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Abstract
We consider the problem of estimating the counterfactual joint distribution of multiple quantities
of interests (e.g., outcomes) in a multivariate causal model extended from the classical difference-
in-difference design. Existing methods for this task either ignore the correlation structures among
dimensions of the multivariate outcome by considering univariate causal models on each dimen-
sion separately and hence produce incorrect counterfactual distributions, or poorly scale even for
moderate-size datasets when directly dealing with such a multivariate causal model. We propose
a method that alleviates both issues simultaneously by leveraging a robust latent one-dimensional
subspace of the original high-dimension space and exploiting the efficient estimation from the uni-
variate causal model on such space. Since the construction of the one-dimensional subspace uses
information from all the dimensions, our method can capture the correlation structures and produce
good estimates of the counterfactual distribution. We demonstrate the advantages of our approach
over existing methods on both synthetic and real-world data.
Keywords: multivariate counterfactual distribution, optimal transport, difference in difference

1. Introduction

Causal inference has received explosive interest in the last decades, due to the need to extract causal
knowledge from data in various research fields, such as statistics (Pearl, 2009), sociology (Gangl,
2010), biomedical informatics (Kleinberg and Hripcsak, 2011), public health (Glass et al., 2013),
and machine learning (Schölkopf, 2022). One of the most popular causal inference models in prac-
tice is the difference in difference (DiD) model, which dates back to the works of John Snow in
the 1850s (Snow, 1854, 1855; Donald and Lang, 2007; Lechner, 2011; Roth et al., 2023). In this
model, we observe a quantity of interest (i.e., outcome) from two different groups, i.e., the treatment
group and the control group, at two different time steps, i.e., before and after the intervention (i.e.,
treatment) event. More precisely, the intervention is only applied on the treatment group while there
is no intervention applied on the control group. We assume that if there was no intervention in the
treatment group, its outcome variable would evolve the same way as that of the control group. This
is the so-called “parallel trend” assumption. The classical DiD model, however, requires that the
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means of the outcome variable in the two groups must evolve the same way when there is no inter-
vention. This may limit its application in practice. To extend the DiD model, several proposals have
been developed in the literature (Abadie, 2005; Athey and Imbens, 2006; Blundell and Costa Dias,
2009; Sofer et al., 2016), of which notably is the Changes-in-Changes (CiC) model (Athey and
Imbens, 2006).

The CiC model generalizes the DiD model to include parallel trends that can act on the whole
distribution of the outcome, i.e., in the absence of intervention, the means of the outcome in control
and treatment groups are allowed to evolve in different ways, as long as the two outcome distribu-
tions evolve in the same way. This allows identifications of more complex treatment effects that
require information from the whole outcome distributions, not just their first moments (Lechner,
2011). The standard CiC model, however, is only designed for univariate outcomes. In order to ex-
tend the CiC model for a multivariate outcome variable, a naive approach is to tensorize univariate
CiC models, i.e., considering independently a univariate CiC model for each coordinate. Neverthe-
less, this naive approach fails to capture correlations among coordinates of the outcome and thus is
incapable of modelling complex, multivariate parallel trends.

Recently, by leveraging the optimal transport (OT) theory (Villani, 2003, 2008), Torous et al.
(2021) proved that the counterfactual outcome distribution of the treatment group in the CiC model
(i.e., the outcome distribution of the treatment group without receiving intervention) at the post-
intervention time stamp can be estimated by exploiting the optimal transport map which pushfor-
wards the outcome distribution of the control group at the pre-intervention time stamp to that at
the post-intervention time stamp. Consequently, it is natural to extend the CiC model for univariate
quantity of interest into that for multivariate one through the lens of OT, since this would take into
account the dependence structure of the dimensions and be able to model complex parallel trends.

However, OT suffers a few drawbacks. It has a high computational complexity, which is super
cubic with respect to the number of supports of the input distribution. A popular approach is to rely
on the entropic regularization for OT, a.k.a., Sinkhorn (Cuturi, 2013), to reduce its computational
complexity to quadratic. Yet, Sinkhorn yields a dense estimator for the optimal transport plan, which
is not a desirable property for counterfactual estimation in the CiC model. Additionally, OT has a
high sample complexity, i.e., O(n−1/d) where n is the number of samples and d is the dimension of
samples in the probability measures.

In this work, in order to exploit the efficient computation of the CiC model for the univariate
quantity of interest, and alleviate the above-mentioned challenges of the OT approach for the multi-
variate CiC model, we propose to leverage the max-min robust OT approach (Paty and Cuturi, 2019;
Deshpande et al., 2019; Le et al., 2024). In particular, we propose to lift the univariate CiC model to
that for a multivariate quantity of interest by seeking a robust latent univariate subspace. Unlike the
naive tensorization approach, our approach can incorporate the correlations of coordinates. More-
over, unlike the standard OT approach as in (Torous et al., 2021), our estimator can preserve the
efficient computation as in the univariate CiC model since the optimal transport plan is estimated
on the robust latent one-dimensional subspace instead of its original high-dimensional space.

Intuitively, our approach follows the max-min robust OT approach (Paty and Cuturi, 2019; Desh-
pande et al., 2019; Le et al., 2024), which steams from the robust optimization (Ben-Tal et al., 2009;
Bertsimas et al., 2011) where there are uncertainty non-stochastic parameters. The robust opti-
mization has many roots in applied sciences, e.g., in robust control (Keel et al., 1988), machine
learning (Morimoto and Doya, 2001; Xu et al., 2009; Panaganti et al., 2022). In the context of
OT, several advantages of the max-min (and its relaxation min-max) robust OT have been reported.
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For example, (i) it makes the OT approach robust to noise (Paty and Cuturi, 2019; Dhouib et al.,
2020; Le et al., 2024); and (ii) it also helps to reduce the sample complexity (Paty and Cuturi, 2019;
Deshpande et al., 2019). At a high level, our contributions are two-fold as follows:

• (i) We propose a max-min robust OT approach for the multivariate CiC model. The proposed
approach not only inherits properties of the OT approach for the CiC model but also preserves
the efficient computation as in the univariate CiC model.

• (ii) We evaluate our approach on both synthesized and real data to illustrate the advantages of
the proposed method.

The paper is organized as follows: we review the multivariate CiC model and existing methods
for estimating the counterfactual distribution in this model in Section 2. Then, we discuss our
proposed method in Section 3 and demonstrate its benefits through synthetic data in Section 4. We
apply it to the classical dataset of Card and Krueger (1993) in Section 5 before giving concluding
remarks in Section 6. Furthermore, we have released code for our proposed approach.1

Notations. We use the superscripts C and T to indicate the control group and treatment group,
respectively. We drop those superscripts when either the context is clear or it is not necessary to
distinguish these two groups.

2. The Causal Model

In this section, we describe the CiC causal model for multiple quantities of interests (Torous et al.,
2021), which is an extension based on OT theory from the original, univariate model (Athey and
Imbens, 2006). Some additional discussions can be found in Appendix D.

We use a stochastic process to model the quantity of interests (i.e., outcomes) before the inter-
vention, i.e., at the time stamp t = 0, and after the intervention, i.e., at the time stamp t = 1. We
denote them as {Yt}t=0,1 where Yt is in the Rd space. For the original CiC causal model, we have
d = 1 (Athey and Imbens, 2006). We let µt be the distribution of Yt for t = 0, 1. Without loss of
generality, we assume that Yt is generated from a latent variable Ut ∈ Rd which may change over
time, but the distribution ν of the latent variable Ut is not changed over time, i.e., time-invariant
Ut ∼ ν for t = 0, 1. Intuitively, Ut may be regarded as (unobserved) intrinsic features of a sample.
In the CiC model, we observe two groups:

• (i) the control group: the stochastic process {Y C
t } is solely affected by the natural drift. The

evolution from {Y C
0 } at t = 0 to {Y C

1 } at t = 1 is independent of the treatment effects (of
intervention).

• (ii) the treatment group: the stochastic process {Y T
t } is affected by both the natural drift and

the treatment effects.

For the CiC causal model, the goal of our causal inference is to deconvolve the natural drift and
the treatment effects in the treatment group. For example, we would like to estimate the counterfac-
tual distribution of the control group at post-intervention under only natural drift effect (i.e., without
the treatment effects). By doing so, we can estimate the treatment effects of the intervention for the
considered groups in application domains.

1. https://github.com/thongphamthe/scalable-counterfactual
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2.1. The Natural Drift Model

Natural drift is best explained in the stochastic process {Y C
t } for t = {0, 1} since this process

involves solely the natural drift and is not affected by the treatment effect. The change of {Y C
t }

from the pre-intervention (t = 0) to the post-intervention (t = 1) is modeled by assuming the
existence of two production functions ht : Rd 7→ Rd with t ∈ {0, 1} such that

Y C
t = ht

(
UC
t

)
.

Consequently, we have µCt = (ht)♯ν
C where we introduce a new notation ♯ as the pushforward

operator which is defined as for any measurable set A ⊆ Rd, ν(A) = µ(h−1
t (A)) (Peyré and

Cuturi, 2019, Def. 2.1). In other words, the distribution of the quantity of interests in the control
group at the time stamp t (i.e., µC

t ) is the pushforward of the distribution of the latent variable UC
t

of the control group at the time stamp t (i.e., νC) by the production function ht.

Natural drift map. Assume that the production function h0 is invertible, we have νC = (h−1
0 )♯µ

C
0 .

Additionally, the distribution νC of UC
t is time-invariant. Thus, we have

µC1 = (h1 ◦ h−1
0 )♯µ

C
0 . (1)

Equivalently, µC1 is the pushforward of µC0 by the natural drift map

f = h1 ◦ h−1
0 . (2)

Natural drift in the treatment group. We first introduce the concept of a counterfactual dis-
tribution of the outcome in this group, which is the outcome variable of the treatment group at
post-intervention t = 1 under the purely hypothetical situation that the treatment was never ap-
plied. Denote {Y T∗

1 } as this hypothetical stochastic process for the outcome and its distribution
as µT

∗
1 . It is assumed that the change from {Y T

0 } to {Y T∗
1 } is governed by the same production

functions h0 and h1 used in modeling natural drift in the control group, namely Y T
0 = h0(U

T
0 ) and

Y T∗
1 = h1(U

T
1 ). This assumption generalizes the parallel trend assumption in the classical DiD

model. Then, similarly to Equation (1), we have

µT
∗

1 = (h1 ◦ h−1
0 )♯µ

T
0 = (f)♯µ

T
0 . (3)

Thus, the counterfactual distribution µT
∗

1 is the pushforward of µT0 by the natural drift map f. More-
over, Equations (1) and (3) suggest the following two-step method to estimate µT

∗
1 , the counterfac-

tual distribution of outcomes in the treatment group under only effects of the natural drift:

• (i) We first estimate the natural drift map f from observed samples in the stochastic processes
{Y C

0 }, {Y C
1 } of the distributions µC0 , µ

C
1 respectively. How to perform this estimation will be

discussed in the next section.

• (ii) We then use the estimated natural drift map f as the pushforward function for the stochas-
tic process {Y T

0 } with distribution µT0 to obtain an estimate for the distribution µT
∗

1 .

The schematic summary of the causal model is shown in Fig. 1.
If we further assume UC

0 = UC
1 , then we have Y C

1 = f (Y C
0 ), i.e., the natural drift map can

be estimated by regress the control group at t = 1 on the control group at t = 0. However, it
requires coupled observations (Y C

0 , Y
C
1 ), which may be not available in practical applications, e.g.,

single-cell RNA-Seq data.
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control treatment

Figure 1: Schematic of the multivariate CiC model. The latent distributions νC and νT are time-
invariant. At each time t, the production function ht is applied to each latent distribution
to produce the corresponding outcome distribution in the absence of intervention. Con-
sequently, the natural drift map f = h1 ◦ h−1

0 dictates the evolutions of the outcome
distributions in both control and treatment groups in the absence of intervention. This
generalizes the parallel trend assumption in the classical DiD model. For estimating
treatment effects on the treatment group, our goal is to estimate µT

∗
1 , the counterfactual

distribution of outcomes in the treatment group at t = 1. One can estimate f from the
observable empirical versions of µC0 and µC1 then use this estimation of f to push-forward
the observable empirical version of µT0 to obtain an estimation of µT

∗
1 .

Remark 1 For x ∈ Rd, denote xi (i = 1, · · · , d) as the i-th coordinate of x. The multivariate CiC
model is equivalent to the naive tensorization of univariate CiC models when (i) each production
function ht : Rd 7→ Rd (t ∈ {0, 1}) can be decomposed as ht(x) = [h1t (x

1) · · ·hdt (xd)]T for
univariate functions hit : R 7→ R, and (ii) each coordinate of the latent variable (in both control and
treatment groups) is independent. Therefore, it is difficult for the tensorization of univariate CiC
models to express complex, multivariate natural drifts.

The CiC causal model and optimal transport. For the uncoupled observations Y C
0 , Y

C
1 , given

d = 1, the original CiC estimator (Athey and Imbens, 2006) assumes that h0 and h1 are monotone
increasing. Let F C

t be the cumulative distribution function (cdf) of Y C
t for t = 0, 1. Then, the unique

monotone increasing natural drift map is given by (F C
1 )

−1◦F C
0 such that µC1 =

(
(F C

1 )
−1 ◦ F C

0

)
♯
µC0 .

Interestingly, the natural drift map
(
(F C

1 )
−1 ◦ F C

0

)
is also the optimal transport map between µC0

and µC1 . Therefore, the OT theory provides a natural framework to extend the Changes-in-Changes
causal model for multivariate outcomes (Torous et al., 2021).

2.2. The OT approach for estimating the counterfactual distribution in multivariate CiC

As briefly discussed in Section 2.1, for the univariate outcome, the OT map is the natural drift
map estimation for CiC causal model. Torous et al. (2021) leveraged the OT theory to extend it for
the multivariate quantity of interests. We will discuss some mathematical background of OT for
estimating f in high dimensional setting for the CiC causal model.
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Let µ, ν be two probability measures supported on Rd, the OT problem between µ an ν with
squared Euclidean ground cost is defined as

OT(µ, ν) = min
T

∫
Rd

∥x− T (x)∥22 dµ s.t. (T )♯µ = ν, (4)

where T is known as the transport plan.

For univariate model (d = 1). Given a probability measure µ supported on R, we define its
cumulative distribution function (cdf) Fµ as

Fµ(x) = µ((−∞, x]). (5)

Note that the cdf is not always invertible, since it is not strictly increasing. The pseudo-inverse of
cdf F−1 : [0, 1] 7→ R is given by

F−1(x) = inf {t ∈ R | F (t) ≥ x} . (6)

When d = 1, the OT admits a closed-form expression for the optimal map T as follows:

T = (Fν)
−1 ◦ Fµ. (7)

Note that T is the unique increasing map such that (T )♯µ = ν.2 Therefore, if µ = µC0 , ν = µC1 , and
f is increasing, e.g., by choosing monotone h0 and h1, then f is the OT map between µC0 and µC1 .

For multivariate model (d > 1). The natural drift map f can be estimated via the OT map
between µC0 and µC1 (Torous et al., 2021).3 However, for high-dimensional space, OT suffers a few
drawbacks: (i) computational complexity, i.e., super cubic O(n3 log(n)) where n is the number of
supports of input measures; (ii) high sample complexity, i.e., O(n−1/d), which requires too many
samples to precisely estimate the OT between two continuous distributions (e.g., µC0 , µ

C
1).

A naive approach to estimate the natural drift map in the multivariate CiC causal model is to
decompose the model for each dimension. Specifically, one treats the multivariate CiC causal model
with d-dimensional outcomes (d > 1) as d independent univariate CiC causal models, a.k.a., the
tensorization of univariate CiC causal models. It is then efficient to estimate univariate OT maps for
these univariate CiC causal models via their closed-form expressions of the corresponding univariate
OT problems as in the original CiC causal model (Athey and Imbens, 2006) instead of solving the
high-complexity full OT problem for measures supported in high-dimensional spaces (Torous et al.,
2021). One then tensorizes all the estimated univariate OT maps to create an estimation of the
multivariate OT map. However, this approach might fail to capture the dependence structure among
dimensions of the multivariate OT map, i.e., the natural drift map f, and thus when one uses this
tensorized map to pushforward samples of µT0 , one might produce a counterfactual distribution with
a wrong dependence structure (e.g., see Fig. 2).

In this work, we propose an efficient approach to leverage the advantages of the univariate
CiC causal model for the multivariate CiC by seeking a robust latent 1-dimensional space for OT
estimation. More precisely, our approach is inspired by the subspace robust OT (Paty and Cuturi,
2019) whose authors proposed to estimate the OT map in low-dimensional subspace to reduce the
sample complexity for the OT problem, and further increase the robustness of OT estimation with
respect to noise.

2. The optimal condition for OT (i.e., existence of the optimal map T ) was described in (Gangbo, 1999) for d = 1.
3. The optimal condition for OT (with d > 1) was derived in (Brenier, 1991).
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3. The proposed method based on robust OT over latent one-dimensional subspaces

In order to efficiently leverage the advantages of the univariate CiC causal model and mitigate issues
in the naive tensorization for the multivariate CiC, in this work, we propose to seek a robust latent
1-dimensional subspace as a surrogate to estimate the univariate OT map to bridge the univariate
and multivariate CiC causal models. This approach is also known as max-min robust variant of
OT (Paty and Cuturi, 2019; Deshpande et al., 2019; Le et al., 2024).

Let G1 be the Grassmannian of the 1-dimensional subspaces of Rd, defined as

G1 = {E ⊂ Rd | dim(E) = 1},

where dim(E) is the dimension of the space E. Given two measures µ, ν supported on the space
Rd, the max-min robust OT (Paty and Cuturi, 2019) considers the maximal OT distance over all
possible 1-dimensional projections of input probability measures. Denote PE as the projector on
the 1-dimensional space E, the robust OT is defined as

R̃OT(µ, ν) = sup
E∈G1

OT(PE♯µ, PE♯ν). (8)

One way to parameterize the projection on the 1-dimensional space PE and the Grassmannian man-
ifold G1 is to utilize a projected direction vector ω on the sphere centering at the origin with a radius
1 as follows:

ROT(µ, ν) = max
ω∈Rd | ∥ω∥2=1

OT(Pω♯µ, Pω♯ν), (9)

where Pω denotes the projector on the direction ω. For a support x ∈ Rd, its projection by the
projected direction ω is computed by ⟨x, ω⟩. However, the problem ROT is non-convex, which is
usually approximated by the first-order method in practical applications (Deshpande et al., 2019).4

Much as the sliced-Wasserstein (SW) (Rabin et al., 2011)5 which is usually approximated by
averaging over a few random directions in practical applications instead of integrating over all pos-
sible directions on the sphere, and in order to optimize the robust OT efficiently, we also seek a
direction over a subset of projected directions Ω for the robust OT, defined as follows:

ROT(µ, ν) = max
ω∈Ω

OT(Pω♯µ, Pω♯ν), (10)

where we construct Ω by randomly sampling k directions similar as SW. We observe that a small
k, e.g., in the range of 10 to 50, provides a good balance between computation speed and accuracy.
For estimating the natural drift map f, µ and ν are chosen to be the empirical versions of µC0 and µC1
respectively. A detailed description of our algorithm is provided in Appendix F.

While our approach inherits the fast computation of the CiC estimator for univariate causal
models and thus can scale up for large-scale causal inference applications, it also gives good perfor-
mances in estimating the natural drift map f. This is in line with previous observations from various
applications of sliced-based OT (Rabin et al., 2011; Deshpande et al., 2019; Le et al., 2019; Nguyen
et al., 2021).

4. ROT is also known as the max-sliced Wasserstein (Deshpande et al., 2019).
5. SW projects supports into 1-dimensional space and exploits the closed-form expression of the univariate OT.
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Discussions. Our approach is inspired by the recent success of using sliced-Wasserstein (SW) (i.e.,
based on one-dimensional OT) in applications, e.g., computer vision (Kolouri et al., 2016; Lee et al.,
2019; Deshpande et al., 2019; Wu et al., 2019; Nguyen et al., 2021; Naderializadeh et al., 2021),
deep learning (Kolouri et al., 2019; Lee et al., 2019; Wu et al., 2019), domain adaptation (Lee et al.,
2019), and machine learning (Naderializadeh et al., 2021; Rakotomamonjy and Liva, 2021; Liutkus
et al., 2019). Much as SW, the one-dimensional projection in our robust OT does not offer interesting
properties from a distortion perspective, but remains useful as a surrogate function to optimize the
transport map in applications. From many empirical evidences in our experiments, we believe that
one-dimensional projection with large distortion, and further refined under the uncertainty sets in
our robust OT, remains useful as a surrogate in causal applications. Furthermore, it also follows
the recent realization that solving exactly the OT problem leads to overfitting (Peyré and Cuturi,
2019, §8.4), (Le et al., 2019). Excessive efforts to approximate the ground-truth cost for OT (e.g.,
under noisy supports or outliers) would be self-defeating since it leads to overfitting within the
optimization of OT problem itself.

Although it is possible to use more dimensions in the latent space as in Subspace Robust Wasser-
stein (Paty and Cuturi, 2019), our approach can be regarded as a trade-off to obtain scalable ap-
proach, since only 1-dimensional OT yields a closed-form solution, in general, this property does
not hold when the dimensional is greater than one. Also, notice that OT and SW are equivalent
metrics (Bonnotte, 2013, Theorem 5.1.5) (Carrière et al., 2017, Theorem 3.3). Moreover, SW is
indeed a distance for input measures on original high-dimensional space (Bonnotte, 2013, Propo-
sition 5.1.2). Therefore, leveraging the closed-form solution of OT in 1-dimension space is well
ground-based in OT theory.

Remark 2 A technical remark is that it may not exist the optimal transport map T for the OT
problem in Equation (4) (i.e., the Monge formulation of OT problem). In practical applications,
one can relax such the Monge problem of OT by the Kantorovich formulation of OT problem (Peyré
and Cuturi, 2019), in which the optimal transport plan always exists.6 Consequently, one can utilize
such optimal transport plan and leverage the barycentric map (Bonneel et al., 2016) for the OT map
in the Monge problem of OT.

4. Synthetic experiments

All experiments were carried out on commodity hardware and can be reproduced by the released
code.7 From here, we will denote the naive tensorization of the univariate CiC method for estimating
multidimensional counterfactual distributions simply as the CiC method.

4.1. Illustrative examples

We demonstrate our method through two 2D examples for ease of visualization. For the latent dis-
tributions νC and νT, we choose bivariate Gamma distributions in the first example and 2D Gaussian
mixtures in the second example. These settings lead to an unimodal counterfactual for the Gamma
case, and a multimodal counterfactual distribution for the Gaussian mixture case, as can be seen in
the ground truth panels of Fig. 2. More details on experiment settings can be found in Appendix A.

6. We give a review about the Kantorovich formulation of OT problem in Appendix C.
7. https://github.com/thongphamthe/scalable-counterfactual
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Figure 2: Counterfactual distribution estimated by each method. While CiC failed to capture
the dependence structures between dimensions of the counterfactual distributions in both
examples, our method succeeded.

The proposed method produced a counterfactual distribution with the correct correlation struc-
ture, while CiC failed to do so. This demonstrates the 1-dimensional subspace created by our
method can indeed provide the type of information that CiC cannot capture. To systematically eval-
uate the performance of each method, we generate 10 datasets and then measure the running time
as well as the OT distance between the estimated counterfactual distribution of each method and the
empirical version of the true counterfactual distribution µT

∗
1 . This empirical distribution, denoted as

µ̃T
∗

1 , is regarded as the ground truth in our experiments. The averaged values are reported in Fig. 2.

Figure 3: Averaged running time and OT distance to ground truth. The OT distance is mea-
sured between the estimation result of each method and the ground truth µ̃T

∗
1 , which is

the empirical version of the true counterfactual distribution. Values are calculated over
ten datasets. Our method outperforms the OT approach in terms of speed while being
significantly better than the CiC approach in terms of accuracy measured by OT distance
to ground truth.
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The CiC estimator has the worst averaged OT distance to ground truth among the three meth-
ods. This might be due to its failure to capture the correlation structure between dimensions. The
proposed method is about one order smaller in OT distance to ground truth than the CiC while being
about two orders faster than the OT approach.

4.2. Varying the number of samples n

In this experiment, we check the findings in the illustrative examples by running the same experi-
ment setting, with d fixed at 2, for various values of n. For each value of n, we generate 10 datasets
and report the averaged running time as well as the averaged OT distance between the estimated
counterfactual distribution of each method and the ground truth µ̃T

∗
1 . We also add Sinkhorn as a

baseline. The results are shown in Fig. 4.

Figure 4: Effect of varying the number of samples n for two types of latent distributions.
In both cases, the proposed method is much faster than both the OT and Sinkhorn ap-
proaches, while being much more accurate than the CiC.

The running time of our method is close to that of the CiC and is faster than OT and Sinkhorn
for all values of n. This is in line with the theoretical worst-case running time of each method.
Regarding OT distance to ground truth, while being worse than OT, our method outperforms CiC
for all values of n. This suggests that, while a large n might help CiC in estimating the marginals
of the counterfactual distribution in each dimension, the advantages of the 1-dimensional subspace
constructed by our method do not diminish.

In comparison with Sinkhorn, our method is both faster and more accurate. We caution that the
performance of Sinkhorn depends heavily on the strength of the entropic regularization term, and
choosing a suitable value for the entropic regularization hyperparameter is non-trivial. However, as
stated earlier, since the worst-case running time of Sinkhorn is quadratic, it is reasonable to expect
it to be generally slower than our method. Additional results that include Sinkhorn with different
hyperparameters are shown in Appendix B, and additional results with a baseline using Principal
Component Analysis (PCA) are shown in Appendix E.

4.3. Varying the dimension d

In order to preserve the computational efficiency of CiC, the robust subspace in our method has to be
one-dimensional. We investigate whether this subspace can still capture meaningful information in
high-dimensional cases, by varying d while keeping the number of samples n fixed at 5000. In this
experiment, the latent distribution is multivariate Gamma. For each d, we generate 10 datasets and
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report the averaged running time as well as the averaged OT distance to ground truth. More details
on experiment settings can be found in Appendix A. The results are shown in Fig. 5. Additional
results that include Sinkhorn with different hyperparameters are shown in Appendix B. Additional
results with a baseline using PCA are shown in Appendix E.

Figure 5: Varying the dimension d while fixing number of samples n = 5000. The latent dis-
tribution is multivariate Gamma. When d is high, our method is among the bests in both
running time and accuracy. This suggests that the robust 1-dimensional subspace of our
method can capture meaningful information even in high-dimensional situations.

It is interesting to observe that when d is high, our method is the fastest method, i.e., even faster
than CiC. This is in line with the theoretical worst-case running time of CiC being O(dn log n) and
ours being O(n log n+dn) when k is fixed. As d increases, the superiority of OT over our method in
terms of OT distance to the ground truth diminishes and even reverses: our method is as accurate as,
if not better than, OT when d = 100. Since the performance of CiC is still much worse, this reversal
comes from the robust one-dimensional subspace. This is consistent with previous observations that
found robustifications can alleviate the poor sample complexity of OT (Paty and Cuturi, 2019).

4.4. Varying the number of projections k

In all previous experiments, the number of projections used in constructing the robust 1-dimensional
subspace has been fixed at k = 10. Using the same setting as the experiment above, for each d,
we look at one dataset and inspect how varying k affects the quality of the method. One trade-off
to expect is that increasing k might improve the accuracy of the estimation, e.g., finding a better
subspace or reducing the variance between each run, at the cost of longer running time. We also
investigate a closely related approach to estimate the counterfactual distribution by using the ROT
objective function in Equation (9) optimized by Adam (Kingma and Ba, 2015) with various numbers
of iterations. The results are shown in Fig. 6.

We found that increasing k to the hundreds indeed improves the variance and accuracy of the
result of our method, as can be seen from the mean and variance of OT distance to ground truth
when d = 100. However, these improvements are marginal and come at the cost of a linearly
longer running time. This is the reason we suggest choosing a small value for k, e.g., in the range
of [10, 50], as a reasonable balance region between accuracy and running time. We also observe
that the ROT approach with Adam offered no improvement in terms of variance and accuracy of
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Figure 6: Performances of our proposed method and an approach employed the ROT function
when varying k. Here k has two different meanings depending on which method is
considered. In our proposed method that uses the ROT function in Eq. (10), k is the
number of projections used to construct the robust one-dimensional subspace. In the
approach that employs the ROT function in Eq. (9), k is the number of iterations of
Adam first-order method. Our approach is as good as ROT in terms of accuracy while
being much faster. Increasing the number of projections in our method to the hundreds
marginally improves the accuracy and variance of the results, while requiring more time.

the results, while significantly running longer. This ineffectiveness of Adam might be due to the
non-convexity and non-smooth of ROT.

5. A real dataset example

We demonstrate the working of our proposed method on the classical data of Card and Krueger
(1993) (CK). On April 1, 1992, New Jersey’s minimum wage rose from $4.25 to $5.05 per hour,
while Pennsylvania’s did not. This provided an opportunity to estimate the causal impact of the
rise on employment in fast-food restaurants in New Jersey, by analyzing employment data of New
Jersey, i.e., the treatment group, and Pennsylvania, i.e., the control group, before and after the rise.
In CK and subsequent re-examinations (Lu and Rosenbaum, 2004; Card and Krueger, 2000), the
number of full-time employees (FT) and the number of part-time employees (PT) in each restaurant
were converted to a single number, the full-time equivalent employees (FTE), which is defined as
FTE = FT + 0.5× PT . The causal impact of the rise on FTE was then investigated.

This conversion may lose fine details in the characteristics of restaurants. For the same FTE,
there might be a restaurant with high FT and low PT and another one with low FT and high PT,
depending on each restaurant’s characteristics. These restaurants might respond differently to the
increase in minimum wages. Therefore, analyzing only the univariate FTE risks confounding those
different trends. Simultaneous analysis of FT and PT can be expected to better capture different
trends in the responses of restaurants by dissecting the causal impacts of increasing minimum wage
on FT and PT. The estimation results of the 2-dimensional counterfactual distribution of FT and
PT in New Jersey after the rise are shown in Fig. 7. More details on the dataset can be found in
Appendix A.

We compare our method with CiC by measuring how close the estimation results of our method
and CiC to the estimation result of OT, which can be regarded as the standard in terms of accuracy
when one does not know the ground truth. A quick visual inspection of Fig. 7 reveals that our
result captures well the relationship between PT and FT as found in the result of OT, while CiC
struggles in the region where both PT and FT are large. Since there is randomness in our method,
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Figure 7: Counterfactual distribution of the numbers of full-time (FT) and part-time (PT)
employees in restaurants in New Jersey. The data is from Card and Krueger (1993).
The panel of our method shows the result of one typical run. Our method captures well
the correlation between FT and PT in the result of OT, while CiC struggles in the region
of high FT and PT. The OT distance between the result of CiC and the result of OT is
72.26. For our method, this number averaged over 1000 runs is 68.66± 1.42.

we measure the OT distance between our method and the result of OT, averaging over 1000 runs.
The OT distance between the result of CiC and the result of OT is 72.26, while that of our method
is 68.66± 1.42, where the confidence interval is two standard deviations. These numbers reinforce
the aforementioned visual impressions and offer statistical evidence to support the conclusion that
our method captured better the relationship between FT and PT than CiC.

6. Concluding remarks

We proposed a method for estimating the counterfactual distribution in multidimensional CiC mod-
els. Our method, like CiC, enjoys the computational efficiency of one-dimensional optimal trans-
ports while utilizing correlation information that is ignored under CiC. Through synthetic and real-
dataset experiments, our method is shown to consistently outperform CiC in terms of accuracy,
while running at a fraction of the time of the multidimensional OT approach. In future works, we
plan to explore the robustness of our proposed method in the presence of outliers or noises, as well
as in other causal settings, such as the triple difference model (Gruber, 1994; Olden and Møen,
2022). Additionally, it may be interesting to leverage more general local structures for scalable OT,
e.g., tree and graph over supports of measures (Le et al., 2019; Le and Nguyen, 2021; Le et al.,
2022, 2023), rather than the one-dimensional structure for causal inference problems.

Acknowledgments

We thank anonymous reviewers and area chairs for their comments. This work was partially sup-
ported by Shiga University Competitive Research Fund, JST CREST JPMJCR22D2, JPMJCR2015,
JST MIRAI program JPMJMI21G2, ISM joint-research 2023-ISMCRP-2010, and JSPS KAKENHI
Grant number 23K11243.

131130



References

Alberto Abadie. Semiparametric difference-in-differences estimators. The Review of Economic
Studies, 72(1):1–19, 2005. ISSN 00346527, 1467937X.

Sina Akbari, Luca Ganassali, and Negar Kiyavash. Learning causal graphs via monotone triangular
transport maps. arXiv preprint, 2023. doi: 10.48550/arXiv.2305.18210.

Matthew Ashman, Chao Ma, Agrin Hilmkil, Joel Jennings, and Cheng Zhang. Causal reasoning in
the presence of latent confounders via neural ADMG learning. In International Conference on
Learning Representations, 2023.

Susan Athey and Guido W. Imbens. Identification and inference in nonlinear difference-in-
differences models. Econometrica, 74(2):431–497, 2006. ISSN 00129682, 14680262.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.
Princeton university press, 2009.

Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and applications of robust
optimization. SIAM review, 53(3):464–501, 2011.

Richard Blundell and Monica Costa Dias. Alternative approaches to evaluation in empirical mi-
croeconomics. Journal of Human Resources, 44(3), 2009.
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Appendix A. Details on experiment settings

A.1. The illustrative examples

The latent distributions in two examples are as follows. In the bivariate Gamma example, the first
dimension of νC is a Gamma distribution with shape 2 and scale 3, while the second dimension
is Gamma with shape 3 and scale 2. For νT, the first and second dimensions are reversed. In the
Gaussian mixture example, the first and second dimensions of νC are 0.5N (1, 1) + 0.5N (5, 1) and
0.5N (2, 1) + 0.5N (4, 1), respectively. For νT, the first and second dimensions are reversed.
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The production functions h0 and h1 are h0(u) =
(

1 0.5
0.5 1

)
u and h1(u) =

(
1 −0.5

−0.5 1

)
u for a

length-2 vector u. These functions are co-monotone, and thus the natural drift map f is identifi-
able (Torous et al., 2021).

A.2. Settings for the experiments with varying d

We discuss the settings for the production functions h0 and h1. When d ≥ 2, for the natural drift
map f to be identifiable, the functions h0 and h1 need to be co-monotone (Torous et al., 2021), i.e.,

⟨h0(x)− h0(y), h1(x)− h1(y)⟩ ≥ 0, ∀x, y ∈ Rd.

When h0(x) = H0x and h1(x) = H1x for Rd×d matrices H0 and H1, this condition is satisfied
if HT

0 H1 is positive semi-definite. We generate one matrix H0 as a d × d matrix where each
off-diagonal entry is uniformly distributed in (0, 1) and the diagonal entries are 1. Note that H0

generated this way is almost surely invertible. We then generate a diagonal matrix B where each
diagonal entry is uniformly distributed in (0, 1). We then let H1 = (H−1

0 )TB. This will ensure
that HT

0 H1 is equal to B and thus positive semi-definite. We then fix the pair (H0, H1) and then
generate datasets using this pair.

The latent distributions are as follows. For the control group, each dimension independently
follows a Gamma distribution with shape 2 and scale 3. For the treatment group, each dimension
independently follows a Gamma distribution with shape 3 and scale 2.

A.3. CK data

The dataset is available on https://davidcard.berkeley.edu/data_sets/njmin.
zip. We also include the following covariates into the analysis: HRSOPEN, OPEN, NMGRS,
NREGS, INCTIME, PSODA, and PENTREE, and estimate the 9-dimensional counterfactual dis-
tribution. We process the data by removing samples that contain missing values at any covariates.
The final numbers of samples after this pre-processing are 57 for the control group and 220 for the
treatment group.

Appendix B. Additional results with different hyperparameters of Sinkhorn

In Sinkhorn, an entropic regularization term λΩ(T ), where Ω(T ) is the entropy of the transportation
plan T , is added to the objective function of OT. The hyperparameter λ ≥ 0 controls the strength of
the regularization. The results reported in Figs. 4 and 5 are obtained using λ = 30. We report in the
following figures two more cases when λ = 10 and λ = 90.

Appendix C. Brief review

In this section, we further give brief review for some technical details on optimal transport (OT)
which are used in our work.

Kantorovich formulation of OT. Given two probability distributions µ, ν with a cost function c,
the Kantorovich formulation of OT is as follow:

OT(µ, ν) = inf
π∈Π(µ,ν)

∫
Rd×Rd

π(x, y)c(x, y)dµ(x)dν(y),
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Figure B.1: Additional results of Sinkhorn for the case of varying the number of samples n while
fixing the dimension d = 2.

Figure B.2: Additional results of Sinkhorn for the case of varying the dimension d while fixing
number of samples n = 5000.

where π is known as the transport plan, and Π(µ, ν) is the set of all probability distributions on the
product space Rd × Rd such that its first and second marginals equal to µ, ν respectively.

Optimal condition for OT with d = 1. If µ, ν are two probability measures supported on R, and
µ is atomless (i.e., µ is absolutely continuous with respect to the Lebesgue measure), then there
exists at least a transport map T such that T♯µ = ν (Santambrogio, 2015, Lemma 1.27). With
quadratic cost, the transport map will be the derivative of a convex function, i.e., a nondecreasing
map (see (Santambrogio, 2015, Remark 1.23) and (Gangbo, 1999, §2) for further details).

Optimal condition for OT with d > 1. It is also known as Brenier theorem (Brenier, 1991).
Given two probability measures µ, ν supported on the Rd space such that µ is absolutely continuous
with respect to the Lebesgue measure. Then, for all possible map T̃ : Rd 7→ Rd such that T̃♯µ = ν,
there is an unique Brenier map T which is the gradient of a convex function, and T is the optimal
transport in the following sense: the Kantorich formulation of OT between µ and ν admits a unique
optimal transportation plan π∗ such that (x, y) ∼ π∗ if and only if x ∼ µ and y = T (x), µ-a.s.
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For further details, please see (Santambrogio, 2015, Theorem 1.17) and (Brenier, 1991; McCann,
1995).

Appendix D. Further discussions

About the assumptions of the CiC model. The assumptions of the CiC model rule out some
settings such as group-time random measurement errors (Athey and Imbens, 2006, Section 3.1) or
the case when the outcome distribution (under no treatment) is a mixture between a time-dependent
distribution and a group-dependent distribution (Roth and Sant’Anna, 2023, Remark 4). Some
components of the natural drift assumption might be tested if one observes more than one control
group or more than one baseline time (Athey and Imbens, 2006, Section 6.3).

About the max-min robust OT. Max-sliced Wasserstein (Deshpande et al., 2019) is similar to our
proposed method, i.e., they consider the sphere for the uncertainty set Ω of projections. However,
when Ω is a sphere, the problem becomes non-convex and non-smooth. The entropic regularized
OT (Cuturi, 2013) is a popular approach to reduce the computation of OT into quadratic computation
complexity, but it comes with a trade-off for a dense optimal transport plan.

Some related causal models and methods. Beside the CiC model, another notable extension of
the classical DiD model is provided in Abadie (2005). Some other assumptions to model the natu-
ral drift have been proposed in, for example, Callaway and Li (2019), Roth and Sant’Anna (2023),
and Bonhomme and Sauder (2011). When one can only collect data at a post-treatment time, there
are numerous existing methods for estimating the multivariate counterfactual distribution in a single
time-step setting. These methods employ various approaches, such as kernel smoothing (Robins
and Rotnitzky, 2001; Kim et al., 2021), finite-dimensional modelling with f-divergences or Lp
norms (Westling and Carone, 2020; Kennedy et al., 2021; Melnychuk et al., 2023), and potentially
unnormalized density function estimation with kernel Stein discrepancies (Martinez-Taboada and
Kennedy, 2024). It is intriguing to investigate how these approaches can be modified to take into
account some kind of natural drifts when one can observe the data at more than one time point.

About the use of machine learning methods in causal inference and causal discovery Re-
cently, Tu et al. (2022) provided the first method that uses optimal transport for solving causal
discovery, i.e., the task of uncovering the graph that represents the dependence relationships be-
tween variables. Akbari et al. (2023) generalized the method to higher dimensions and different
noise settings. Takayama et al. (2024) provided a framework to utilize large language models in
causal discovery algorithms. Other machine learning tools and frameworks have also been used
in causal inference/causal discovery, such as neural networks (Hwang et al., 2023; Ashman et al.,
2023; Immer et al., 2023; Kladny et al., 2023), the Kullback-Leibler divergence (Wildberger et al.,
2023), and reinforcement learning and meta learning (Sauter et al., 2023).

Appendix E. Additional experiments for a PCA-based baseline

We explore another baseline that uses the first principal component of PCA as the sole candidate
direction for the uncertainty set in our robust OT. The results for the experiments in Fig. 4 are shown
in Tabs. E.1 and E.2. The results for the experiments in Fig. 5 are shown in Tab. E.3.
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Table E.1: Results for the case of Gaussian mixtures in Fig. 4. The mean and standard deviation
over 10 repetitions are reported.

Sample size 5000 10000 15000 20000
Running time of PCA-based method 4.71 (0.34) 8.98 (0.66) 13.24 (2.52) 15.10 (0.52)
Running time of proposed method 7.07 (0.29) 10.35 (0.50) 12.32 (0.75) 11.73 (0.43)

OT (·, µ̃T ∗
1 ) of PCA-based method 0.70 (0.04) 0.70 (0.03) 0.68 (0.03) 0.68 (0.03)

OT (·, µ̃T ∗
1 ) of proposed method 0.79 (0.07) 0.80 (0.05) 0.76 (0.05) 0.77 (0.04)

Table E.2: Results for the case of Gamma distributions in Fig. 4. The mean and standard deviation
over 10 repetitions are reported.

Sample size n 5000 10000 15000 20000
Running time of PCA-based method 4.71 (0.2) 10.26 (1.5) 12.44 (1.03) 14.92 (0.42)
Running time of proposed method 7.63 (0.92) 10.02 (0.38) 14.29 (3.36) 11.69 (0.98)

OT (·, µ̃T ∗
1 ) of PCA-based method 1.09 (0.21) 1.05 (0.11) 1.02 (0.12) 1.05 (0.16)

OT (·, µ̃T ∗
1 ) of proposed method 1.18 (0.19) 1.09 (0.19) 1.04 (0.17) 1.02 (0.12)

Table E.3: Results for Fig. 5, i.e., when d is varying. The mean and standard deviation over 10
repetitions are reported. This experiment shows that while our method and the PCA-
based method give comparable results, our method is much faster when the dimension
is high.

Dimension d 2 10 50 100
Running time of PCA-based method 27.2 (10.77) 23.82 (3.38) 111.94 (9.02) 188.24 (18.84)
Running time of proposed method 7.83 (0.36) 8.19 (0.36) 8.49 (0.83) 10.24 (0.73)

OT (·, µ̃T ∗
1 ) of PCA-based method 0.46 (0.16) 31.95 (2.48) 341.04 (8.70) 1394.59 (73.12)

OT (·, µ̃T ∗
1 ) of proposed method 0.65 (0.39) 33.72 (4.36) 362.7 (14.43) 1549.3 (287.29)

These results show that it is sufficing to use random directions as in our robust OT which gives
comparable results, but lower computational cost (e.g., finding the first principal component for
high-dimensional spaces increases the computational cost, but its benefits are marginal.)

Appendix F. The algorithm for our proposed approach

Our approach consists of four steps as follows.

• compute the push-forward for input measures on each direction in the uncertainty set.
Specifically, for each direction ω in the uncertainty set, we calculate the inner product ⟨x, ω⟩
for all points x in the empirical distribution of the control group at time t = 0, 1.
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• leverage 1d-OT as a surrogate on the 1d latent space for OT. For each direction ω in
the uncertainty set, we solve the 1D OT problem with push-forward measure on ω of the
outcome distribution in control group at t = 0 as source and push-forward measure on ω of
the outcome distribution in control group at t = 1 as target. Thus for each direction ω, we
will obtain a mapping and an OT distance.

• find the direction which maximizes the OT on the 1d latent space. We choose the direction
ω∗ that gives the largest value of the OT distances calculated above.

• Use the optimal transport map on Rd × Rd to create the counterfactual distribution in
treatment group. We use the OT map corresponding to ω∗ to push-forward each sample
in the empirical outcome distribution in treatment group at time t = 0. The result is the
counterfactual distribution in treament group at time t = 1.
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