ β. (97)

By using an alternative constraint formulation for the ratio, the problem above is equivalent to:

min
θ,ϕ

L(θ, ϕ) such that ∥Cz,s∥2HS ≤ β∥Cz,z∥HS∥Cs,s∥HS. (98)

Finally, utilizing the technique of Lagrange multiplier, we obtain the equivalent problem:

min
θ,ϕ

max
λ≥0

Lλ(θ, ϕ) = L(θ, ϕ) + λ
(
∥Cz,s∥2HS − β∥Cz,z∥HS∥Cs,s∥HS

)
. (99)

To see why this last formulation is equivalent, it is enough to see that when the constraint is not
satisfied (i.e., the difference is positive), then the optimal value of the inner optimization problem
is +∞ (for λ → ∞), prohibiting those values for the parameters θ, ϕ to be picked by the outer
optimization problem. However, the problem is unchanged when the constraint is satified, since the
optimal value of the inner optimization problem is L(θ, ϕ) (for λ → 0. Similar derivations appear
in Gallego-Posada et al. (2022).
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F.3. Neural Network Architectures and Implementation Details

Two separate encoder neural networks were used to parameterize our approximate posterior distribu-
tions qϕ(s | x) and qϕ(z | x). Each network first has a single hidden layer consisting of 128 hidden
units, followed by a batch normalization layer, a rectified linear unit (ReLU) activation function, and
a dropout layer. Then, the output units were used as inputs to two linear layers, one parameterizing
the mean and one parameterizing the log-variance of the variational distribution.

The decoder network first has two hidden layers with 128 hidden units, taking as input the
concatenation of the latent variables [z, s], and followed by batch normalization, a ReLU activation
function, and a dropout layer. Then, the outputs units are fed to a linear layer with output size equal
to the data dimension, with a softplus activation function.

All models were implemented using PyTorch (Paszke et al., 2019) with the scvi-tools frame-
work (Gayoso et al., 2022). All models were trained for 500 epochs using Adam (Kingma and Ba,
2015) with a learning rate of 0.001, using the validation ELBO as an early stopping criterion.

F.4. Simulation Details

We simulate data as follows. We assume we have background measurements (resp. target mea-
surements) from Nb samples (resp. Nt samples). We use Nt = Nb = 1, 500 throughout the
manuscript.

Target data set For sample n, background latent variable zn is generated as:

zn ∼ Normal(0, Ip), (100)

where p is the dimension of the background space. Salient latent variable sn is generated as:

sn ∼ Normal(0, Iq), (101)

where q is the dimension of the salient space. Measurements xng for sample n and feature g ∈
{1, . . . , G} are generated from a count distribution:

xng ∼ NegativeBinomial (fg(zn, sn), θg) , (102)

where θg is the overdispersion parameter of the negative binomial. We use G = 150 throughout the
manuscript. When the manuscript mentions Poisson noise, it means that we replace the conditional
distribution above by a Poisson distribution, with mean equal to the output of the neural network
f . The ground truth mixing function f is a neural network with four hidden layers of 40 units,
Leaky-ReLU activations with a negative slope of 0.2, and a softmax non-linearity on the last layer to
convert the outputs to counts (Lopez et al., 2018a). The weight matrices of f are sampled according to
an isotropic Gaussian distribution, with orthogonal columns, to make sure f is injective (Lachapelle
et al., 2022).

Background data set Proceeding similarly as above, for sample n, background latent variable zn
is generated as:

zn ∼ Normal(0, Ip), (103)

where p is the dimension of the background space. Then, measurements xng for sample n and feature
g are generated from a count distribution:

xng ∼ NegativeBinomial (fg(zn,0), θg) . (104)
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F.5. Evaluation Metrics

Linear Mean Correlation Coefficient (MCC) The Linear Mean Correlation Coefficient (MCC)
serves as a metric to evaluate the degree of alignment between inferred and ground-truth latent factors
in representation learning, particularly in the context of disentanglement (Khemakhem et al., 2020).
Specifically, we utilize the mean of the variational posterior qϕ(z, s | x) as an approximation to
ẑ, ŝ = f̃−1(x). To assess block-wise linear disentanglement, several linear regressions are executed.
Initially, to confirm the informativeness of the latent spaces, we:

• Predict the ground-truth latent factors s using the inferred factors ŝ (MCCŝs).

• Predict the ground-truth latent factors z using the inferred factors ẑ (MCCẑz).

Subsequently, to ensure the absence of undesired overlaps, we:

• Predict the ground-truth latent factors s using the inferred factors ẑ (MCCẑs).

• Predict the ground-truth latent factors z using the inferred factors ŝ (MCCŝz).

For each set of predicted latent factors, the Pearson (and equivalently, Spearman) linear MCC is
computed as the mean Pearson (or Spearman) Correlation Coefficient between predictions and the
ground truth, evaluated component-wise. The MCC value ranges between -1 and 1, with values
closer to 1 indicating a strong positive linear relationship, values closer to -1 indicating a strong
negative linear relationship, and values around 0 indicating no linear relationship.

Average Silhouette Width (AWS) This metric assumes at disposal an Euclidean space where each
data point n is associated with an embedding vector tn ∈ Rd where n is a data point. Additionally,
the AWS requires the definition of cluster assignments yn ∈ {1, . . . ,K}, where K is the total number
of clusters. For each data point n, the we define silhouette score SSn of sample n as

SSn =
bn − an

max (an, bn)
, (105)

where an is the average distance between data point n and all of other points with the same cluster
label, and bn is the average distance between n and all the points in the next nearest cluster. Then,
for a data set with N samples, the AWS is defined as:

ASW =
1

N

N∑
n=1

SSn. (106)

The value of ASW lies between -1 and 1, where a higher value indicates a better ability to distinguish
the clusters in the embedding space.

Adjusted Rand Index (ARI) The Adjusted Rand Index (ARI) is a metric used to measure the sim-
ilarity between two data clusterings. Consider two sets of cluster assignments: the true assignments
yn ∈ {1, . . . ,K} and the predicted assignments y′n ∈ {1, . . . ,K ′}, where n is a data point, K is the
total number of true clusters, and K ′ is the total number of predicted clusters. The ARI takes into
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account the number of pairings of data points that are in the same or different clusters for both the
true and predicted assignments. Specifically, the ARI is defined as:

ARI =

∑
ij

(nij
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)
−
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2
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(bj
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)]
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) , (107)

where nij is the number of data points that are both in cluster i of the true assignments and cluster j
of the predicted assignments. ai and bj are the total number of data points in cluster i of the true
assignments and cluster j of the predicted assignments, respectively. N is the total number of data
points. The value of ARI lies between -1 and 1, where a higher value indicates better clustering
performance.

Normalized Mutual Information (NMI) The Normalized Mutual Information (NMI) is a metric
designed to gauge the similarity between two data clusterings. Given two sets of cluster assignments:
the true assignments yn ∈ {1, . . . ,K} and the predicted assignments y′n ∈ {1, . . . ,K ′}, where n
is a data point, K is the total number of true clusters, and K ′ is the number of predicted clusters,
the NMI is computed using the mutual information (MI) between the two assignments and their
respective entropies:

NMI(y, y′) =
2× MI(y, y′)
H(y) +H(y′)

. (108)

Mutual information between the true and predicted assignments is given by:

MI(y, y′) =
K∑
i=1

K′∑
j=1

p(i, j) log

(
p(i, j)

p(i)p′(j)

)
, (109)

where p(i, j) is the joint probability of a data point belonging to cluster i in the true assignments and
cluster j in the predicted assignments. p(i) and p′(j) are the probabilities of a data point belonging
to cluster i and j in the true and predicted assignments, respectively.

The entropies of the true and predicted assignments are:

H(y) = −
K∑
i=1

p(i) log(p(i)), (110)

H(y′) = −
K′∑
j=1

p′(j) log(p′(j)). (111)

The value of NMI lies in the range [0, 1], with a score of 1 suggesting that the two sets of cluster
assignments are identical, while a score of 0 indicates no shared information between them.

F.6. Baseline Models

All baselines share the same architecture and implementations for the sake of comparison. All are
modifications of the code from the ContrastiveVI package (Weinberger et al., 2023). Below we
provide additional details about how each baseline was utilized.
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VAE Because a VAE does not have two latent spaces, in all experiments, we double the number of
latent variables to match the one from our contrastive analysis models. Then, we assign each latent
variable to either the background or the salient space. Our assignment method consists in applying
cPCA (Abid et al., 2018) to the learned representations from the VAE to split the latent space into
a background and a salient space. As a first attempt, we used the loadings from the top cPCA
eigenvalues to project the latent space into a salient space, and then used the loadings from the top
PCA eigenvalue of the background data set to project the latent space into a background space. This
approach had extremely poor performance (δ-MCC close to zero in most experiments, because of
high cross MCC). Therefore, we proceeded as follows: We use the loadings onto the first contrastive
principal component to obtain the list of latent units that contribute most to explaining the differences
between the target and the background data set (using the absolute value of the eigenvector). We
assign variables with the highest score to the salient space, and the ones with the lowest score to the
background space.

ContrastiveVI Our ContrastiveVI implementation consists of exactly the SO-U-cVAE method
with the addition of the Wasserstein penalty to the ELBO. More precisely, if µs(x) and σs(x) encode
the mean and standard deviation parameter of qϕ(s | x), respectively, then the Wasserstein penalty
LW is derived as

LW = ∥µs(x)∥22 + ∥σs(x)∥22, (112)

with a fixed hyperparameter for the regularization strength (i.e., multiplier equal to one).

CausalDiscrepancyVAE CausalDiscrepancyVAE (Zhang et al., 2023) is generative model with a
latent causal graph (DAG), a polynomial mixing function, and an interventional model for single
and double-node (soft) interventions. Because Zhang et al. (2023) also apply their method to the
data set from Norman et al. (2019), we discuss this work here. We note that those two models
have distinct purposes. Contrastive Analysis methods aim at learning informative representation of
the perturbations by removing signal from the heterogeneity of the control population. However,
CausalDiscrepancyVAE aims at learning a DAG in latent space. For that, CausalDiscrepancyVAE
requires the observation of many interventional regimes, as well as knowledge of the targets per
intervention (ignored during our benchmark). For this reason, the models are not entirely comparable.
Although CausalDiscrepancyVAE has a rigorous causal semantic, but it does not consider modeling
of background latent variables, which from our experience, this is however necessary to get high-
quality embeddings of the interventional data. To illustrate this point, we assessed how well the
embedding from CausalDiscrepancyVAE may reflect biological information, using our benchmark
(ARI, NMI, ASW of the different pathways captured by the experiment). Using the public code
and available model trained by the authors (105 latent variables). We embedded all cells using
the encoder network (after the DAG layer) and found that the performance was poor. Because our
evaluation may be dependent on the number of latent variables, we re-tried this with a model that we
fit ourselves from the available code, this time with 20 latent variables, and obtained similar results.

F.7. Real-word Data Details

Data Preprocessing We downloaded the data set using the ContrastiveVI package (Weinberger
et al., 2023). The data set has measurements of the effects on gene expression levels of 284 different
CRISPR-mediated perturbations on K562 cells. Each perturbation induced overexpression of a single
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gene or a pair of genes. The background data set (8, 907 cells) is defined as all unperturbed cells.
The target data set (24, 913 cells) is defined as all the perturbed cells whose genetic perturbation
was labelled with a pathway by the authors of the original manuscript (Norman et al., 2019). The
labeled pathways in the dataset are G1 Cycle, Erythroid, Pioneer Factors, Granulocyte Apoptosis,
Megakaryocyte, and Pro Growth. We also filtered genes to retain the top 2, 000 highly variable genes.

Number of latent variables For our main results, we used 10 dimensional z and s .

F.8. Qualitative Comparison of Methods on Real-World Data

To understand the impact of the differences in metrics we reported in Table 4, we visualized the
learned latent spaces for SO-cVAE, MO-CO-cVAE, as well as ContrastiveVI with UMAP (Figure 2).

Figure 2: UMAP visualization of salient and background spaces from SO-cVAE, MO-CO-cVAE,
as well as ContrastiveVI. Each point is a cell. Cells are colored by their group of genetic
perturbation, where groups were assigned based on biological annotation from the authors
of Norman et al. (2019).
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Salient space interpretation In accordance with our desiderata, we observe for each method that
the salient space recapitulates the perturbation type more accurately than the background space.
However, we clearly notice that MO-CO-cVAE has best performance, as it more clearly delineates
cells that underwent perturbations from the group “erythoid” versus “granulocytes/apoptosis”. This
was suggested by the high clustering and silhouette scores in Table 4.

Background space interpretation Additionally, we would like to make sure that the latent space
contains as few information about the perturbations as possible. In this regard, it is important to note
that, as expected, the un-regularized model SO-cVAE shows important separation of perturbation
groups in its background latent space (as suggested by the high cross MCC in Table 4). However, the
other methods show lesser leakage of that information in their background space.

Importantly, we see that the apoptosis group is still separated even in our model, which performs
best in this benchmark. We attribute this to the fact that perturbations may sometimes bias cells
towards expressing some gene programs that are inherently varying in the control population (such
as cell death, here). Therefore, it is impossible to expect that z will be perfectly independent from
the perturbation label on this data set.

F.9. Additional Results on Simulated Data

Comparison to MultiDomainCRL In order to investigate the performance of the ICA source
matching method from Sturma et al. (2023), we applied their publicly available code on our simulated
data, where the background data set and the target data set are used as two domains. We applied the
FastICA algorithm with the known number of sources in each domain (e.g., 5 for the background
data set, and 5 + 5 = 10 for the target data set). Then, we applied their individual source matching
procedure, expecting it to match all the sources from the background data to one of the sources in
the target data. Interestingly, the method consistently miss-identified the number of shared sources
(underestimation), failing to match some of the background sources. This is already suggestive that
the method may not work well on our benchmark. To report performance in a systematic fashion,
we slightly modified their matching algorithm to associate each source in the background to exactly
one source of the target data. The remainder of the sources for the target data set constituted the
inferred salient variables, whereas the inferred salient variables for the background were set to zero.
Even though we tried different metrics for matching latent variables (Wasserstein distance, as well as
Smirnov Two-Sample Test) and also different strategies for normalizing the input data (raw values
and logarithmic scale), the δ-MCC in the simple scenario of Table 1 was systematically between -0.1
and 0.1 for all experiments.

Misspecification of activation function We investigated how the performance changed when
the data generating process was altered so that the leaky ReLU activation function is replaced by a
hyperbolic tangent activation function (but the model stays the same). More precisely, we generated
data according to two regimes. In the first one, the scale of the values at the hidden layer is small
(≪ 1). This is interesting because in this case the tanh function well approximated a linear function
(referred to as quasi-linear). In the second case, the scale of the values is larger (∼1), and the tanh
function is effectively non-linear (referred to as non-linear). For both data sets, we ran the method
SO-cVAE in the ideal setting to assess disentanglement (akin to Table 1). We report those results
in Table 5. As expected, the performance is high in the quasi-linear case, and indeed it surpasses
the results of the manuscript. This is in agreement with the intuition that a linear model is easier
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to identify from data compared to a piecewise-linear model. However, the performance drops in
the non-linear case, which illustrates that identifiability is harder in this case. (It could also be
explained by the mismatch between the data and the model, or by the excessive saturation from the
tanh function at input values ≫ 1).

Table 5: Identifiability under assumptions of known dimensions of latent spaces. Pearson MCC for
SO-cVAE.

Data set MCCẑz (↑) MCCẑs (↓) MCCŝz (↓) MCCŝs (↑) δ-MCC (↑)

Tanh
Quasi-linear 0.956± 0.001 0.047± 0.008 0.051± 0.005 0.963± 0.002 0.910± 0.007

Rescaled Tanh
Non-linear 0.834± 0.011 0.122± 0.020 0.139± 0.033 0.541± 0.041 0.557± 0.043

Additional simulation results In this section, we present the following experimental results:

• The Pearson MCC scores under Gaussian noise when the number of latent variable is known
(Table 6)

• The Spearman MCC scores under Poisson and negative binomial noise when the number of
latent variable is known (Table 7).

• The Pearson MCC scores when the number of latent variables is unknown (Table 8).

• The Spearman MCC scores when the number of latent variables is unknown (Table 9).

• The Pearson MCC scores under regularization (Table 10).

• The Spearman MCC scores under regularization (Table 11).
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Table 6: Identifiability under assumptions of known dimensions of latent spaces. Best in bold.

Model Noise MCCẑz (↑) MCCẑs (↓) MCCŝz (↓) MCCŝs (↑) δ-MCC (↑)

SO-cVAE
Gaussian

0.96± 0.01 0.12± 0.03 0.08± 0.01 0.96± 0.01 0.86± 0.01
MO-cVAE 0.96± 0.01 0.13± 0.03 0.08± 0.02 0.96± 0.01 0.86± 0.01
VAE 0.96± 0.01 0.15± 0.02 0.15± 0.01 0.95± 0.01 0.80± 0.02

Table 7: Identifiability of contrastive analysis models under assumptions of known dimensions of
latent spaces (Spearman MCC).

Model Noise MCCẑz (↑) MCCẑs (↓) MCCŝz (↓) MCCŝs (↑) δ-MCC (↑)

MO-cVAE
Poisson

0.92± 0.01 0.08± 0.01 0.07± 0.02 0.96± 0.01 0.87± 0.01
SO-cVAE 0.92± 0.01 0.08± 0.01 0.08± 0.02 0.96± 0.01 0.86± 0.01

VAE 0.88± 0.04 0.17± 0.09 0.14± 0.07 0.94± 0.04 0.76± 0.12

MO-cVAE Negative
binomial

0.95± 0.01 0.14± 0.01 0.07± 0.01 0.96± 0.01 0.84± 0.01
SO-cVAE 0.95± 0.01 0.13± 0.02 0.07± 0.01 0.95± 0.01 0.84± 0.01

VAE 0.82± 0.11 0.46± 0.18 0.37± 0.18 0.82± 0.10 0.41± 0.28

Table 8: Identifiability of contrastive analysis models under misspecification of latent dimensions
(Pearson MCC).

q MCCẑz (↑) MCCẑs (↓) MCCŝz (↓) MCCŝs (↑) δ-MCC (↑)

SO-cVAE

5 0.91± 0.01 0.08± 0.01 0.07± 0.02 0.92± 0.01 0.84± 0.01
7 0.91± 0.01 0.08± 0.01 0.30± 0.06 0.94± 0.02 0.73± 0.03
10 0.91± 0.01 0.08± 0.01 0.45± 0.02 0.94± 0.02 0.66± 0.01
15 0.91± 0.01 0.08± 0.02 0.59± 0.04 0.94± 0.02 0.58± 0.02

MO-cVAE

5 0.91± 0.01 0.08± 0.01 0.07± 0.01 0.94± 0.01 0.85± 0.01
7 0.91± 0.01 0.08± 0.01 0.15± 0.02 0.94± 0.02 0.81± 0.01
10 0.91± 0.01 0.09± 0.01 0.25± 0.03 0.94± 0.02 0.75± 0.01
15 0.91± 0.01 0.08± 0.02 0.36± 0.04 0.94± 0.02 0.70± 0.02
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Table 9: Identifiability of contrastive analysis models under misspecification of latent dimensions
(Spearman MCC).

q MCCẑz (↑) MCCẑs (↓) MCCŝz (↓) MCCŝs (↑) δ-MCC (↑)

SO-cVAE

5 0.92 ± 0.01 0.08 ± 0.01 0.08 ± 0.02 0.96 ± 0.01 0.86 ± 0.01
7 0.93 ± 0.01 0.08 ± 0.01 0.30 ± 0.06 0.96 ± 0.00 0.75 ± 0.03
10 0.93 ± 0.01 0.08 ± 0.01 0.45 ± 0.03 0.96 ± 0.00 0.68 ± 0.02
15 0.93 ± 0.01 0.08 ± 0.02 0.60 ± 0.03 0.96 ± 0.00 0.60 ± 0.02

MO-cVAE

5 0.92 ± 0.01 0.08 ± 0.01 0.07 ± 0.02 0.96 ± 0.01 0.87 ± 0.01
7 0.93 ± 0.01 0.08 ± 0.01 0.15 ± 0.02 0.96 ± 0.00 0.83 ± 0.01
10 0.93 ± 0.01 0.08 ± 0.01 0.26 ± 0.04 0.96 ± 0.00 0.77 ± 0.02
15 0.93 ± 0.01 0.08 ± 0.02 0.37 ± 0.04 0.96 ± 0.00 0.72 ± 0.02

Table 10: The impact of regularization on contrastive analysis models under misspecification of
latent dimensions (Pearson MCC).

MCCẑz (↑) MCCẑs (↓) MCCŝz (↓) MCCŝs (↑) δ-MCC (↑)

SO-U-cVAE

λ = 0 0.91± 0.01 0.08± 0.01 0.45± 0.02 0.94± 0.00 0.66± 0.01
λ = 10 0.91± 0.01 0.08± 0.01 0.37± 0.04 0.94± 0.00 0.70± 0.02
λ = 50 0.91± 0.01 0.08± 0.01 0.25± 0.03 0.94± 0.00 0.76± 0.01
λ = 100 0.80± 0.03 0.11± 0.05 0.29± 0.08 0.92± 0.03 0.66± 0.08

SO-CO-cVAE 0.91± 0.01 0.07± 0.01 0.23± 0.03 0.94± 0.00 0.77± 0.01

MO-U-cVAE

λ = 0 0.91± 0.01 0.09± 0.01 0.25± 0.03 0.94± 0.00 0.75± 0.01
λ = 10 0.91± 0.01 0.08± 0.01 0.21± 0.02 0.94± 0.00 0.78± 0.01
λ = 50 0.88± 0.03 0.08± 0.01 0.16± 0.02 0.94± 0.00 0.79± 0.02
λ = 100 0.79± 0.02 0.09± 0.01 0.19± 0.02 0.93± 0.00 0.73± 0.03

MO-CO-cVAE 0.91± 0.01 0.08± 0.01 0.17± 0.02 0.94± 0.00 0.80± 0.01
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Table 11: The impact of regularization on contrastive analysis models under misspecification of
latent dimensions (Spearman MCC).

MCCẑz (↑) MCCẑs (↓) MCCŝz (↓) MCCŝs (↑) δ-MCC (↑)

SO-U-cVAE

λ = 0 0.93± 0.01 0.08± 0.01 0.45± 0.03 0.96± 0.00 0.68± 0.02
λ = 10 0.93± 0.01 0.08± 0.01 0.38± 0.04 0.96± 0.00 0.71± 0.02
λ = 50 0.92± 0.01 0.08± 0.01 0.25± 0.02 0.96± 0.00 0.78± 0.01
λ = 100 0.81± 0.03 0.11± 0.06 0.29± 0.08 0.94± 0.03 0.67± 0.08

SO-CO-cVAE 0.93± 0.01 0.07± 0.01 0.23± 0.03 0.96± 0.00 0.79± 0.01

MO-U-cVAE

λ = 0 0.93± 0.01 0.08± 0.01 0.26± 0.04 0.96± 0.00 0.77± 0.02
λ = 10 0.93± 0.01 0.08± 0.01 0.22± 0.03 0.96± 0.00 0.79± 0.01
λ = 50 0.89± 0.03 0.08± 0.01 0.16± 0.03 0.96± 0.00 0.80± 0.03
λ = 100 0.81± 0.02 0.08± 0.01 0.20± 0.02 0.96± 0.00 0.74± 0.03

MO-CO-cVAE 0.93± 0.01 0.08± 0.01 0.18± 0.02 0.96± 0.00 0.82± 0.01
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