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Abstract
This paper investigates in which cases continuous optimization for directed acyclic graph (DAG)
structure learning can and cannot perform well and why this happens, and suggests possible
directions to make the search procedure more reliable. Reisach et al. [47] suggested that the
remarkable performance of several continuous structure learning approaches is primarily driven by a
high agreement between the order of increasing marginal variances and the topological order, and
demonstrated that these approaches do not perform well after data standardization. We analyze this
phenomenon for continuous approaches assuming equal and non-equal noise variances, and show
that the statement may not hold in either case by providing counterexamples, justifications, and
possible alternative explanations. We further demonstrate that nonconvexity may be a main concern
especially for the non-equal noise variances formulation, while recent advances in continuous
structure learning fail to achieve improvement in this case. Our findings suggest that future works
should take into account the non-equal noise variances formulation to handle more general settings
and for a more comprehensive empirical evaluation. Lastly, we provide insights into other aspects of
the search procedure, including thresholding and sparsity, and show that they play an important role
in the final solutions.
Keywords: structure learning, continuous optimization, directed acyclic graphs

1. Introduction

Bayesian networks are a class of probabilistic graphical models that encode probabilistic distributions
in a compact way [42, 30]. Learning their graphical structures from data, represented by directed
acyclic graphs (DAGs), has been applied in various fields, including genetics [44] and education [22].
Classical approaches for structure learning typically involve discrete procedures, such as constraint-
based methods using conditional independence tests [54, 55] and score-based methods that search
for a high-scoring structure [29, 53, 14, 67, 12, 43]. Greedy search is often employed in score-based
methods because of the large space of possible structures [11, 13], such as GES [12] and GDS [43].

Recently, Zheng et al. [72] proposed a smooth characterization of acyclicity and transformed the
structure learning problem of discrete nature into a continuous, nonconvex optimization problem, thus
enabling the application of efficient gradient-based optimization. This formulation has been extended
and applied to a wide range of settings, including nonlinear cases [65, 32, 73, 39, 27], interventional
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data [8, 19], unobserved confounding [6, 4], incomplete data [60, 20], time series [41, 57], multi-task
learning [10], multi-domain data [68], federated learning [36, 21], and representation learning [64].

Given the growing interest in continuous structure learning [58], various theoretical and empirical
aspects of these approaches have gained considerable attention. In particular, Wei et al. [61], Ng
et al. [38] studied the optimality conditions and convergence property of continuous constrained
approaches [72], while Deng et al. [15] showed that a proper optimization scheme converges to
the global minimum of the least squares objective in the bivariate case. Zhang et al. [70], Bello
et al. [3] demonstrated that existing DAG constraints [72, 65] may encounter gradient vanishing
issues in practice and proposed improved variants. Reisach et al. [47] suggested that the remarkable
performance of several continuous structure learning approaches [72, 37] is primarily driven by
a high agreement between the order of increasing marginal variances and the topological order,
and demonstrated that these approaches do not perform well after data standardization. Similar
phenomenon was also observed by Kaiser and Sipos [26]. These empirical findings regarding data
standardization provide insights into the performance of continuous structure learning, and may at
first appear surprising. One of our goals is to provide further analysis of this phenomenon.

In this work, we investigate in which cases continuous structure learning approaches can and
cannot perform well and why this happens, and suggest possible directions to make the search
procedure more reliable. Our main contributions are:

• We analyze the statements and observations by Reisach et al. [47] in the linear case with
equal (Section 3.1) and non-equal noise variances (Section 3.2), and show that the statements
may not hold in either case by providing counterexamples and justifications. We also provide
possible alternative explanations for the observations by Reisach et al. [47] that continuous
structure learning approaches do not perform well after data standardization.

• We show that nonconvexity may be a main concern especially for the non-equal noise variances
formulation, while recent advances in continuous structure learning, including search strategies,
DAG contraints, and nonlinear approaches, fail to achieve improvement in this case (Section 4).
Our findings suggest that future works should take into account the non-equal noise variances
formulation to handle more general settings and for a more comprehensive empirical evaluation.

• We provide insights into other aspects of the search procedure, including thresholding (Sec-
tion 5.1) and sparsity (Section 5.2), and show that they play a crucial role in the final solutions.

2. Preliminaries

In this section, we briefly describe several existing continuous structure learning approaches that this
work focuses on, and explain the notion of varsortability proposed by Reisach et al. [47].

2.1. Structure Learning with Continuous Optimization

Setup. Let G be a DAG with node set {X1, . . . , Xd}. In a Bayesian network, each node Xi of G
corresponds to a random variable, and the joint distribution of random variables X = (X1, . . . , Xd),
denoted as P (X), is Markov w.r.t. DAG G. We consider the linear case in which variables X follow
a linear structural equation model (SEM) X = BTX +N , where B ∈ Rd×d is an acyclic weighted
adjacency matrix whose nonzero entries represent the edges in DAG G, and N = (N1, . . . , Nd)
consists of the independent noise variables with covariance matrix Ω := diag(σ2

1, . . . , σ
2
d). If

σ2
1 = · · · = σ2

d, we refer to it as the equal noise variances (EV) case, and otherwise as the non-equal

272



STRUCTURE LEARNING WITH CONTINUOUS OPTIMIZATION: A SOBER LOOK AND BEYOND

noise variances (NV) case. Structure learning aims at estimating DAG G or its Markov equivalence
class (MEC) given the data matrix X ∈ Rn×d consisting of n i.i.d. samples from distribution P (X).

NOTEARS. Zheng et al. [72] proposed to solve the constrained optimization problem

min
B∈Rd×d

ℓ(B;X) :=
1

2n
∥X−XB∥2F subject to h(B) = 0,

where ℓ(B;X) is the least squares objective and h(B) := tr(eB⊙B)− d is the DAG constraint term.
An ℓ1 penalty term λ∥B∥1 is also incorporated into the objective function, where ∥ · ∥1 is defined
element-wise and λ is a hyperparameter. Since the above formulation focuses on the linear case with
equal noise variances [43, 33], we refer to it as NOTEARS-EV throughout this paper.

GOLEM. Ng et al. [37] solve an unconstrained optimization problem:

min
B∈Rd×d

L(B;X)− log | det(I −B)|+ λ1∥B∥1 + λ2h(B), (1)

where L(B;X) is defined as

LEV(B;X) =
d

2
log ∥X−XB∥2F and LNV(B;X) =

1

2

d∑
i=1

log ∥X·,i −XB·,i∥22

in the linear Gaussian case with equal and non-equal noise variances, respectively. Here, λ1 and λ2 are
hyperparameters. The above two variants are denoted as GOLEM-EV and GOLEM-NV, respectively.

2.2. Varsortability

Recently, Reisach et al. [47] introduced varsortability, denoted as v, as a measure of agreement
between increasing marginal variances and topological order. It is defined as the proportion of
directed paths which start from a variable with lower marginal variance than the variable they end
in [47]. When all variables have higher marginal variances than their ancestors, we have v = 1.

Reisach et al. [47] provided insights into the performance of several continuous structure learning
approaches [72, 37], and suggested that their remarkable performance is primarily driven by high
varsortability. Here we list some excerpts from Reisach et al. [47]: “Our experiments demonstrate that
varsortability dominates the optimization and helps achieve state-of-the-art performance provided the
ground-truth data scale” and “we focus on the first optimization steps to explain a) why continuous
structure learning algorithms that assume equal noise variance work remarkably well in the presence
of high varsortability”. For clarity and ease of further analysis, we give a partial formulation of the
statements (on which this work focuses) in the following. We provide a further discussion of how
these statements are formulated and possible alternative formulations in Appendix A.

Statement 1 (Equal Noise Variances Formulation) Continuous structure learning approaches
that assume equal noise variances, specifically NOTEARS-EV and GOLEM-EV, perform well in the
presence of high varsortability.
Statement 2 (Non-Equal Noise Variances Formulation) Continuous structure learning approaches
that assume non-equal noise variances, specifically GOLEM-NV, perform well in the presence of
high varsortability.

Reisach et al. [47] showed that the synthetic data used by Zheng et al. [72], Ng et al. [37] to benchmark
their methods exhibits high varsortability, e.g., higher than 0.94 on average, and that these approaches
do not perform well after data standardization which removes such patterns in the marginal variances.
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3. Varsortability and Data Standardization

In this section, we analyze the statements and observations by Reisach et al. [47] in the linear case
with equal and non-equal noise variances formulations, and show that the statements may not hold in
either case. That is, continuous structure learning approaches often do not perform well even in the
presence of high varsortability. We also provide possible alternative explanations for the observations
by Reisach et al. [47] that continuous approaches do not perform well after data standardization.

3.1. With Equal Noise Variances Formulation

Varsortability and continuous structure learning. We first take a closer look at Statement 1 and
consider the least squares score [33, 72]. For bivariate case, say X = (X1, X2) with ground truth
X1 → X2, Reisach et al. [47] showed that estimations based on varsortability and least squares are
consistent in the sense that v = 1, i.e., Var(X1) < Var(X2) if and only if the least squares score
computed with X1 → X2 is smaller than that with X2 → X1; see Reisach et al. [47, Appendix A]
for a proof. Thus, with high varsortability in the bivariate case, i.e., v = 1, NOTEARS-EV, loosely
speaking, is able to asymptotically output the correct structure assuming that the global minimizer
can be found. Therefore, Statement 1 holds in the bivariate case, at least for NOTEARS-EV.

However, the property in the bivariate case above cannot be extended to general cases with more
than two variables; see the following example with three variables.

Example 1 Consider the linear SEM over X = (X1, X2, X3) with the true weighted adjacency
matrix B̃ and noise covariance matrix Ω̃, as well as an alternative weighted adjacency matrix B̂:

B̃ =

0 0 0
1
2 0 0
1 1

2 0

 , Ω̃ =

1
2 0 0
0 1 0
0 0 1

2

 , B̂ =

0 2
3 0

0 0 0
5
4 −1

3 0

 .

In the large sample limit, we have

Var(X1) > Var(X2) > Var(X3) and ℓ(B̂;X) < ℓ(B̃;X).

That is, even in the presence of high varsortability, i.e., v = 1, the estimation with least squares will
be the structure indicated by B̂, instead of that indicated by B̃, and thus Statement 1 does not hold.

The weighted adjacency matrices B̃ and B̂ represent the triangle structures in Figures 1a and 1b,
respectively. Here a discrete exhaustive DAG search with least squares score cannot return the true
structure, and similarly for NOTEARS-EV assuming that the global minimizer can be found. This
is also the case for GOLEM-EV because LEV(B̂;X) < LEV(B̃;X). To verify it, we conduct 100
simulations using B̃ and Ω̃ defined in Example 1, and generate 106 random samples in each simulation.
In all simulations, we have Var(X1) > Var(X2) > Var(X3), and observe that NOTEARS-EV (with
λ = 0 and threshold of 0.1), GOLEM-EV (with λ1 = 0.02, λ2 = 5, and threshold of 0.1), and
exhaustive search with least squares score return the structure in Figure 1b. In the example above,
even in the presence of high varsortability, i.e., v = 1, NOTEARS-EV and GOLEM-EV return a
completely incorrect structure, indicating that Statement 1 does not hold in general.

One may wonder whether the parameters of B̃ and Ω̃ in Example 1 have to be exactly “tuned”
to obtain such an outcome, which is analogous to the violation of faithfulness assumption [55] that
occurs with Lebesgue measure zero. We show that this is generally not the case via the following
proposition; specifically, such counterexample exists for a set of parameters with nonzero Lebesgue
measure. The proof is provided in Appendix B.1.
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X3

X1 X2

(a) Ground truth.

X3

X1 X2

(b) Incorrect structure.

Figure 1: Examples of triangle structures.
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Figure 2: Noise ratio after data standardization.

Proposition 1 Consider the parameters (B,Ω) of the linear SEMs over variables X = (X1, . . . , Xd),
d ≥ 3, where the noise variables follow Gaussian distributions. In the large sample limit, the set of
parameters such that varsortabiltiy equals one and that the true DAG does not have the lowest least
squares score has a nonzero Lebesgue measure.

On the other hand, the proposition below shows that there are cases where the varsortability is low but
the true DAG yields the lowest least squares score, with a proof given in Appendix B.2. To illustrate,
if G is a fully connected DAG or a chain, then we have vsource

G = 2d−1−1
2d−d−1

or vsource
G = 2

d , respectively.
Note that, as d → ∞, their limits equal 0.5 or 0, respectively, indicating a low varsortability. However,
loosely speaking, methods that adopt least squares score, such as NOTEARS-EV and discrete search,
are able to asymptotically find the correct structure assuming that the global minimizer can be found.

Proposition 2 Consider the parameters (B,Ω) of the linear SEMs over variables X = (X1, . . . , Xd)
induced by DAG G, where the noise variables follow Gaussian distributions. In the large sample limit,
the set of parameters such that varsortabiltiy equals vsource

G and that the true weighted adjacency
matrix B yields the lowest least squares score has a nonzero Lebesgue measure, where

vsource
G :=

Number of distinct paths from the source nodes in DAG G
Number of distinct paths in DAG G

.

An alternative explanation by noise ratio. The above argument indicates that Statement 1
generally does not hold, and so may not explain why NOTEARS-EV does not perform well after data
standardization. Here, we provide a possible alternative explanation of this phenomenon, i.e., the
theoretical guarantee of least squares used by NOTEARS-EV does not accommodate standardization
in general; thus, such phenomenon may not be surprising. Specifically, define the noise ratio
r =

max(σ2
1 ,...,σ

2
d)

min(σ2
1 ,...,σ

2
d)

, which may intuitively be viewed as a measure of how far the SEM is from having

equal noise variances. Loh and Bühlmann [33, Theorem 9] showed that if r < 1 + ξ
d , where ξ is

defined as the difference between the score of the true DAG and the next best DAG, then, in the large
sample limit, minimizing the least squares in the space of acyclic weighted adjacency matrices B
returns the true structure for linear SEMs. This allows a certain degree of misspecification of the noise
variances—if ξ is larger, then the least squares score will be more robust to such misspecification. The
result of equal noise variances [33, Theorem 7] can be viewed as a special case with r = 1 < 1 + ξ

d .
Thus, assuming that the global minimizer can be found, NOTEARS-EV, loosely speaking, is able

to return the true DAG in the large sample limit under the assumption specified above, i.e., r < 1+ ξ
d .

However, after data standardization, this assumption may no longer hold, i.e., the noise ratio becomes
r′ =

max(σ2
1/Var(X1),...,σ2

d/Var(Xd))

min(σ2
1/Var(X1),...,σ2

d/Var(Xd))
, and there is no guarantee that r′ < 1+ ξ′

d holds. In this case, The-
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orem 9 of Loh and Bühlmann [33] does not apply and we are left with no guarantee that NOTEARS-
EV or least-squares-based methods can find the true structure. Therefore, they may not perform well
after data standardization, and the observation by Reisach et al. [47] may not be surprising.

In fact, after data standardization, the data may be far from having equal noise variances, i.e.,
the noise ratio r′ may be very large. An example is provided in Figure 2, in which we conduct
1000 random simulations on linear Gaussian-EV model and Erdös–Rényi [17] graphs with varying
number of variables and degrees, and further compute the noise ratio in the large sample limit
after standardizing the data. One observes that a larger number of variables and degree leads to a
higher noise ratio r′; in this setting considered, the noise ratio appears to increase approximately
exponentially in the degree. For example, for 50-node graphs with degree of 4, i.e., the largest number
of variables and degrees considered by Reisach et al. [47], the noise ratio r′ is 2079.30 ± 189.6,
which is far from the equal noise variances case.

With such a large noise ratio r′ in the scenarios above, the guarantee [33, Theorem 9] of least
squares may not apply after standardization. In other words, least-squares-based search methods,
whether it be continuous or discrete ones, are not expected to perform well after standardizing the data.

Empirical studies. To validate the argument above, we compare the performance of various
structure learning methods that assume equal noise variances on different noise ratios r. Following
previous work [72, 37], we simulate Erdös–Rényi [17] graphs with kd edges, denoted as ERk, where
k represents the average degree. Unless otherwise stated, each edge weight in the true weighted
adjacency matrix B is sampled uniformly at random from [−2,−0.5] ∪ [0.5, 2]. We consider ER1
graphs with d ∈ {15, 50} variables and n ∈ {100, 106} samples. We use Gaussian noises where the
variances of two randomly chosen noise variables are set to 1 and r, respectively, while the variances
of the remaining noise variables are sampled uniformly at random from [1, r]. The noise ratios
considered are r ∈ {1, 2, 4, 8, 16, 32, 64}. Apart from continuous approaches, i.e., NOTEARS-EV
and GOLEM-EV, we also consider discrete ones, including a greedy approach GDS [43] and an exact
approach A* [67]. For both discrete approaches, we adopt least squares score. We report the structural
Hamming distance (SHD), F1 score, and recall over 30 simulations, as well as their standard errors.
Further details about the approaches and evaluation metrics are provided in Appendix E.1.

The experiment results for d = 15 and n = 106 are shown in Figure 3, while complete results
are available in Figure 15 in Appendix F.1. As the noise ratio increases, the performance of all
four methods deteriorates in all cases, especially for continuous approaches, i.e., NOTEARS-EV
and GOLEM-EV. This demonstrates that, even with a large sample size, these methods that assume
equal noise variances are not expected to perform well when the noise ratio r is large. As shown
in Figure 2, the noise ratio after data standardization r′ is very large, e.g., could be as large as 106,
which is much larger than that considered in our experiment here. Thus, it may not be surprising that
the structure learning methods considered do not perform well.

3.2. With Non-Equal Noise Variances Formulation

We next turn to the general linear Gaussian case, i.e., the non-equal noise variances formulation. We
provide two arguments to explain why Statement 2 may not hold.

Argument 1. GOLEM-NV often does not perform well in the presence of high varsortability. We
demonstrate that GOLEM-NV with the standard initialization scheme (i.e., zero matrix) does not
perform well in the presence of high varsortability, by comparing its estimated completed partially
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Figure 3: Linear Gaussian-EV for-
mulation without standardization.
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Figure 4: Linear Gaussian-NV for-
mulation without standardization.
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Figure 5: Linear Gaussian-NV for-
mulation with standardization.

DAGs (CPDAGs) to standard methods such as PC [54] and FGES [45]. Note that GOLEM-NV
outputs a DAG, and thus an additional step is needed to convert it into a CPDAG that represents the
MEC. We consider linear Gaussian models with 50 variables and ER1 graphs, where the noise ratio r
is 2. The sample size is set to n = 106 to reduce finite-sample errors. Here, the varsortability is 0.97±
0.003, which is consistent with the high varsortability reported by Reisach et al. [47, Section 3.3].

Table 1: Empirical results.

SHD of CPDAG F1 of skeleton

GOLEM-NV 120.27± 2.91 0.50± 0.00
PC 1.57± 0.35 0.99± 0.00

FGES 0.63± 0.47 1.00± 0.00

The results in Table 1 show that PC and
FGES can nearly recover the true CPDAG with
a high F1 score, while GOLEM-NV has a low
F1 score and high SHD. Note that the perfor-
mance of GOLEM-NV is worse than an empty
graph whose SHD is 50. Therefore, GOLEM-
NV does not perform well in the presence of
high varsortability, and it seems that high varsortability does not help GOLEM-NV achieve a remark-
able performance. The question is then why Ng et al. [37] observed a remarkable performance for
GOLEM-NV on synthetic data as noticed by Reisach et al. [47], which we address next.

Argument 2. The quality of the final solution estimated by GOLEM-NV depends largely on the
initial solution possibly owing to nonconvexity. Ng et al. [37, Section 4.1] adopted an initialization
scheme for GOLEM-NV which uses the solution returned by GOLEM-EV as the initial solution,
because the authors noticed that the optimization procedure of GOLEM-NV is prone to local solutions.
Here, we experiment with different initialization schemes and find that they play an important role in
the quality of the final solutions, possibly because of the nonconvex optimization formulation.

Empirical studies. We consider 50-variable linear Gaussian model with ER1 graphs and noise
ratios r ∈ {1, 2, 4, 8, 16, 32, 64}. To focus on the aspect of nonconvex optimization, we use a large
sample size, i.e., n = 106, to reduce finite-sample errors. We compare various initialization schemes,
including GOLEM-NV initialized with zero matrix, with the solution of GOLEM-EV, and with the
solution of FGES1. We also provide empirical studies for GOLEM-NV with random initializations
in Appendix C.1, and for GOLEM-EV with random perturbations in Appendix C.2

The SHDs before and after data standardization are available in Figures 4 and 5, where the other
metrics are available in Figure 16 in Appendix F.2. Consistent with the results in Table 1, GOLEM-NV
initialized with zero matrix does not perform well across all settings. Moreover, before standardiza-
tion, the performance of GOLEM-EV and GOLEM-NV initialized with GOLEM-EV exhibit similar

1. Since FGES outputs a CPDAG, we generate a DAG consistent with it following the procedure developed by Dor and
Tarsi [16], and compute the least squares coefficients for this specific DAG.
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trend, both of which degrade as the noise ratio increases, and their gap with PC and FGES is also en-
larged. A possible reason is that GOLEM-NV may be susceptible to suboptimal local solutions owing
to nonconvexity, and thus its performance largely depends on the quality of solution of GOLEM-EV.
As the noise ratio increases, the quality of solution returned by GOLEM-EV deteriorates, as dis-
cussed in Section 3.1; thus, GOLEM-NV does not have an initial solution of decent quality. Similar
explanation may also apply to its results after standardization, i.e., GOLEM-NV initialized with
GOLEM-EV has a poor performance after standardization (also observed by Reisach et al. [47]) be-
cause GOLEM-EV does not perform well owing to the large noise ratio r′, as discussed in Section 3.1.
By contrast, GOLEM-NV initialized with the solution of FGES performs well in all cases, where the
results are close to FGES and PC. This is because FGES returns a solution with high quality across
different noise ratio r, which serves as a good initial starting point for optimization of GOLEM-NV.

Note that the formulation of GOLEM-NV in Eq. (1) involves only matrix B because it profiles
out the parameter Ω (i.e., the noise variances) [37, Appendix C.1]. In Appendix C.3, we further
consider the likelihood function without profiling out such parameter and observe that it also leads to
a poor performance when initialized with zero matrix, similar to the original version of GOLEM-NV.

Instead of high varsortability, the observations above suggest that the performance of GOLEM-
NV largely depends on the initial solution. A possible reason is that the optimization problem of
GOLEM-NV may be highly nonconvex and contain many suboptimal local solutions, because (1)
a large sample size n = 106 is used which leads to small finite-sample errors, and (2) GOLEM-NV
has been shown to be consistent under mild conditions, assuming that the global minimizer can be
found and ℓ0 penalty is used (note that Ng et al. [37] did not provide guarantee for ℓ1 penalty).2 This
is in contrast with the observation by Zheng et al. [72, Section 5.3] for the equal noise variances for-
mulation, which finds that the solution of NOTEARS-EV is in practice close to the global minimizer.
We provide further analysis on the nonconvexity of GOLEM-NV in Appendix C.4. Moreover, the
above empirical studies may explain the remarkable performance of GOLEM-NV in the synthetic
data experiments conducted by Ng et al. [37], as noticed by Reisach et al. [47], which simulate linear
Gaussian model with a relatively small noise ratio r ≤ 4. In this case, GOLEM-EV achieves a decent
performance, and using its solution to initialize GOLEM-NV leads to a remarkable performance.

4. Nonconvexity of Non-Equal Noise Variances Formulation

The empirical studies in Section 3.2 suggest that continuous structure learning approach that assumes
non-equal noise variances, specifically GOLEM-NV, is prone to suboptimal local solutions, possibly
owing to nonconvexity. On the other hand, many existing works [72, 66, 9, 3] considered the
equal noise variances formulation (by adopting least squares objective) and observed remarkable
performance. This indicates that the optimization procedure of non-equal noise variances formulation
may in practice be more susceptible to suboptimal local solutions than the equal noise variances
formulation, and thus empirically suggests that the nonconvexity issue might be more severe for
the former formulation. In this section, we demonstrate that the recent advances for the equal noise
variances formulation fail to achieve improvement for the non-equal noise variances formulation,
thus suggesting that nonconvexity may be a key concern for the latter formulation. In particular,
we consider recently developed search strategies and DAG constraints in Sections 4.1 and 4.2,
respectively, and other cases in Section 4.3, namely linear non-Gaussian and nonlinear cases.

2. With global minimizer and ℓ0 penalty, the theoretical guarantee of GOLEM-NV [37, Theorem 2] holds in the large
sample limit under the corresponding conditions, regardless of the initial solution and whether the data is standardized.
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4.1. Search Strategies

We investigate whether different search strategies, namely NOTEARS [72], DAGMA [3], NOCURL [66],
DPDAG [9], and GOLEM [37], perform well for the non-equal noise variances formulation. These
methods represent different strategies to traverse the search space for estimating a DAG with con-
tinuous optimization; a summary of them is provided in Appendix E.2. For these methods except
GOLEM, we replace their least squares objective ℓ(B;X) with LNV(B;X), which corresponds to
the likelihood of linear Gaussian DAGs assuming non-equal noise variances [37, Appendix C.1] (note
that the term − log | det(I −B)| is omitted). We denote the resulting methods by NOTEARS-NV,
DAGMA-NV, NOCURL-NV, and DPDAG-NV, respectively. We consider linear Gaussian model with
50-node ER1 graphs and noise ratio r of 16, as well as sample sizes n ∈ {102, 103, 104, 105, 106}.

The SHDs computed over CPDAGs are available in Figure 6, where the other metrics are
available in Figure 17 in Appendix F.3. It is observed that none of the continuous structure learning
approaches perform well, compared to PC and FGES. For PC and FGES, as the sample size increases,
PC and FGES improve with a larger sample size and eventually reach SHDs of 5.97 ± 0.43 and
5.13 ± 0.51, respectively. By contrast, the quality of solution estimated by continuous structure
learning approaches does not improve much with a larger sample size and reaches a performance
plateau after n = 103. Specifically, the SHD of these continuous approaches is larger than 70 even
when the sample size is n = 106. Note that an empty graph has an SHD of 50. A possible reason is
that the optimization problem of these continuous approaches may be highly nonconvex and contain
many suboptimal local solutions, thus leading to estimated CPDAGs that are far from the true ones.

4.2. DAG Constraints

We consider the DAG constraints commonly adopted by continuous structure learning approaches
based on matrix exponential [72] and binomial [65], as well as more recent DAG constraints based
on log-determinant [3] and truncated geometric series [70] that have been demonstrated to be less
sensitive to the gradient vanishing issue encountered by the former two constraints. We apply these
four constraints to GOLEM-NV, denoted as GOLEM-NV-Exp, GOLEM-NV-Bin, GOLEM-NV-
LogDet, and GOLEM-NV-TMPI, respectively, and similarly for NOTEARS-NV.

Here we use the same setup of simulated data as that of Section 4.1. The SHDs of GOLEM-NV
are depicted in Figure 7, while complete results including those for NOTEARS-NV are available in
Figure 18 in Appendix F.4. Similar to the observation in Section 4.1, one observes that GOLEM-NV
and NOTEARS-NV equipped with these DAG constraints quickly reach a performance plateau and
do not improve much with increasing sample sizes. Specifically, the SHDs of GOLEM-NV and
NOTEARS-NV with these DAG constraints are larger than 120 and 80, respectively. Note that Bello
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et al. [3], Zhang et al. [70] observed that their proposed DAG constraints lead to a huge improvement
over those existing ones [72, 65] for the equal noise variances formulation. Clearly, this experiment
demonstrates that such an improvement cannot be translated into the non-equal noise variances
formulation, at least in the settings considered here. Furthermore, this suggests that the optimization
problem of the non-equal noise variances formulation might be more challenging than the equal
noise variances formulation as the former may contain more suboptimal local solutions.

4.3. Other Settings

We now investigate whether the observations in previous linear Gaussian experiments generalize to
the other settings, namely linear non-Gaussian [51] and nonlinear [23] cases.

Linear non-Gaussian case. Zheng [71] developed an extension of NOTEARS to handle linear
non-Gaussian case, called NOTEARS-ICA. It is worth noting that Zheng [71, Section 4.3.2] provided
a general formulation in the non-equal noise variances case; as the same time, their experiments, as
discussed by Zheng [71, Section 4.5], seem to adopt the equal noise variances formulation. Here,
we consider both equal and non-equal noise variances formulation for NOTEARS-ICA, denoted
as NOTEARS-ICA-EV and NOTEARS-ICA-NV, respectively. We simulate 15-node ER1 graphs
and linear SEMs with standard Laplace noises. The SHDs are reported in Figure 8, while complete
results are shown in Figure 19 in Appendix F.5. We observe that NOTEARS-ICA-EV performs
similarly to DirectLiNGAM [52, 24], both of which improve with more samples; specifically, their
SHDs are very close to zero when the sample size is large. However, the performance of NOTEARS-
ICA-NV does not improve much even when the sample size is large. For example, when n = 106,
NOTEARS-ICA-EV and DirectLiNGAM have SHDs of 1.93± 0.59 and 1.00± 0.19, respectively,
while NOTEARS-ICA-NV has SHD of 26.40± 0.80. Note that an empty graph leads to an SHD
of 15. This suggests that the optimization problem of NOTEARS-ICA-NV may be more challenging
than that of NOTEARS-ICA-EV and contain more suboptimal local solutions.

Nonlinear case. There are several nonlinear extensions of NOTEARS, some of which rely on
various pre/post-processing steps such as pruning [32, 39], making it difficult to investigate the perfor-
mance of continuous optimization procedure. We consider NOTEARS-MLP [73] that does not rely on
such pre/post-processing steps, and extend it to the non-equal noise variances formulation by replac-
ing its least squares objective with LNV(B,X), in which the residuals are computed with multilayer
perceptrons (MLPs) instead of linear regressions. We consider the data generating procedure used
by Zheng et al. [73] with MLPs and standard Gaussian noises. The experiment results are available
in Figure 20 in Appendix F.5. Similar to the observation in the linear non-Gaussian case, NOTEARs-
MLP-EV achieves a much lower SHD when the sample size is large, while NOTEARS-MLP-NV does
not improve much and its SHD remains at 10.07± 0.57 even when the sample size is as large as 105.

5. Thresholding and Sparsity Penalty

Apart from the possible nonconvexity issue discussed in Section 4, we show that the performance
of continuous approaches is sensitive to other aspects of the search procedure, i.e., thresholding and
sparsity. These technical issues should be made transparent, as they play an important role in the final
solutions. In concurrent work, Xu et al. [63] also studied the aspects of thresholding and sparsity
in NOTEARS-EV. Here, our analysis of thresholding includes GOLEM-EV and discrete approaches
such as A* and GDS, as well as both small (n = 100) and large (n = 106) sample sizes; therefore,
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the analysis and observations are different. For sparsity, Xu et al. [63] adopted the adaptive ℓ1
penalty [75] for NOTEARS-EV, while we consider the smoothly clipped absolute deviation (SCAD)
penalty [18] and minimax concave penalty (MCP) [69] for NOTEARS-EV and GOLEM-EV.

5.1. Thresholding
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Figure 9: SHDs of different thresholds and 15
variables under different weight scales.

We investigate the impact of threshold specifica-
tion on continuous structure learning, and show
that it plays a crucial role for the final solutions.
Existing continuous approaches [72, 37, 66, 3]
typically use edge weights sampled uniformly at
random from [−2,−0.5] ∪ [0.5, 2] for the true
weighted adjacency matrix and apply a threshold
of 0.3 to identify the final structure. Here, we con-
sider 15-node ER1 graphs with different ranges
of edge weights, i.e., [−2α,−0.5α] ∪ [0.5α, 2α]
where α ∈ {0.25, 0.5, 0.75, 1, 1.25}, and sample
sizes n ∈ {100, 106}. Apart from continuous
approaches, i.e., NOTEARS-EV and GOLEM-
EV, we also report results for discrete approaches
A* and GDS. The thresholds considered are
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Note that A* and GDS output a DAG, and thus we apply thresh-
olding on its least squares coefficients. The SHDs are provided in Figure 9, while complete results
for F1 score and recall are given in Figure 21 in Appendix F.6. The observations are described below.

Observation 1. When n = 100, using a relatively large threshold (e.g., 0.3) is beneficial for all
methods considered. When the sample size is small, the estimated DAGs by both continuous and
discrete approaches may contain many false discoveries owing to finite-sample errors, and using a
relatively large threshold helps remove some of them. This appears to increase the precision at the
cost of decreasing the recall.

Observation 2. When n = 106, using a relatively large threshold (e.g., 0.3) is harmful in many
cases. In this case, using a threshold of 0.3 increases the SHDs of all methods for α = 0.25, 0.5,
since the recall is decreased. A possible reason is that the threshold applied is larger than many edge
weights in the true weighted adjacency matrix. Therefore, the fixed threshold of 0.3 used in existing
works may be undesirable in many cases, as it may wrongly remove many edges and lead to a low
recall. To avoid such a case, we adopt a relatively small threshold (e.g., 0.1) in the other experiments.

Observation 3. When α = 1, the optimal threshold for NOTEARS-EV is 0.3 for n = 100, 106.
Specifically, its SHDs are 1.93± 0.36 and 1.27± 0.24 for n = 100, 106, respectively. Moreover, the
optimal thresholds for NOTEARS-EV are different across all settings. Since the empirical studies
conducted by Zheng et al. [72] and several follow-up works adopt α = 1, this indicates that their com-
parison with existing baselines, particularly discrete approaches, may not be completely fair as it may
implicitly assume prior knowledge about the range of edge weights in the data generating procedure.

Observation 4. When n = 106, NOTEARS-EV requires a relatively large threshold (e.g., 0.3) to
perform well for α = 0.75, 1, 1.25, while a small threshold (i.e., 0.05) is sufficient for GOLEM-EV for
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all α considered. Specifically, with a threshold of 0.05, GOLEM-EV achieves SHDs of 0.57± 0.18,
0.20 ± 0.10, 0.13 ± 0.10, 0 ± 0, and 0.33 ± 0.18 for α = 0.25, 0.5, 0.75, 1, 1.25, respectively,
indicating that the estimated DAGs by GOLEM-EV are very close to ground truths. Since the sample
size n = 106 used here is large and leads to considerably small finite-sample errors, this appears to
suggest that the nonconvex landscape of GOLEM-EV may contain fewer suboptimal local solutions
in this setting; thus, when initialized with zero matrix, gradient-based optimization procedure reaches
a solution that is close to the ground truth. By contrast, this is not the case of NOTEARS-EV, which,
with a threshold of 0.05, achieves SHDs of 14.33± 0.70, 11.00± 0.61, 11.53± 0.72, 11.97± 0.68,
and 12.87 ± 0.69 for α = 0.25, 0.5, 0.75, 1, 1.25, respectively. For these values of α, a threshold
of 0.3 leads to better performance (roughly SHD of 2) for NOTEARS-EV. This indicates that it is
more likely for NOTEARS-EV to return suboptimal local solutions as compared to GOLEM-EV, at
least in this setting considered where the sample size is large. This observation also suggests that,
in addition to reducing false discoveries resulting from finite-sample errors, thresholding may help
reduce false discoveries caused by nonconvexity, especially for NOTEARS-EV.

It is clear from Observations 1, 2, 3, and 4 that different approaches have different optimal
thresholds in different settings. Therefore, a possible direction is to develop a general procedure (e.g.,
adaptive thresholding) that can be reliably applied in different settings to identify edges from the
solutions of continuous structure learning approaches. As discussed above, this may also help reduce
false discoveries resulting from both finite-sample errors and nonconvexity (see Observation 4).

5.2. Sparsity Penalty

Figure 10: SHDs of different sparsity penalties
and 15 variables under different sample sizes.

Apart from nonconvexity, another key factor that dif-
ferentiates continuous structure learning approaches
from discrete search approaches (e.g., A* [67], dy-
namic programming [53], GES, [12], and GDS [43])
is that the latter use ℓ0 penalty, while the former
adopt ℓ1 penalty, which is known to be biased and
negatively affect the performance [18, 7]. The rea-
son is that it penalizes all coefficients with the same
intensity, including those with small values. Thus,
we consider alternative forms of sparsity penalty
that help overcome such an issue, namely the SCAD
penalty [18] and MCP [69], where large coefficients
are penalized less than small ones. Moreover, SCAD
penalty and MCP do not require the incoherence con-
dition for support recovery [34] that is needed by
ℓ1 penalty in several statistical problems [59, 46],
which might be a rather restrictive assumption in
practice. This is also the case for structure learning,
i.e., Aragam et al. [1] established high dimensional structure consistency of least squares in the space
of acyclic weighted adjacency matrices (corresponding to the formulation of NOTEARS), for which
the incoherence condition is not needed when using MCP.

We compare the performance of NOTEARS-EV and GOLEM-EV under specification of the
sparsity penalties discussed above. We consider ER1, ER2, and ER4 graphs with graph sizes
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d ∈ {15, 50} and sample sizes n ∈ {100, 200, 400, 800, 1600, 3200, 6400}. The SHDs of d = 15
are reported in Figure 10, and complete results are provided in Figure 22 in Appendix F.7. In most
settings, we observe that SCAD penalty and MCP achieve significant improvement over ℓ1 penalty
for NOTEARS-EV and GOLEM-EV, especially when the degree is large. For 15-node graphs, SCAD
penalty and MCP lead to similar performance, while SCAD penalty slightly outperforms MCP on
50-node graphs. A further comparison between SCAD and ℓ0 penalties is provided in Appendix D.

6. Conclusion and Discussion

We investigate in which cases continuous structure learning approaches can and cannot perform well
and why this happens. We focus on several specifications of the data and search procedure, including
varsortability, data standardization, nonconvexity, thresholding, and sparsity. Despite the simplicity
of continuous structure learning approaches, we demonstrate that they may suffer from various
technical issues discussed below. Our goal here is not to resolve all these issues, but rather to analyze
and make them transparent, as well as suggesting possible directions. We hope that our studies could
stimulate future works on developing more reliable continuous structure learning approaches, e.g., to
overcome the nonconvexity and thresholding issues. Detailed discussions are provided below.

Varsortability and data standardization. We show that the statements by Reisach et al. [47]
may not hold for formulations with equal and non-equal noise variances, and provide possible
alternative explanations for the observations that continuous approaches do not perform well after
data standardization [47]. For the equal noise variances formulation, we provide counterexamples to
the statement, and demonstrate that the performance of continuous approaches assuming equal noise
variances degrade as the noise ratio increases, which may explain why they do not perform well after
standardization. For the non-equal noise variances formulation, we show that nonconvexity may be
the reason why continuous approaches do not perform well both before and after data standardization.

Nonconvexity. Many existing works in continuous structure learning considered only the equal
noise variances formulation by adopting least squares and observed remarkable performance. We
demonstrate that these recent advances for the equal noise variances formulation fail to achieve
improvement for the non-equal noise variances one. This implies that nonconvexity may be a main
concern especially for the latter formulation. Our findings suggest that future works should take into
account the non-equal noise variances formulation to handle more general settings and for a more com-
prehensive empirical evaluation, and develop reliable approaches that mitigate the nonconvexity issue.

Thresholding. Our experiments indicate that the choice of threshold plays an important role in
the final solutions, and that the optimal thresholds may differ across settings. Specifically, (1) using a
relatively large threshold of 0.3 as in existing works may be harmful and remove many true positives,
especially when the true edge weights are small. (2) Thresholding may be beneficial in certain cases
as it not only helps reduce false discoveries resulting from finite-sample errors, but may also help
reduce those caused by nonconvexity, especially for NOTEARS. Thus, the choice of threshold should
be treated with care. A possible future direction is to develop a general procedure (e.g., adaptive
thresholding) that can be applied in different settings to identify edges from the solutions of contin-
uous structure learning approaches, while also reducing false discoveries arising from nonconvexity.

Sparsity penalty. We demonstrate that sparsity penalty plays a crucial role for continuous structure
learning approaches, e.g., GOLEM-EV and NOTEARS-EV. Specifically, ℓ1 penalty may not perform
well possibly due to its bias, while other penalties such as SCAD and MCP could help remedy it.
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Appendix A. Discussion of Statements by Reisach et al. [47]

We first list a few excerpts from Reisach et al. [47] that involve the relationship between varsortability
and the performance of continuous structure learning approaches:

• Abstract: “the remarkable performance of some continuous structure learning algorithms can
be explained by high varsortability”.

• Section 1: “Our experiments demonstrate that varsortability dominates the optimization and
helps achieve state-of-the-art performance provided the ground-truth data scale”.

• Section 3.4: “We explain how varsortability may dominate the performance of continuous
structure learning algorithms”.

• Section 3.4: “For this reason we focus on the first optimization steps to explain a) why
continuous structure learning algorithms that assume equal noise variance work remarkably
well in the presence of high varsortability”.

• Section 4.3: “the evidence corroborates our claim that the remarkable performance on raw data
and the overall behavior upon standardization of the continuous structure learning algorithms
may be driven primarily by high varsortability”.

For clarity and ease of further analysis, in Section 2.2 we attempt to provide a partial formulation
of the statements (on which this work focuses), separated into two different cases. Specifically, we
formulate Statements 1 and 2 by following the wordings of the fourth excerpt above because it has
a relatively clear technical interpretation. Note that our analysis in Section 3 also applies if the
statements are formulated based on some different excerpts. For instance, we provide alternative
formulations of the statements (corresponding to Statements 1 and 2, respectively) that follow the
wordings of the second excerpt above.

Statement 3 (Equal Noise Variances Formulation) Varsortability dominates the optimization of
continuous structure learning approaches that assume equal noise variances, specifically NOTEARS-
EV and GOLEM-EV, and helps them achieve state-of-the-art performance provided the ground-truth
data scale.

Statement 4 (Non-Equal Noise Variances Formulation) Varsortability dominates the optimiza-
tion of continuous structure learning approaches that assume non-equal noise variances, specifically
GOLEM-NV, and helps them achieve state-of-the-art performance provided the ground-truth data
scale.

In particular, the examples in Section 3.1, including Example 1 and Proposition 1, as well as the
corresponding empirical studies, demonstrate that a high varsortability does not help NOTEARS-EV
and GOLEM-EV achieve a good performance, even when the ground-truth data scale is used. This is
also the case for GOLEM-NV, as demonstrated in Section 3.2. Furthermore, these studies suggest that
varsortability may not dominate the optimization of these continuous structure learning approaches,
at least in the settings considered in this work.

Appendix B. Proofs

In this section, we provide the proofs of Propositions 1 and 2 given in Section 3.1.
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B.1. Proof of Proposition 1

Let (B̃, Ω̃) be parameters associated with the linear SEMs over variables X = (X1, . . . , Xd), d ≥ 3,
where the noise variables follow Gaussian distributions.3 By definition, Ω̃ is a positive diagonal
matrix, while the weighted adjacency matrix B̃ corresponds to a DAG.

The maximum number of free parameters in matrix B̃ is d(d−1)
2 , which corresponds to fully

connected DAGs with various topological orders. Since there is only a finite number of topological
orders with d nodes, it suffices to consider fully connected DAGs with a specific topological order,
e.g., where Xi+1 precedes Xi for i = 1, . . . , d− 1. We denote by G̃ the fully connected DAG with
this specific topological order. In this case, the corresponding weighted adjacency matrix B̃ is a
strictly lower triangular matrix with d(d−1)

2 free parameters.
Note that, in the large sample limit, the covariance matrix of X is

Σ̃ = (I − B̃)−T Ω̃(I − B̃)−1,

and the least squares loss of matrix B is

ℓ(B; Σ̃) =
1

2
tr
(
(I −B)T Σ̃(I −B)

)
.

Clearly, the varsortability equals one if

Var(Xi) > Var(Xi+1) ⇐⇒ Σ̃i,i − Σ̃i+1,i+1 > 0, for i = 1, . . . , d− 1. (2)

It is straightforward to show that the least squares score of G̃ is ℓ(B̃; Σ̃) [33, Lemma 6], given by

ℓ(B̃; Σ̃) =
1

2
tr
(
(I − B̃)T Σ̃(I − B̃)

)
=

1

2
tr(Ω̃). (3)

Since matrices I− B̃ and Ω̃ are invertible, Σ̃ is symmetric positive definite. Let L̃ be the (unique)
Cholesky factor with positive diagonal entries, i.e.,

L̃L̃T = Σ̃. (4)

We now define (B̂, Ω̂) as

Ω̂ := diag
(
(L̃1,1)

2, . . . , (L̃d,d)
2
)

and B̂ := I − L̃−T Ω̂
1
2 , (5)

which implies
(I − B̂)−T Ω̂

1
2 = L̃ (6)

and that B̂ is strictly upper triangular. By Eqs. (4) and (6), we have

(I − B̂)T Σ̃(I − B̂) = Ω̂. (7)

Because B̂ is strictly upper triangular, the DAG defined by B̂ is different from G̃ (i.e., the DAG
defined by B̃). By Eqs. (5) and (7), the least squares loss of B̂ in the large sample limit is

ℓ(B̂; Σ̃) =
1

2
tr
(
(I − B̂)T Σ̃(I − B̂)

)
=

1

2
tr(Ω̂) =

1

2
tr(L̃⊙ L̃). (8)

3. For clarity in this proof, we use (B̃, Ω̃) to denote the parameters instead of (B,Ω) as in the proposition statement.
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For the alternative weighted adjacency matrix B̂ to yield a lower least squares loss than the true
one B̃, i.e., ℓ(B̂; Σ̃) < ℓ(B̃; Σ̃), we have the following inequality by substituting Eqs. (3) and (8):

tr(Ω̃)− tr(L̃⊙ L̃) > 0. (9)

The following lemma concludes the proof of the proposition.

Lemma 3 Consider strictly lower triangular matrix B̃ and positive diagonal matrix Ω̃. The set of
parameters (B̃, Ω̃) that satisfy Inequalities (2) and (9) has a nonzero Lebesgue measure.

Proof of Lemma 3 Here we give a proof for the cases of d ≥ 4; such a proof holds similarly for
d = 3. First note that the LHS of Inequalities (2) and (9) are continuous functions of (the entries
of) B̃ and Ω̃ on the given domain, because, given that I − B̃ is invertible and that Σ̃ is symmetric
positive definite, the mappings of matrix inversion [62, 56] and Cholesky factor [48, Chapter 12]
are continuous. In this case, it suffices to find a specific point (B̃, Ω̃) that satisfies Inequalities (2)
and (9), because these inequalities are defined by continuous functions and thus they hold in an open
neighborhood of this point.

According to the given domain, consider the following parameters:

B̃ =



0 · · · 0 0 0 0
...

. . .
...

...
...

...
0 · · · 0 0 0 0
0 · · · 0 0 0 0
0 · · · 0 1

2 0 0
0 · · · 0 3

4
1
4 0


and Ω̃ = diag

(
d− 2, d− 3, d− 4, . . . , 4, 3, 2,

1

10
, 1, 1

)
,

both of which are d× d matrices. Note that B̃ is a strictly lower triangular matrix. We then have

Σ̃ = (I − B̃)−T Ω̃(I − B̃)−1 =



d− 2 0 · · · 0 0 0 0 0
0 d− 3 · · · 0 0 0 0 0
...

...
. . .

...
...

...
...

...
0 0 · · · 3 0 0 0 0
0 0 · · · 0 2 0 0 0
0 0 · · · 0 0 357

320
23
32

7
8

0 0 · · · 0 0 23
32

17
16

1
4

0 0 · · · 0 0 7
8

1
4 1


.

Clearly, Inequality (2) is satisfied. By simple calculation, the Cholesky factor L̃ of Σ̃ is

L̃ =



√
d− 2 0 · · · 0 0 0 0 0

0
√
d− 1 · · · 0 0 0 0 0

...
...

. . .
...

...
...

...
...

0 0 · · ·
√
3 0 0 0 0

0 0 · · · 0
√
2 0 0 0

0 0 · · · 0 0
√
1785
40 0 0

0 0 · · · 0 0 23
√
1785

1428

√
76398
357 0

0 0 · · · 0 0
√
1785
51

−8
√
76398

5457
4
√
107

107


,

which indicates that Inequality (9) also holds. ■
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B.2. Proof of Proposition 2

Let (B̃, Ω̃) be parameters associated with the linear SEMs over variables X = (X1, . . . , Xd) induced
by DAG G̃, where the noise variables follow Gaussian distributions.4 By definition, Ω̃ is a positive
diagonal matrix, while the weighted adjacency matrix B̃ corresponds to a DAG.

We use SNG̃ and NSNG̃ to denote the set of source nodes and non-source nodes in DAG G̃,
respectively. We also denote by PAG̃(Xi), CHG̃(Xi), and DEG̃(Xi) the set of parents, children, and
descendants of Xi in G̃, respectively. For any two DAGs G1 and G2, we write G1 ⊆ G2 if all edges in
G1 are present in G2. Furthermore, let Dd be the set of d-node DAGs, and, for DAG G, define RG as

RG := {B ∈ Rd×d : Bi,j = 0 when Xi → Xj is not an edge in G}.

Note that, in the large sample limit, the covariance matrix of X is

Σ̃ = (I − B̃)−T Ω̃(I − B̃)−1.

The varsortability is equal to vsource
G̃ , where vsource

G̃ is defined as in the proposition statement, if
the following inequalities hold:

Var(Xi) < Var(Xj) ⇐⇒ Σ̃i,i − Σ̃j,j < 0, for Xi ∈ SNG̃ , Xj ∈ DEG̃(Xi), (10)

and

Var(Xi) > Var(Xj) ⇐⇒ Σ̃i,i − Σ̃j,j > 0, for Xi ∈ NSNG̃ , Xj ∈ CHG̃(Xi). (11)

With a slight abuse of notation, let ℓ(G; Σ̃) denote the least squares score of DAG G, and ℓ(B; Σ̃)
denote the least squares loss of matrix B. Specifically, we have

ℓ(G; Σ̃) := min
B∈RG

ℓ(B; Σ̃). (12)

For any DAG Ĝ ⊇ G̃, we have ℓ(Ĝ; Σ̃) = ℓ(B̃; Σ̃) by Loh and Bühlmann [33, Lemma 6]. Therefore,
it suffices to consider the DAG Ĝ where Ĝ ̸⊇ G̃. We then consider the following inequality:

ℓ(B̃; Σ̃)− ℓ(Ĝ; Σ̃) < 0, for Ĝ ∈ Dd, Ĝ ̸⊇ G̃, (13)

or equivalently, the true weighted adjacency matrix B̃ yields the lowest least squares score.
The following lemma concludes the proof of the proposition.

Lemma 4 Given DAG G̃, consider matrix B̃ ∈ RG̃ and positive diagonal matrix Ω̃. The set of
parameters (B̃, Ω̃) that satisfy Inequalities (10), (11), and (13) has a nonzero Lebesgue measure.

Proof of Lemma 4 First it is clear that the LHS of Inequalities (10) and (11) are continuous functions
of (the entries of) B̃ and Ω̃ on the given domain, because I−B̃ is invertible and the mapping of matrix
inversion is continuous [62, 56]. For Inequality (13), the least squares score ℓ(Ĝ; Σ̃) is computed
by solving the optimization problem in Eq. (12); each column, say the j-th one, of the estimated
solution consists of the coefficients obtained from linearly regressing Xj upon its parents in DAG

4. For clarity in this proof, we use (B̃, Ω̃) to denote the parameters instead of (B,Ω) as in the proposition statement.
Similarly, we use G̃ to denote the DAG instead of G.
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Ĝ [33, Remark 5]. Therefore, it is straightforward to show that the LHS of Inequality (13) is also a
continuous function of B̃ and Ω̃ on the given domain, because Σ̃ is symmetric positive definite and
so any of its principal submatrix is invertible. In this case, it suffices to find a specific point (B̃, Ω̃)
that satisfies Inequalities (10), (11), and (13), because these inequalities are defined by continuous
functions and thus they hold in an open neighborhood of this point.

We start with Inequality (13). For the free parameters in diagonal matrix Ω̃, we set them to be
equal, i.e., σ̃2

1 = · · · = σ̃2
d = σ̃2. This restriction leads to the equal noise variances case, which, by

Loh and Bühlmann [33, Theorem 7], indicates that the true weighted adjacency matrix B̃ yields the
lowest least squares score. Thus, Inequality (13) holds with this restriction.

We now construct parameter B̃ that such that Inequalities (10) and (11) hold. Consider the
variable Xj . If all parents of Xj are source nodes in DAG G̃, we set B̃i,j to arbitrary (strictly) positive
value for each edge Xi → Xj in G̃. If some parents of Xj are not source nodes in G̃, then we set

B̃i,j :=
1∣∣PAG̃(Xj)

∣∣
(

cj
Var(Xi)

) 1
2

(14)

for each edge Xi → Xj in G̃, where cj is an arbitrary value from the following interval:

cj ∈

(
0, min

Xk∈PAG̃(Xj)∩NSNG̃

{Var(Xk)} − σ̃2

)
. (15)

We construct the above matrix by following the topological order of DAG G̃. Specifically, when we
are constructing the j-th column of B̃, every incoming edge into the ancestors of variable Xj has
been assigned a weight. Thus, the variances of the parents of Xj can be computed (see Eq. (15)).

Note that all entries of the matrix B̃ constructed above that correspond to the edges in G̃ are
nonzero. Therefore, for Xi ∈ SNG̃ and Xj ∈ DEG̃(Xi), we have

Var(Xj) = Var(B̃T
·,jX +Nj) = Var(B̃T

·,jX) + Var(Nj) > Var(Nj) = σ̃2 = Var(Xi),

which implies that Inequality (10) holds.
Moreover, for Xi ∈ NSNG̃ and Xj ∈ CHG̃(Xi), we have

Var(Xj) = Var

 ∑
Xl∈PAG̃(Xj)

Bl,jXl +Nj


=

∑
Xl,Xm∈PAG̃(Xj)

Bl,jBm,j Cov(Xl, Xm) + Var(Nj)

≤
∑

Xl,Xm∈PAG̃(Xj)

Bl,jBm,j Var(Xl)
1
2 Var(Xm)

1
2 + σ̃2 (∵ Bl,jBm,j > 0)

=
∣∣PAG̃(Xj)

∣∣2 · cj∣∣PAG̃(Xj)
∣∣2 + σ̃2 (Substituting Eq. (14))

< min
Xk∈PAG̃(Xj)∩NSNG̃

{Var(Xk)} (Substituting Eq. (15))

≤ Var(Xi).

Thus, Inequality (11) also holds. Therefore, we have constructed a specific point (B̃, Ω̃) that satisfies
Inequalities (10), (11), and (13). ■
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Appendix C. Analysis of Non-Equal Noise Variances Formulation

We provide analysis of the non-equal noise variances formulation. We experiment with random initial-
izations in Appendix C.1, and GOLEM-EV with random perturbations in Appendix C.2. We consider
alternative form of likelihood function (without profiling out the paramter Ω) in Appendix C.3, and
investigate the connection between estimated score and SHD in Appendix C.4.

C.1. Random Initializations

In Sections 3 and 4, we adopt the initialization scheme with zero matrix for various structure learning
methods such as GOLEM-NV and NOTEARS. Note that this initialization scheme has been used
by several existing works [72, 37, 3], especially those based on linear SEMs. Here, we conduct
experiments for GOLEM-NV with random initializations to examine whether it produces a better
solution and helps remedy the possible nonconvexity issue discussed in Sections 3.2 and 4. Specif-
ically, each entry of the initial solution B is sampled uniformly at random from [−ϵ, ϵ], where ϵ ∈
{0.01, 0.05, 0.1}. Furthermore, we run such random initialization for 10 times, and select the final
solution that leads to the best score (see Eq. (1)). Apart from the random initialization scheme, we
also report results for GOLEM-NV initialized with the solution of GOLEM-EV and that of FGES.

The empirical results are reported in Table 2. We observe that random initializations perform sim-
ilarly to the initialization scheme with zero matrix, both of which lead to a much worse performance
as compared to GOLEM-NV initialized with GOLEM-EV or with FGES. This suggests that random
initializations do not seem to remedy the possible nonconvexity issue, at least in the setting considered
here. Moreover, this further validates the findings in Section 3.2, i.e., a proper initialization scheme
is crucial to the quality of the final solution for non-equal noise variances formulation.

Table 2: Empirical results of different initialization schemes. The number of variables, sample
size, and noise ratio are 50, 106, and 2, respectively. The standard errors computed over 30 random
repetitions are also reported. Here, “int.” stands for “initialized”.

SHD of CPDAG F1 of skeleton F1 of arrows

GOLEM-NV int. with zero matrix 120.27± 2.91 0.50± 0.00 0.04± 0.00
GOLEM-NV int. with GOLEM-EV 4.50± 1.11 0.98± 0.01 0.97± 0.01

GOLEM-NV int. with FGES 0.47± 0.47 1.00± 0.00 0.99± 0.00
GOLEM-NV int. with Unif[−0.01, 0.01] 123.13± 2.90 0.50± 0.01 0.04± 0.00
GOLEM-NV int. with Unif[−0.05, 0.05] 119.20± 2.75 0.51± 0.01 0.04± 0.01

GOLEM-NV int. with Unif[−0.1, 0.1] 112.77± 3.11 0.51± 0.01 0.04± 0.01

C.2. Equal-Noise Variances Formulation with Random Perturbations

We investigate if random perturbations on the solution of GOLEM-EV improve the performance in
the non-equal noise variances case. Specifically, we randomly perturb the solution of GOLEM-EV
by adding a value sampled uniformly at random from [−ϵ, ϵ] to each entry of the estimated matrix.
We then use the perturbed solution to initialize GOLEM-EV and run the method again, and repeat
this procedure for 10 times. We consider ϵ ∈ {0.01, 0.05, 0.1}, and denote the resulting methods as
GOLEM-EV-Perturbed-0.01, GOLEM-EV-Perturbed-0.05, and GOLEM-EV-Perturbed-0.1, respec-
tively. Here, we follow the setup (i.e., 50 variables, degree of 2, and 106 samples) in Section 3.2.
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Figure 11: GOLEM-EV with perturbations.

The results of GOLEM-EV-Perturbed, GOLEM-
EV, and GOLEM-NV initialized with GOLEM-
EV are shown in Figure 11. It is observed that ran-
dom perturbations on GOLEM-EV does not im-
prove the performance much. Specifically, when
the noise ratio r ≥ 4, GOLEM-EV with pertur-
bations, similar to that without perturbations, per-
forms much worse than GOLEM-NV initialized
with GOLEM-EV. The reason is that when the
noise ratio is high, there is model misspecification
for GOLEM-EV because it assumes that the noise
variances are equal; therefore, random perturba-
tions on GOLEM-EV do not help. This further
validates the importance of non-equal noise vari-
ances formulation (e.g., GOLEM-NV) to handle
more general settings.

C.3. Alternative Form of Likelihood Function

In the derivation of GOLEM-NV [37, Appendix C.1], the resulting optimization problem in Eq. (1)
involves only the matrix B because it profiles out the parameter Ω that corresponds to the noise
variances. Here, we consider the form of likelihood function without profiling out such parameter.
Specifically, we consider the optimization problem

min
B∈Rd×d,
σ1,...,σd>0

LNV(B, σ1, . . . , σd;X)− log | det(I −B)|+ λ1∥B∥1 + λ2h(B), (16)

where

LNV(B, σ1, . . . , σd;X) =
1

2

d∑
i=1

(
log σ2

i +
∥X·,i −XB·,i∥22

nσ2
i

)
.

The derivation of the likelihood function above is available at Ng et al. [37, Appendix C.1]. We
follow the setting described in Section 4.1, and report the empirical results in Figure 12. One
observes that both forms of likelihood functions with and without profiling out the noise variances
lead to a poor performance (when initialized with zero matrix) even when the sample size is large.
For instance, with 106 samples, the SHDs of GOLEM with and without profiling are 121.4± 2.98
and 78.97 ± 3.34, respectively, while PC and FGES have much lower SHDs at 1.63 ± 0.32 and
0.90± 0.58, respectively. This suggests that both forms of likelihood functions may be susceptible
to suboptimal local solutions possibly owing to nonconvexity.

Similar to the initialization sceheme described in Section 3.2, we also considered using the
solution of FGES to initialize the optimization problem (16), by computing the initial solution of
weighted matrix B and noise variances σ1, . . . , σd. A similar observation in Figure 4 is obtained
(the empirical results are omitted here for brevity), i.e., such an initialization strategy improves the
performance of structure learning, which indicates that the alternative formulation of GOLEM-NV
in Eq. (16) also depends largely on the initial solution.

It is worth noting that we also conducted the same experiments above with NOTEARS by
replacing its least squares objective with LNV(B, σ1, . . . , σd;X) to handle the non-equal noise
variances case, and have the same observations (the empirical results are omitted here for brevity).
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Figure 12: Empirical results of different forms of likelihood function under different sample sizes.
The number of variables is 50. Error bars represent the standard errors computed over 30 random
repetitions.

C.4. Analysis of Estimated Score and SHD

We investigate the connection between the score function of GOLEM-NV and the quality of the
estimated structure. Specifically, we consider GOLEM-NV initialized with zero matrix as well
as by solutions of GOLEM-EV and FGES. We also include the comparison with zero matrix and
random DAG. For these methods, we compute the SHD of the estimated CPDAGs, and the score of
GOLEM-NV (before thresholding) given in Eq. (1). We consider 50-node ER1 graphs with a noise
ratio of 16.

The results are reported in Figure 13. One observes that GOLEM-NV initialized with GOLEM-
EV and by FGES achieves a low score that is close to the score of the true DAG. At the same time, they
also have a low SHD, indicating that their estimated structures are close to the true CPDAGs. However,
this is not the case for GOLEM-NV initialized with zero matrix. Specifically, it also achieves a score
that is very close to that of the true DAG, but its SHD is 121.43± 2.98. This appears to suggest that
(1) a lower score does not necessarily lead to a low SHD-CPDAG, and (2) the nonconvex landscape
of GOLEM-NV may contain suboptimal solutions whose scores are very close to the score of the
global minimizer, but their corresponding structures may be very far from the true CPDAG. Thus,
this demonstrates that nonconvexity may be a severe concern, at least in the setting considered here.
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Figure 13: Visualization of estimated score and SHD for different methods over 30 random repetitions.
Lower is better for both SHD and score.
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Appendix D. Comparison between SCAD and ℓ0 Penalties
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Figure 14: SCAD and ℓ0 penalties.

Based on the analysis in Section 5.2, one may
wonder how different specifications of the sparsity
penalty considered above compare to ℓ0 penalty.
Since SCAD penalty and MCP perform similarly,
we compare GOLEM-EV and NOTEARS-EV
equipped with the SCAD penalty to discrete ap-
proaches, i.e., A* and GDS, that employ ℓ0 penalty.
We consider 15-node ER2 graphs with varying
sample sizes, and report the SHDs in Figure 14.
Comparing NOTEARS-EV, A*, and GDS that
all use the least squares objective, one observes
that A*, not surprisingly, has the lowest SHDs,
while GDS is on par with it. On the other hand,
NOTEARS-EV has a much higher SHD than that
of GDS. That is, NOTEARS-EV, even with the SCAD penalty, performs much worse than a greedy
search method such as GDS, not to mention exact search method such as A*. Such a performance
gap conveys a cautionary message that continuous structure learning approaches may be inevitably
susceptible to the nonconvexity issue that might be severe in practice. This is in contrast with the
observation by Zheng et al. [72, Section 5.3] that the estimated solution by NOTEARS-EV is very
close to the global minimizer despite its nonconvexity. A possible reason is that we apply a relatively
small threshold 0.1, and as discussed in Section 5.1, NOTEARS-EV may require a larger threshold,
e.g., 0.3, to achieve a decent performance, possibly owing to nonconvexity.

Appendix E. Supplementary Experiment Details

We provide supplementary experiment details for Sections 3.1, 3.2, 4.1, 4.2, 4.3, 5.1, and 5.2.

E.1. Implementation Details and Evaluation Metrics

Implementation Details. For the structure learning methods considered, we use the default hyper-
parameters and official implementations from the authors, unless otherwise stated. As suggested in
Section 5.1, using a relatively large threshold of 0.3 as in existing works may be harmful and remove
many true edges, especially when the edge weights in the true weighted adjacency matrix are small.
In this work, we consider a smaller threshold of 0.1 for continuous approaches. To ensure a fair
comparison with NOTEARS-EV and GOLEM-EV, we also apply the same thresholding on (the least
squares coefficients of) the estimated solutions of GDS and A*. Furthermore, for NOTEARS-NV,
DPDAG-NV, DAGMA-NV, and NOCURL-NV, we use the same hyperparameter as GOLEM-NV for
sparsity penalty, i.e., λ = 0.002, and replace their least squares objective ℓ(B;X) with LNV(B;X),
which correspond to the likelihood of linear Gaussian DAGs assuming non-equal noise variances.
For sparsity, SCAD penalty and MCP require an additional hyperparameter a, which we set to 3.7
following Fan and Li [18].

We provide further details for specific methods as follows:

• GOLEM [37]: We use L-BFGS implemented to solve the unconstrained optimization problem
as it runs faster than Adam [28] and leads to a similar performance.
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• NOTEARS [72], NOTEARS-MLP [73], and NOTEARS-ICA [71]: We use the quadratic
penalty method instead of augmented Lagrangian method to solve the constrained optimization
problem [5, 40], since Ng et al. [38] demonstrated that their performance is nearly identical,
and that the former converges in a fewer number of iterations.

• DPDAG [9]: In the original work [9], DPDAG was combined with variational inference and
MLPs, which leads to the VI-DP-DAG method for the nonlinear case. Here, we adapt it to
learn linear DAGs (without the parts of variational inference and MLPs).

• A* [67]: We adapt an implementation from the causal-learn package [74] available at the
GitHub repository https://github.com/cmu-phil/causal-learn, and modify
the BIC score [50] to least squares score [33]. We set the coefficient of ℓ0 penalty to 0.01.

• GDS [43]: We use our own implementation in Python. A key difference with the original
method [43] is that we use the least squares score [33] instead of likelihood score, both of
which assume equal noise variances. We set the coefficient of ℓ0 penalty to 0.01.

• PC [54] and FGES [45]: We use the implementation from the py-causal package available
at the GitHub repository https://github.com/bd2kccd/py-causal, which is a
Python wrapper of the TETRAD project [49]. We adopt the Fisher Z test and BIC score [50]
for PC and FGES, respectively.

Evaluation Metrics. For the linear Gaussian setting with equal noise variances formulations, as
well as linear non-Gaussian and nonlinear settings, we report the SHD, F1 score, and recall of the
estimated DAG. For the linear Gaussian setting with non-equal noise variances formulations, we
report the SHD of estimated CPDAG, as well as the F1 score of estimated skeleton and directed
edges. The standard errors over 30 random repetitions are also provided.

E.2. Discussion of Search Strategies

As discussed in Section 2.1, NOTEARS [72] solves a constrained optimization problem with a
hard DAG constraint by using augmented Lagrangian or quadratic penalty method [5, 40], while
GOLEM [37] solves an unconstrained optimization with a soft DAG constraint. These essentially
represent different strategies to search for a DAG. Similar to NOTEARS, DAGMA [3] solve a
constrained optimization problem, but adopts a procedure similar to the barrier method [40] with a
log-determinant DAG constraint. Instead of enforcing acyclicity via a constrained optimization prob-
lem such as NOTEARS and DAGMA, another line of approaches directly search in the space of DAGs.
Specifically, NOCURL [66] developed an algebraic representation of DAGs based on graph Hodge
theory [25, 2] that directly outputs weighted adjacency matrix of a DAG, while DPDAG [9] adopts
a differentiable DAG sampling procedure that (1) samples a linear ordering of the variables using
Gumbel-Sinkhorn [35] or Gumbel-Top-k [31] reparametrizations, and (2) samples a weighted adja-
cency matrix consistent with the ordering. Note that DPDAG was combined with variational inference
and MLPs, which leads to the VI-DP-DAG method for the nonlinear case; here, we adapt it to learn lin-
ear DAGs (without the parts of variational inference and MLPs). These several approaches represent
different strategies to traverse the search space for estimating a DAG with continuous optimization.

Appendix F. Supplementary Experiment Results

We provide supplementary experiment results for Sections 3.1, 3.2, 4.1, 4.2, 4.3, 5.1, and 5.2.
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F.1. With Equal Noise Variances Formulation
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(a) 15 variables with 100 samples.
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(b) 15 variables with 106 samples.
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(c) 50 variables with 100 samples.
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(d) 50 variables with 106 samples.

Figure 15: Empirical results of structure learning methods assuming equal noise variances under
different noise ratios. Error bars represent the standard errors computed over 30 random repetitions.
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F.2. With Non-Equal Noise Variances Formulation
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(a) Without data standardization.
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(b) With data standardization.

Figure 16: Empirical results of structure learning methods under different noise ratios. The number
of variables is 50 and the sample size is 106. Error bars represent the standard errors computed over
30 random repetitions. Here, “int.” stands for “initialized”.

F.3. Search Strategies
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Figure 17: Empirical results of different search strategies under different sample sizes. The number
of variables is 50. Error bars represent the standard errors computed over 30 random repetitions.
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F.4. DAG Constraints
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(a) GOLEM-NV with different DAG constraints.
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(b) NOTEARS-NV with different DAG constraints.

Figure 18: Empirical results of different DAG constraints under different sample sizes. The number
of variables is 50. Error bars represent the standard errors computed over 30 random repetitions.

32102



STRUCTURE LEARNING WITH CONTINUOUS OPTIMIZATION: A SOBER LOOK AND BEYOND

F.5. Other Settings
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Figure 19: Empirical results of NOTEARS-ICA under different sample sizes. The number of
variables is 15. Error bars represent the standard errors computed over 30 random repetitions.
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Figure 20: Empirical results of NOTEARS-MLP under different sample sizes. The number of
variables is 15. Error bars represent the standard errors computed over 30 random repetitions.
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F.6. Thresholding
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Figure 21: Empirical results of different thresholds under different weight scales. The number of
variables is 15. Error bars represent the standard errors computed over 30 random repetitions.
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F.7. Sparsity Penalty

(a) SHD for 15 variables. (b) F1 score for 15 variables.

(c) SHD for 50 variables. (d) F1 score for 50 variables.

Figure 22: Empirical results of different sparsity penalties under different sample sizes. Error bars
represent the standard errors computed over 30 random repetitions.
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