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Abstract
Recent developments enable the quantification of causal control given a structural causal model
(SCM). This has been accomplished by introducing quantities which encode changes in the en-
tropy of one variable when intervening on another. These measures, named causal entropy and
causal information gain, aim to address limitations in existing information theoretical approaches
for machine learning tasks where causality plays a crucial role. They have not yet been properly
mathematically studied. Our research contributes to the formal understanding of the notions of
causal entropy and causal information gain by establishing and analyzing fundamental properties
of these concepts, including bounds and chain rules. Furthermore, we elucidate the relationship
between causal entropy and stochastic interventions. We also propose definitions for causal con-
ditional entropy and causal conditional information gain. Overall, this exploration paves the way
for enhancing causal machine learning tasks through the study of recently-proposed information
theoretic quantities grounded in considerations about causality.
Keywords: Structural Causal Models, Information Theory, Causal Inference

1. Introduction

Information theoretical quantities are ubiquitous in machine learning. Cross-entropy losses are com-
monly used in deep learning (Goodfellow et al., 2016). Decision tree learning algorithms commonly
use mutual information (often called information gain in that context) to decide what variable to split
at each step (James et al., 2013) — see for example the ID3 (Quinlan, 1986) and CR4.5 (Quinlan,
1993) algorithms. In Haarnoja et al. (2018), reinforcement learning tasks see their stability and ro-
bustness improved when the agents learn by maximizing not only their expected rewards but also
the entropy of their policies. Also in Seitzer et al. (2021), mutual information is used for reinforce-
ment learning tasks to measure whether or not an agent’s action has “causal influence” on a state,
and they use this quantity to decide if said action has “control” over that state. In Achille and Soatto
(2018), an optimal representation Z of a random vector X for a given task Y is learned by minimiz-
ing the information bottleneck lagrangian, which is a difference between the mutual informations
I(X;Z) and I(Y;Z) (Tishby et al., 2000), the idea being that Z should keep as little information
about X as possible while retaining as much information about Y as possible. In Höltgen (2021),
the aforementioned information bottleneck lagrangian is used in the loss function of an autoencoder
in order to learn a causally-relevant representation for a given task. The goal of this approach is to
enable us to intervene on the representation instead of on the original variables without losing much
control over the task variable.

In the cases just described the existence of confounders or selection bias could lead to mis-
leading results if one ascribes a causal interpretation. This is a common issue when using standard
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information theoretical quantities in situations that require consideration of the underlying causal
relationships. A version of mutual information which takes into account the causal structure of the
system would solve this problem. Preliminary work in this direction was recently done by Simoes
et al. (2023) in the context of interpretable machine learning and inspired by the earlier philosoph-
ical work of Griffiths et al. (2015). The former define “causal entropy” and “causal information
gain” and study their relationship with total causal effect. They also argue that causal information
gain provides an adequate measure of causal control, so that it can be used when deciding which
variables in an SCM provide more control over a chosen target variable. However, a proper mathe-
matical study of the properties of causal entropy and causal information gain is missing.

In this paper, we relate causal entropy with other quantities such as conditional entropy and
post-stochastic intervention entropy, revealing potentially more convenient approaches to its com-
putation as well as new interpretations of this quantity. We also define conditional causal entropy and
conditional causal information gain. Additionally, we derive fundamental properties of both causal
entropy and causal information gain, drawing upon analogous results from information theory.

The novelty of our work consists of deriving key properties of causal entropy and causal in-
formation gain for the first time, and defining conditional causal entropy and information gain.
Concretely:

• We show that, perhaps unexpectedly, causal entropy is not the same as the entropy after a
stochastic intervention, and establish formal relations between causal entropy and stochastic
interventions. Furthermore, we show that causal entropy can be seen as a post-stochastic-
intervention conditional entropy.

• We check that causal entropy is non-negative, but that, surprisingly, causal information gain
can be negative. We also find upper bounds on the causal entropy, including an independence
bound mirroring the independence bound on standard entropy. We check that, unexpectedly,
the causal version of the data processing inequality does not hold.

• We define conditional causal entropy and conditional causal information gain for the first
time. We use these to derive chain rules for both causal entropy and causal information gain.
Finally, we discuss how alternative causal versions of conditional information gain are possi-
ble, and study one in particular.

This paper is organized as follows. Section 2 introduces the assumptions and the definitions of
information theoretical quantities that will be used throughout the paper, including causal entropy
and causal information gain. In Section 3 we discuss how causal entropy differs from the entropy
of the post-stochastic-intervention distribution. We study how causal entropy can be linked to post-
stochastic interventions, resulting in measures of causal entropy which can be both elucidating and
easier to compute in practice. We also establish lower and upper bounds on the causal entropy,
define conditional causal entropy, and present some crucial findings that culminate in a chain rule
for causal entropy. Section 4 lays down fundamental properties of causal information gain, including
a chain rule. It also introduces conditional causal information gain and discusses its interpretation,
along with the consideration of an alternative causal extension of conditional mutual information
termed post-intervention mutual information. Section 5 compares the definitions and results in this
text with that of other work that has been done before. In Section 6 we discuss the results obtained
in this work and propose future avenues of research. The proofs of all the results presented in this
paper can be found in the appendix.
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2. Formal Setting

Many basic concepts from causal inference and information theory are used throughout this pa-
per. For completeness, we include the necessary definitions from causal inference in Appendix A.
All random variables are henceforth assumed to be discrete and have finite range. In this paper, a
“random variable” can be a random vector. In cases where we want to restrict ourselves to random
variables which are in fact random vectors, boldface is used. E.g. X can be both a single-value ran-
dom variable or a random vector, while X must be a random vector. Furthermore, the symbols of
the form X , Y , Z, Xi, Yi or Zi are taken to be endogenous variables of some SCM C.

In this section we present the definitions from information theory which are necessary for the
rest of this paper. We also include the definitions of causal entropy and causal information gain.

2.1. Entropy and Mutual Information

In this subsection we will start by stating the definitions of entropy, conditional entropy and mutual
entropy. In the interest of space, we will not try to motivate these definitions. For more information,
see Cover and Thomas (2006).

Definition 1 (Entropy and Cond. Entropy (Cover and Thomas, 2006)) Let X be a discrete ran-
dom variable with range RX and p be a probability distribution for X . The entropy of X w.r.t. the
distribution p is1

HX∼p(X) := −
∑

x∈RX

p(x) log p(x). (1)

Entropy is measured in bit. If the context suggests a canonical probability distribution for X , one
can write H(X) and refers to it simply as the entropy of X .
The conditional entropy H(Y | X) of Y conditioned on X is the expected value w.r.t. pX of the
entropy H(Y | X = x) := HY∼pY |X=x

(Y ):

H(Y | X) := Ex∼pX [H(Y | X = x)] . (2)

This means that the conditional entropy H(Y | X) is the entropy of H(Y ) that remains on average
if one conditions on X .

Remark 2 Notice that H(Y | X = x) is seen as a function of x and the expected value in Equa-
tion (2) is taken over the random variable x with distribution pX . This disrespects the conven-
tion that random variables are represented by capital letters, but preserves the convention that the
specific value conditioned upon is represented by a lower case letter. We will follow the common
practice and opt to use lower case letters for random variables in these cases.

There are two common equivalent ways to define mutual information (often called information
gain).

Definition 3 (Mutual Information and Cond. Mutual Information (Cover and Thomas, 2006))
Let X and Y be discrete random variables with ranges RX and RY and distributions pX and pY ,

respectively. The mutual information between X and Y is

I(X;Y ) :=
∑

x,y∈RX×RY

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
. (3)

1In this article, log denotes the logarithm to the base 2.
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Or equivalently:

I(X;Y ) := H(Y )−H(Y | X)

= H(X)−H(X | Y ).
(4)

Let Z be another discrete random variable. The conditional mutual information between X and Y
conditioned on Z is:

I(X;Y | Z) := H(Y | Z)−H(Y | X,Z)

= H(X | Z)−H(X | Y,Z).
(5)

The view of mutual information as entropy reduction from Equation (4) is the starting point for
the definition of causal information gain.

2.2. Causal Entropy and Causal Information Gain

We will now define causal entropy and causal information gain. See Simoes et al. (2023) for a
thorough discussion about these concepts. The causal entropy of Y for X is the entropy of Y that
is left, on average, after one atomically intervenes on X . It is defined in a manner analogous to
conditional entropy (see Definition 1). Concretely, causal entropy is the average uncertainty one has
about Y if one sets X to x with probability pX′(x), where X ′ is a new auxiliary variable with the
same range as X but independent of all other variables, including X .

Definition 4 (Causal Entropy, Hc (Simoes et al., 2023)) Let Y , X and X ′ be random variables
such that X and X ′ have the same range and X ′ is independent of all variables in C. We say that
X ′ is an intervention protocol for X . The causal entropy Hc(Y | do(X ∼ X ′)) of Y for X given
the intervention protocol X ′ is the expected value w.r.t. pX′ of the entropy H(Y | do(X = x)) :=

H
Y∼p

do(X=x)
Y

(Y ) of the interventional distribution p
do(X=x)
Y . That is:

Hc(Y | do(X ∼ X ′)) := Ex∼pX′ [H(Y | do(X = x))] . (6)

Causal information gain extends mutual information/information gain to the causal context.
While mutual information between two variables X and Y is the average reduction in uncertainty
about Y if one observes the value of X (see Equation (4)), the causal information gain of Y for
X is the average decrease in the entropy of Y after one atomically intervenes on X (folowing an
intervention protocol X ′).

Definition 5 (Causal Information Gain, Ic (Simoes et al., 2023)) Let Y , X and X ′ be random
variables such that X ′ is an intervention protocol for X . The causal information gain Ic(Y |
do(X ∼ X ′)) of Y for X given the intervention protocol X ′ is the difference between the en-
tropy of Y w.r.t. its prior and the causal entropy of Y for X given the intervention protocol X ′. That
is:

Ic(Y | do(X ∼ X ′)) := H(Y )−Hc(Y | do(X ∼ X ′)). (7)

The causal information gain of Y for X was proposed in Simoes et al. (2023) as a measure of the
“(causal) control that variable X has over the variable Y ”. This is a qualitative concept used in
the philosophy of science literature (Pocheville et al., 2015) and defined in Simoes et al. (2023)
as the reduction of uncertainty about Y that results from intervening on X . This is precisely what
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causal information gain measures, by construction. It is important to note that a common measure
of causal strength such as average causal effect (ACE) would not be a suitable measure of causal
control. Indeed, the uncertainty about Y can be reduced by intervening on X while maintaining the
average of pdo(X=1)

Y the same as that of pdo(X=0)
Y , yielding an ACE of zero even though uncertainty

is reduced by intervening on X .

3. Properties of Causal Entropy

We start this section by showing that causal entropy is distinct from the entropy after a stochastic
intervention do(X = X ′). We study the relation of causal entropy with other quantities, providing
new insights about causal entropy and establishing some first basic properties. This section ends with
the definition of conditional causal entropy and the derivation of a chain rule for causal entropy.

3.1. Comparison with Entropy After a Stochastic Intervention

One could think that Hc(Y | do(X ∼ X ′)) = H(Y | do(X = X ′)): both are entropies of Y
resulting from making X follow the distribution pX′ , albeit through two distinct procedures. While
these may appear identical, this is, in reality, not accurate. In other words, the average uncertainty
about Y after atomically intervening on X by setting X = x with probability pX′ is not the same
as the average uncertainty after stochastically intervening on X by setting X to X ′. Example 1 will
illustrate this. The underlying reason for this difference will be made clear by Proposition 8.

Example 1 We will look at an example where Hc(Y | do(X ∼ X ′)) ̸= H(Y | do(X = X ′)).
Consider the SCM over the variables X,Y with ranges RX = {0, 1} and RY = {0, 1, 2}, charac-
terized by the following structural assignments and noise distributions:

fX(NX) = NX

fY (X,NY ) = X +NY

NX , NY ∼ Bern(12)

(8)

Notice that the causal graph is then simply X → Y . Further, let X ′ be an intervention protocol for
X with pX′ = Bern(13). The atomic and stochastic interventions on Y can then be written as in
Table 1. Hence2Hc(Y | do(X ∼ X ′)) = 1(bit) and:

Y p
do(X=0)
Y p

do(X=1)
Y p

do(X=X′)
Y

0 1/2 0 1/3
1 1/2 1/2 1/2
2 0 1/2 1/6

Table 1: Post-intervention distributions for Y in Example 1. (Computed in Appendix C).

H(Y | do(X = X ′)) =
1

3
log 3︸︷︷︸
>1

+
1

2
+

1

6
log 6︸︷︷︸
>1

> 1(bit). (9)

Thus in particular H(Y | do(X = X ′)) ̸= Hc(Y | do(X ∼ X ′)) in this example.
2The details of the computations of these entropies can be found in Appendix C.
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Remark 6 (Intuition for Example 1) The difference between causal and post-intervention en-
tropies observed in Example 1 stems from the fact that, since Y = X + NY , fixing X renders
the distribution of Y equal in shape to that of NY . Hence the post-atomic intervention entropies
H

Y∼p
do(X=x)
Y

(Y ) are all the same (1 bit), so that averaging just gives 1 bit. Notice that this does not

depend on the choice of pX′ . Now, H(Y | do(X = X ′)) is the entropy of the distribution of the
sum of random variables X ′ + NY , meaning that in this case the shape of the distribution of Y is
changed, not simply shifted.

3.2. Alternative Views of Causal Entropy

We will now see that causal entropy can be written as an expected value over a post-stochastic
intervention joint distribution. It is often useful to have an expression for a statistic as an aver-
age w.r.t. the joint distribution of the variables involved. This enables, for instance, the straightfor-
ward construction of an estimator for the statistic, known as the “plug-in estimator”, achieved by
substituting the joint distribution figuring in the expected value by the empirical joint distribution
(Wasserman, 2004).

Proposition 7 (Causal Entropy as a Single Expected Value) The causal entropy of Y given the
intervention protocol X ′ for X can be written as an expected value w.r.t. the post-stochastic-
intervention distribution p

do(X=X′)
X,Y as follows:

Hc(Y | do(X ∼ X ′)) = −E
x,y∼p

do(X=X′)
X,Y

[
log p(y | do(X = x))

]
. (10)

We will now see how causal entropy relates with post-stochastic intervention entropies. We use
H(Y | X = x, do(X = X ′)) as notation for the entropy H

Y∼p
do(X=X′)
Y |X=x

(Y ) of the covariate-specific

effect3pdo(X=X′)
Y |X=x . That is, H(Y | X = x, do(X = X ′)) is the entropy resulting from conditioning

on X = x after having performed the stochastic intervention do(X = X ′).

Proposition 8 (Causal Entropy as Average Entropy of Covariate-Specific Effects) The causal
entropy of Y given the intervention protocol X ′ for X can be seen as the expected value w.r.t.
x ∼ pX′ of the entropies H(Y | X = x, do(X = X ′)) of the covariate-specific effects pdo(X=X′)

Y |X=x .
That is:

Hc(Y | do(X ∼ X ′)) = Ex∼pX′

[
H(Y | X = x, do(X = X ′))

]
= H(Y | X, do(X = X ′))

(11)

where the notation used in the second equality is analogous to the notation for conditional entropy.

This result further elucidates the origin of the difference discussed in Example 1. Concretely, Propo-
sition 8 shows us that Hc(Y | do(X ∼ X ′)) is the average of the entropies of Y obtained from
stochastically intervening (according to pX′) AND knowing the value that X was set to, while
H(Y | do(X = X ′)) is simply the entropy of Y after performing the stochastic intervention –
which we can interpret as having performed an atomic intervention on X , but not knowing exactly
which value X was set to.

3The term “covariate-specific effect” is commonly used when conditioning on a variable distinct from the intervened
variable. In this paper we use the term also when the conditioned variable coincides with the intervened variable.
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Notice that Proposition 8 implies that the causal entropy is a bona fide conditional entropy,
where the conditioning is performed after a stochastic intervention setting X = X ′. Indeed, this is
precisely the meaning of H(Y | X, do(X = X ′)). Consequently, we can harness known properties
of conditional entropy to prove properties of causal entropy.

3.3. Bounds on Causal Entropy

Just like conditional entropy, causal entropy is a non-negative quantity. This follows simply from
the fact that causal entropy is an average of entropies, which are themselves non-negative.

Proposition 9 Causal entropy is non-negative.

The following result is not so much a property of causal entropy as it is the absence of one –
namely, causal entropy is not necessarily smaller than the initial entropy. This can be surprising,
since it is in stark contrast with conditional entropy, which is always less that the initial entropy.
Meaning that, on average, information about the conditioning variable X can never increase the
uncertainty about Y (Cover and Thomas, 2006). In contrast, Proposition 10 tells us that, on average,
intervening on X can in fact increase the uncertainty about Y .

Proposition 10 For some SCMs and intervention protocols X ′, the causal entropy of Y for X
given an intervention protocol X ′ is greater than the initial entropy of Y , i.e. Hc(Y | do(X ∼
X ′)) > H(Y ).

There is however an upper bound on causal entropy. It follows immediately from Proposition 8
that causal entropy, being related to the entropy after the stochastic intervention do(X = X ′) by
conditioning, cannot be greater than the latter.

Corollary 11 The causal entropy of Y for X given an intervention protocol X ′ cannot be greater
than the post-stochastic intervention entropy, i.e. Hc(Y | do(X ∼ X ′)) ≤ H(Y | do(X = X ′)).

One can make use of the connection between causal entropy and post-stochastic intervention
conditional entropy together with the independence bound on entropy (Cover and Thomas, 2006,
Theorem 2.6.6) to derive an independence bound on causal entropy.

Proposition 12 (Independence Bound on Causal Entropy) Let Y be a random vector of length
nY . Then:

Hc(Y | do(X ∼ X ′)) ≤
nY∑
i=1

Hc(Yi | do(X ∼ X ′)). (12)

and equality holds if and only if the Yi are independent.

3.4. Conditional Causal Entropy and the Chain Rule

We can of course mix intervening and conditioning. In this section we will start by defining con-
ditional causal entropy Hc(Y | Z, do(X ∼ X ′)), which will capture the uncertainty that we have
about Y given that we intervened on X according to the intervention protocol X ′ and then condi-
tioned on Z. We will then see that, unsurprisingly, conditioning reduces causal entropy on average,
and that, just like causal entropy, conditional causal entropy can also be seen as a conditional entropy
after a stochastic intervention. We will conclude this section with a chain rule for causal entropy.
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Definition 13 (Conditional Causal Entropy) Let X , Y and Z be endogenous variables of an
SCM C and x ∈ RX . The atomic conditional causal entropy Hc(Y | Z, do(X = x)) of Y con-
ditioned on Z for the atomic intervention do(X = x) is defined as the post-atomic intervention
conditional entropy of Y conditioned on Z, i.e.:

Hc(Y | Z, do(X = x)) := E
z∼p

do(X=x)
Z

[H(Y | Z = z, do(X = x))]

= E
z∼p

do(X=x)
Z

[H
Y∼p

do(X=x)
Y |Z=z

(Y )].
(13)

Moreover, the conditional causal entropy Hc(Y | Z, do(X ∼ X ′)) of Y conditioned on Z given the
intervention protocol X ′ for X is defined as the expected value given the intervention protocol X ′

of the atomic conditional causal entropies, i.e.:

Hc(Y | Z, do(X ∼ X ′)) := Ex∼pX′ [Hc(Y | Z, do(X = x))]. (14)

Notice that our definition of conditional causal entropy assumes that the intervention precedes the
conditioning operation. This assumption will hold throughout the paper. A definition of a “condition-
first conditional causal entropy” where one intervenes after conditioning would be more involved,
and demands the use of counterfactuals. This quantity should coincide with the conditional causal
entropy here defined whenever X does not have a causal effect on Z (see e.g. Figure 1(b))— in those
cases, conditioning before or after intervening will result in the same distribution. In the interest of
space, we leave further discussion about this topic for future work.

Similarly to causal entropy, conditional causal entropy can also be regarded as the entropy of the
distribution resulting from conditioning on X following the stochastic intervention do(X = X ′).
They differ only in the conditioning set.

Proposition 14 (Conditional Causal Entropy as Conditional Entropy) Let X , Y , Z and X ′ be
as in Definition 13. Then:

Hc(Y | Z, do(X ∼ X ′)) = H(Y | Z,X, do(X = X ′)). (15)

Since this conditioning set is a superset of the conditioning set in H(Y | X, do(X = X ′)), we
can use the fact that conditioning cannot increase entropy to conclude that the conditional causal
entropy cannot be larger than the causal entropy.

Proposition 15 (Conditioning Reduces Causal Entropy) The conditional causal entropy is never
larger than the causal entropy. I.e. for X , Y , Z and X ′ as in Definition 13, we have:

Hc(Y | Z, do(X ∼ X ′)) ≤ Hc(Y | do(X ∼ X ′)). (16)

Utilizing Proposition 8 and Proposition 14 to express causal entropy and conditional causal entropy
as conditional entropies enables us to use the standard chain rule for conditional entropy to derive a
chain rule for causal entropy.

Proposition 16 (Two-variable Chain Rule for Causal Entropy) Let X , Y , Z and X ′ be as in
Definition 13. Then:

Hc(Y, Z | do(X ∼ X ′)) = Hc(Y | do(X ∼ X ′)) +Hc(Z | Y, do(X ∼ X ′)). (17)
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Similarly, we can obtain a chain rule specifically for random vectors by leveraging the general chain
rule for the conditional entropy.

Proposition 17 (Chain Rule for Causal Entropy) Let Y be a random vector of length nY and
Y<i = Y1, . . . , Yi−1. Then:

Hc(Y | do(X ∼ X ′)) =

nY∑
i=1

Hc(Yi | Y<i, do(X ∼ X ′)). (18)

4. Properties of Causal Information Gain

We start this section by noting basic properties of causal information gain. We continue by defin-
ing conditional causal information gain and deriving a chain rule for causal information gain. This
section ends with a discussion about the interpretation of conditional causal information gain and
post-intervention mutual information. The latter is a distinct quantity from conditional causal infor-
mation gain which serves as an alternative reasonable extension of conditional information gain in
the context of causality.

4.1. Immediate Properties of Causal Information Gain

A few properties of causal information gain can be immediately gleaned from its definition. In
contrast with mutual information, causal information gain is not symmetric. Similarly to causal
entropy, one needs to specify an intervention protocol X ′ which specifies the probability of each
atomic intervention on X . As shown in Simoes et al. (2023), if X has no total effect on Y , then
Ic(Y | do(X ∼ X ′)) = 0 for any protocol X ′. In contrast with mutual information, causal infor-
mation gain can be negative. This is an immediate corollary of Proposition 10.

Corollary 18 For some SCMs and intervention protocols X ′, the causal information gain of Y
given the intervention protocol X ′ for X is negative, i.e. Ic(Y | do(X ∼ X ′)) < 0.

Since KL divergences are non-negative, this means in particular that causal information gain cannot
be written as a KL divergence of two distributions, again contrary to its non-causal counterpart.

One of the most important results in information theory is the data processing inequality. It
tells us that, for a Markov chain X → Y → Z, Z can never have more information about X
than Y has (Cover and Thomas, 2006). It is natural to wonder whether a similar result holds for
causal information gain. Specifically, one might ask if, for a causal chain X → Y → Z, the causal
information gain of Z for X can never be larger than the causal information gain of Y for X . Such
a proposition aligns with the intuitive notion that we have less control over variables “farther away”
from the intervened variable. Surprisingly, this is false. No such causal data processing inequality
holds for causal information gain. To see this, we just need to devise an SCM whose causal graph is
a chain X → Y → Z and Ic(Y | do(X ∼ X ′)) < Ic(Z | do(X ∼ X ′)). This situation can arise,
for instance, if performing an atomic intervention on X still results in some uncertainty regarding a
subset of values of Y , but every such value leads to the same Z.

Example 2 Consider a causal chain X → Y → Z with ranges RX = {x1, x2}, RY = {y1, y2, y3}
and RZ = {z1, z2}, and whose structural assignments and noise distributions are given by:

NX ∼ U [RX ]
NY ∼ U{y1, y2}
X := NX

Y :=

{
NY , X = x1

y3, X = x2
Z :=

{
z1, Y = y1 or Y = y2

z2, Y = y3
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Furthermore, we choose an intervention protocol X ′ with a point mass at x1, i.e. X ′ ∼ δ(x1) . Then
H(X) = H(Z) = 1 and H(Y ) = 2× 1

4 log(4) +
1
2 log(2) =

3
2 . The relevant causal entropies are

Hc(Y | do(X ∼ X ′)) = Hc(Y | do(X = x1)) = 1 and Hc(Z | do(X ∼ X ′)) = Hc(Z | do(X =
x1)) = 0. Hence Ic(Y | do(X ∼ X ′)) = 1

2 < Ic(Z | do(X ∼ X ′)) = 1.

4.2. Conditional Causal Information Gain and the Chain Rule

Recall the definition of conditional mutual information in Equation (5). It captures how much the
uncertainty about Y is reduced on average after one observes X , if one knows Z. Similarly, the
“conditional causal information gain” will be defined such that it captures how much the uncertainty
about Y is reduced on average if one sets X to x with probability pX′(x), and4one knows Z.
Accordingly, its definition will be the gap between the conditional entropy of Y conditioned on Z
and the conditional causal entropy of Y conditioned on Z given an intervention protocol X ′ for X .

Definition 19 (Conditional Causal Information Gain) Let X , Y and Z be endogenous variables
of an SCM C. The conditional causal information gain Ic(Y | Z, do(X ∼ X ′)) of Y conditioned on
Z given the intervention protocol X ′ for X is defined as follows:

Ic(Y | Z, do(X ∼ X ′)) := H(Y | Z)−Hc(Y | Z, do(X ∼ X ′)). (19)

We can now leverage the chain rule for the causal entropy in Proposition 17 to obtain a chain
rule for the causal information gain.

Proposition 20 (Chain Rule for Causal Information Gain) Let Y be a random vector of length
nY and Y<i = Y1, . . . , Yi−1. Then:

Ic(Y | do(X ∼ X)) =

nY∑
i=1

Ic(Yi | Y<i, do(X ∼ X)). (20)

4.3. Choices and Interpretations

In the causal inference literature, if both the do operator and a random variable appear after the con-
ditioning bar, it is to be understood that the intervention precedes conditioning (Peters et al., 2017).
We chose to respect this convention, so that here too interventions precede conditioning. Indeed, the
second term in Equation (19) relies on conditional causal entropy, which itself respects this conven-
tion. Another choice was made by using H(Y | Z) as the first term in Equation (19). Notice that
this is the average entropy of Y due to conditioning on Z, with respect to the pre-intervention joint
distribution pY,Z . We will now look at the interpretation of conditional causal information gain and
subsequenty introduce and interpret the quantity resulting from making a different choice for this
first term, originating another reasonable causal generalization of conditional mutual information.

Definition 19 tells us that Ic(Y | Z, do(X ∼ X ′)) is the information that is gained about Y if
one intervenes on X before observing Z as opposed to only observing Z. In other words, it measures
how much intervening on X improves the information that is gained about Y by observing Z.

4The word “and” does not establish the order between intervening and conditioning. As explained in Section 3.4, we
assume that interventions take precedence. See also the discussion in Section 4.3.
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Example 3 Radiologists often use substances called contrast agents before performing MRI (mag-
netic resonance imaging) scans to enhance image quality. Consult the causal graph in Figure 1(a).
We want to assess the impact of using a contrast agent (X = 1) on the information that can be
extracted about the disease Y from the MRI image Z. This is represented by the conditional causal
information gain Ic(Y | Z, do(X ∼ X ′)) = H(Y | Z) − H(Y | Z, do(X = 1)), where X ′ was
chosen to have a point mass at 1. This precisely measures the information gained about disease
Y by employing the contrast agent before viewing the image Z, as opposed to solely observing Z
without the use of the contrast agent.

In a case where X has no total causal effect on Z such as the one depicted in Figure 1(b),
Ic(Y | Z, do(X ∼ X ′)) can also be interpreted as the average information that is gained by
intervening in strata of the population with the same value of Z. This comes about because in such
situations the order between conditioning and intervening is irrelevant. In the case depicted this
would be the information that is gained about the probability of patients having a stroke given that
we intervene on their blood pressure, averaged over the age groups Z = z.

(a)

X

Contrast Agent

Y

Disease

Z

Image (b)

X

Blood Pressure

Y

Stroke

Z

Age

Figure 1: Causal graphs illustrating the interpretations of Ic and MIc.

We will now see that replacing H(Y | Z) with the causal entropy Hc(Y | do(X ∼ X ′)) in the
first term of Equation (19) also results in a sensible quantity.

Definition 21 Let X , Y and Z be endogenous variables of an SCM C. The post-intervention mutual
information MIc(Y | Z, do(X ∼ X ′)) between Y and Z given the intervention protocol X ′ for X
is defined as follows:

MIc(Y | Z, do(X ∼ X ′)) := Hc(Y | do(X ∼ X ′))−Hc(Y | Z, do(X ∼ X ′)). (21)

This quantity measures the average information that is gained about Y due to observing Z, given
that X was intervened on following the protocol X ′. There should therefore be a close connection
between MIc(Y | Z, do(X ∼ X ′)) and the mutual information between Y and Z after one performs
an atomic intervention on X5. Indeed, the post-intervention mutual intervention turns out to be the
average mutual information between Y and Z after an atomic intervention on X:

Proposition 22 Let X ′ be an intervention protocol for X . Then MIc(Y | Z, do(X ∼ X ′)) =
Ex∼pX′ [I(Y ;Z | do(X = x))], where the notation I(Y ;Z | do(X = x)) indicates that the mutual
information is computed with respect to the joint post-atomic-intervention distribution.

Example 4 We now revisit the scenario outlined in Example 3 and juxtapose the meanings of condi-
tional causal information gain and post-intervention mutual information within this context. Recall

5This is the reason for the name of this quantity.
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that the intervention protocol had been chosen to be X ′ ∼ δ(1). While Ic(Y | Z, do(X ∼ X ′))
quantifies the impact that the contrast agent X has on the information that is gained about Y by
observing Z, MIc(Y | Z, do(X ∼ X ′)) = I(Y ;Z | do(X = 1)) is the information that is gained
about the disease Y by observing the image Z, given that the contrast agent has been injected.

For the case of Figure 1(b), MIc(Y | Z, do(X ∼ X ′)) is simply the average information that
is gained about the probability of having a stroke by knowing the age, given that one intervened on
blood pressure following a chosen intervention protocol.

5. Related Work

We build upon the work developed in Simoes et al. (2023), which was itself inspired in work from
the philophy of science literature (Griffiths et al., 2015). Simoes et al. (2023) define causal coun-
terparts of entropy and mutual information, referred to as causal entropy and causal information
gain. These metrics are designed to evaluate the extent to which a feature has control over a chosen
outcome variable. They do this by capturing changes in the entropy of a variable resulting from
intervening on other variables. The authors also study the relationship between these quantities and
the existence of total causal effect.

Another causal generalization of mutual information had been proposed before (Ay and Polani,
2008). This quantity, termed “information flow”, is both conceptually and numerically distinct from
causal information gain: Information flow was introduced both as a measure of “causal strength” and
of “causal independence”, similarly to how standard mutual information is a measure of statistical
independence. This is accomplished by starting from the definition of mutual information as a KL
divergence and proceeding to “make it causal” by replacing conditioning with interventions. In
contrast, Simoes et al. (2023) treat entropy as the main quantity of interest. They start from the
definition of mutual entropy as the change in entropy due to conditioning, and define causal entropy
as the change in entropy due to intervening. This then results in a quantity that is appropriate for
evaluating the control that a variable has over another, where control is taken to be how much
one can reduce the uncertainty about the second by intervening on the first. As confirmation that
these two causal generalizations of mutual information are indeed distinct, one can simply notice
that the former can be written as a KL divergence (Ay and Polani, 2008), while the latter cannot
(Corollary 18). It should be noted that there are metrics other than the ACE and the information
flow which purport to measure strength. See Janzing et al. (2013) for a compilation of such metrics.
From those, the only one conceptually close to ours is information flow, given that it also serves as
a causal version of mutual information.

6. Discussion and Conclusion

The motivation for extending traditional entropy and mutual information to interventional settings
stems from the desire to develop algorithms that utilize information theoretical quantities in the pres-
ence of non-causal statistical dependencies (e.g. due to unobserved confounding). Extending these
quantities to handle interventions allows them to capture the effects of manipulating one variable
on another. The causal entropy, conditional causal entropy, causal information gain, and conditional
causal information gain, together with their basic properties proved herein provide the foundation
for developing new algorithms in areas where one has or can obtain knowledge of the causal rela-
tionships involved.
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Establishing practical methods for computing these quantities remains a topic for future investi-
gation. This includes designing appropriate estimators, evaluating their performance characteristics
(such as consistency, bias and rate of convergence), and determining whether these estimators are
identifiable based on the available information about the underlying causal structure. Furthermore,
one can leverage the foundational results established in this paper (such as the chain rules) to aid
the computation of causal control between variables in a complex structural causal model. More
generally, the properties presented herein can aid in examining how intervening on a variable within
a structural causal model impacts the uncertainty associated with other variables. As alluded to in
the Introduction, potential applications of these concepts include guiding action selection in rein-
forcement learning, devising causal adaptations of entropy-based decision tree algorithms, and de-
veloping causal versions of representation learning algorithms which rely on information theoretical
quantities such as the mutual information between the representation and a target variable. On the
theoretical front, one may try to generalize other important results from information theory to this
causal information theoretical framework. Additionally, other causal generalizations of conditional
causal entropy and information gain can be studied, in particular those for which the assumption that
interventions are performed before conditioning is dropped. Lastly, the precise connection between
causal information gain and putative measures of causal strength, such as information flow, could
be studied in detail.
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Appendix A. Structural Causal Models

One can model the causal structure of a system by means of a “structural causal model”, which can
be seen as a Bayesian network (Koller and Friedman, 2009) whose graph G has a causal interpre-
tation and each conditional probability distribution (CPD) P (Xi | PAXi) of the Bayesian network
stems from a deterministic function fXi (called “structural assignment”) of the parents of Xi. In this
context, it is common to separate the parent-less random variables (which are called “exogenous”
or “noise” variables) from the rest (called “endogenous” variables). Only the endogenous variables
are represented in the structural causal model graph. As is commonly done (Peters et al., 2017),
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we assume that the noise variables are jointly independent and that exactly one noise variable NXi

appears as an argument in the structural assignment fXi of Xi. In full rigor6(Peters et al., 2017):

Definition 23 (Structural Causal Model) Let X be a random variable with range RX and W a
random vector with range RW. A structural assignment for X from W is a function fX : RW →
RX . A structural causal model (SCM) C = (X,N, S, pN) consists of:

1. A random vector X = (X1, . . . , Xn) whose variables we call endogenous.

2. A random vector N = (NX1 , . . . , NXn) whose variables we call exogenous or noise.

3. A set S of n structural assignments fXi for Xi from (PAXi , NXi), where PAXi ⊆ X are
called parents of Xi. The causal graph GC := (X, E) of C has as its edge set E = {(P,Xi) :
Xi ∈ X, P ∈ PAXi}. The PAXi must be such that the GC is a directed acyclic graph (DAG).

4. A jointly independent probability distribution pN over the noise variables. We call it simply
the noise distribution.

We denote by C(X) the set of SCMs with vector of endogenous variables X. Furthermore, we
write X := fX(X,NX) to mean that fX(X,NX) is a structural assignment for X .

Notice that for a given SCM the noise variables have a known distribution pN and the endoge-
nous variables can be written as functions of the noise variables. Therefore the distributions of the
endogenous variables are themselves determined if one fixes the SCM. This brings us to the notion
of the entailed distribution6 (Peters et al., 2017):

Definition 24 (Entailed distribution) Let C = (X,N, S, pN) be an SCM. Its entailed distribution
pCX is the unique joint distribution over X such that ∀Xi ∈ X, Xi = fXi(PAXi , NXi). It is often
simply denoted by pC . Let x−i := (x1, . . . , xi−1, xi+1, . . . , xn). For a given Xi ∈ X, the marginal-
ized distribution pCXi

given by pCXi
(xi) =

∑
x−i

pCX(x) is also referred to as entailed distribution (of
Xi).

Having an SCM in hand allows us to model interventions on the system. The idea is that an
SCM represents how the values of the random variables are generated, and by intervening on a
variable system we are effectively changing its generating process – read: its structural assignment.
Thus intervening on a variable can be modeled by modifying the structural assignment of said
variable, resulting in a new SCM differing from the original only in the structural assignment of the
intervened variable, and possibly introducing a new noise variable for it, in place of the old one.
Naturally, the new SCM will have an entailed distribution which is in general different from the
distribution entailed by the original SCM.

Definition 25 (General intervention) Let C = (X,N, S, pN) be an SCM, Xi ∈ X, P̃AXi ⊆ X,
Ñi be a random variable and f̃Xi be a structural assignment for Xi from P̃AXi , Ñi.

The intervention do(Xi = f̃Xi(P̃AXi , Ñi)) is the function C(X) → C(X) given by C 7→
Cdo(Xi=f̃Xi

(P̃AXi
,Ñi)), where Cdo(Xi=f̃Xi

(P̃AXi
,Ñi)) is the ordered pair (X, Ñ, S̃, pÑ ), with Ñ =

(N \ {Ni}) ∪ {Ñi} and S̃ = (S \ {fXi}) ∪ {f̃Xi}. We call it the post-intervention SCM (w.r.t. the
intervention do(Xi = f̃Xi(P̃AXi , Ñi))). It is also denoted C̃ := Cdo(Xi=f̃Xi

(P̃AXi
,Ñi)).

6We slightly rephrase the definition provided in Peters et al. (2017) for our purposes.

15202



SIMOES DASTANI VAN OMMEN

Note that in order for C̃ to be an SCM, P̃AXi must be such that the causal graph GC̃ is a DAG.
We then say that the variable Xi was intervened on.
The distribution pdo(Xi=f̃Xi

(P̃AXi
,Ñi)) := pC̃ entailed by C̃ is called the post-intervention distri-

bution (w.r.t. the intervention do(Xi = f̃Xi(P̃AXi , Ñi)) on C).

The most common type of interventions are the so-called “atomic interventions”, where one sets
a variable to a chosen value, effectively replacing the distribution of the intervened variable with a
point mass distribution. In particular, this means that the intervened variable has no parents after the
intervention.

Definition 26 (Atomic intervention) Let C = (X,N, S, pN) be an SCM and Xi ∈ X. An atomic
intervention on Xi is an intervention of the type do(Xi = Ñi), where Ñi is a random variable with
range RXi and pÑi

(xi) = δx,xi for some x ∈ RXi . Such an intervention is usually denoted simply
by do(Xi = x).

Another special type of intervention is the “stochastic intervention” (Korb et al., 2004), where
again the intervened variable has no parents, but its distribution can be any distribution. Thus, an
atomic intervention is a particular type of stochastic intervention.

Definition 27 (Stochastic intervention) Let C = (X,N, S, pN) be an SCM and Xi ∈ X. A
stochastic intervention on Xi is an intervention of the type do(Xi = Ñi), where Ñi is a random
variable with range RXi and pÑi

can be any probability distribution.

We can also define what we mean by “X having a total causal effect on Y ”. Following Peters
et al. (2017); Pearl (2009), there is such a total causal effect if there is an atomic intervention on X
which modifies the initial distribution of Y .

Definition 28 (Total Causal Effect) Let X , Y be random variables of an SCM C. X has a total
causal effect on Y if there is x ∈ RX such that pdo(X=x)

Y ̸= pY . We then write X�Y .

Appendix B. Relating Stochastic and Atomic Post-intervention Distributions

We will here prove a lemma that is used to prove many of the results in this paper.

Lemma 29 (Atomic Intervention Equals Conditioning After Stochastic Intervention) Let X be
an endogenous variable of an SCM C and Y be a vector of endogenous variables of C distinct from
X . Furthermore, let X ′ be an intervention protocol for X and x be an X-value in the support
of pX′ . The post-intervention distribution of Y resulting from an atomic intervention do(X = x)
equals the conditional post-intervention distribution of Y resulting from the stochastic intervention
do(X = X ′) and conditioning on X = x. That is:

p
do(X=x)
Y = p

do(X=X′)
Y|X=x . (22)

Proof This proof will be easier if we introduce operators corresponding to intervening and condi-
tioning. That will allow us to not overburden our notation with subscripts and superscripts. Denote
by X the set of endogenous variables of C, and by MP(X) the set of all probability mass func-
tions for any of the variable subsets in the powerset P(X) of X. Let x be an X-value. Define
operators Do[X = x] : MP(X) → MP(X) and Cond[X = x] : MP(X) → MP(X) such that
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∀Y ⊆ X\X, Do[X = x](pY) = p
do(X=x)
Y and ∀Y ⊆ X\X, Cond[X = x](pY) = pY|X=x. Let

Y ⊆ X\X . Then what we want to prove can be written

Cond[X = x]
(
Do[X = X ′] (pY)

)
= Do[X = x] (pY) . (23)

Denote by fX the structural assignment for X in C. The only difference between Cdo(X=X′) and C
is that fX(PAX , NX) is replaced by another structural assignment f̃X(ÑX = X ′) = X ′ and there
is a new variable X ′ in Cdo(X=X′) which did not figure in C. If one proceeds by performing the
intervention do(X = x), one obtains the SCM (Cdo(X=X′))do(X=x) which differs from Cdo(X=X′)

only in that f̃X(X ′) is replaced by ˜̃
fX( ˜̃NX ∼ δx) = ˜̃NX . Notice that the marginal distribution

p
(Cdo(X=X′))do(X=x)

Y entailed by this SCM is precisely the result of Do[X = x] (Do[X = X ′](pY)).
Furthermore, the SCM entailing the RHS of (23) differs from (Cdo(X=X′))do(X=x) only in that the
latter contains a childless exogenous variable X ′. Therefore they entail the same marginal distribu-
tion of Y. Hence:

Do[X = x]
(
Do[X = X ′](pY)

)
= Do[X = x] (pY) .

On the other hand, starting again with C and setting X = X ′ sets PAX = ∅, which means that
intervening on X after that will be equivalent to conditioning:

Do[X = x]
(
Do[X = X ′](pY)

)
= Cond[X = x]

(
Do[X = X ′](pY)

)
.

Hence (23) holds, which proves the lemma.

Appendix C. Proofs for Results on Causal Entropy

Computations for Example 1 
p
do(X=0)
Y (0) = pNY

(0) = 1/2

p
do(X=0)
Y (1) = pNY

(1) = 1/2

p
do(X=0)
Y (2) = 0

(24)


p
do(X=1)
Y (0) = 0

p
do(X=1)
Y (1) = pNY

(0) = 1/2

p
do(X=1)
Y (2) = pNY

(1) = 1/2

(25)


p
do(X=X′)
Y (0) = pX′(0)pNY

(0) = 2
3 × 1

2 = 1/3

p
do(X=X′)
Y (1) = pX′(0)pNY

(1) + pX′(1)pNY
(0) = 1/2

p
do(X=X′)
Y (2) = pX′(1)pNY

(1) = 1
3 × 1

2 = 1/6

(26)
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Hc(Y | do(X ∼ X ′)) =− pX′(0)

(
p
do(X=0)
Y (0) log p

do(X=0)
Y (0)

+ p
do(X=0)
Y (1) log p

do(X=0)
Y (1)

+ p
do(X=0)
Y (2) log p

do(X=0)
Y (2)

)
− pX′(1)

(
p
do(X=1)
Y (0) log p

do(X=1)
Y (0)

+ p
do(X=1)
Y (1) log p

do(X=1)
Y (1)

+ p
do(X=1)
Y (2) log p

do(X=1)
Y (2)

)
=− 2/3× (−1/2− 1/2)− 1/3× (0− 1/2− 1/2) = 1(bit)

(27)

H(Y | do(X = X ′)) =p
do(X=X′)
Y (0) log(1/pdo(X=X′)

Y (0))

+ p
do(X=X′)
Y (1) log(1/pdo(X=X′)

Y (1))

+ p
do(X=X′)
Y (2) log(1/pdo(X=X′)

Y (2))

=
1

3
log 3 +

1

2
+

1

6
log 6.

(28)

Proof [Proof of Proposition 7]

Hc(Y | do(X ∼ X ′)) ≡ −Ex′∼pX′

[
E
y∼p

do(X=x′)
Y

[
log p

do(X=x′)
Y (y)

]]
(29)

≡ −
∑
x′,y

pX′(x′)p
do(X=x′)
Y (y) log p

do(X=x′)
Y (y) (30)

= −
∑
x′,y

p
do(X=X′)
X (x′)p

do(X=X′)
Y |X=x′ (y) log p

do(X=x′)
Y (y) (31)

= −
∑
x,y

p
do(X=X′)
X,Y (x, y) log p

do(X=x′)
Y (y) (32)

= −E
x,y∼p

do(X=X′)
X,Y

[log p(y | do(X = x))] (33)

where to get Equation (31) we used that pX′(x) = p
do(X=X′)
X (x) and Lemma 29.

Proof [Proof of Proposition 8] This comes directly from the definition of Hc and Lemma 29:

Hc(Y | do(X ∼ X ′)) = Ex∼pX′

[
H

Y∼p
do(X=x)
Y

(Y )
]

= Ex∼pX′

[
H

Y∼p
do(X=X′)
Y |X=x

(Y )

]
.

(34)
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Proof [Proof of Proposition 9] The result follows directly from the definition of causal entropy. We
can write:

Hc(Y | do(X ∼ X ′)) = Ex′∼pX′

[
H

Y∼p
do(X=x′)
Y

(Y )

]
. (35)

Since entropies are non-negative quantities, it follows that the causal entropy, being an average of
entropies, is also non-negative.

Proof [Proof of Proposition 10] It suffices to provide an SCM C and intervention protocol X ′

such that the causal entropy of Y given the intervention protocol X ′ for X is greater than the initial
entropy of Y . Consider an SCM C with exactly two binary endogenous variables X,Y , causal graph
X → Y and structural assignments given by:

X = NX

Y =

{
y0, X = x0

NY , X = x1

. (36)

Furthermore, assume that NY ∼ Bern(1/2), NX ∼ Bern(1/10) and X ′ ∼ Bern(1/2). Notice that
this implies: {

p
do(X=x0)
Y = pY |X=x0

= δ(x0)

p
do(X=x1)
Y = pY |X=x1

= Bern(1/2)
. (37)

Then:

Hc(Y | do(X ∼ X ′)) = Ex∼pX′

[
H

Y∼p
do(X=x)
Y

(Y )
]

= Ex∼pX′

[
HY∼pY |X=x

(Y )
]

= pX′(x0)HY∼pY |X=x0
(Y )︸ ︷︷ ︸

0

+pX′(x1)HY∼pY |X=x1
(Y )︸ ︷︷ ︸

1

= pX′(x1) = 1/2

(38)

where in the second equality we used that the causal effect from X to Y is not confounded.

H(Y ) = −
∑
y

pY (y) log (pY (y))

= −
∑
x,y

pY |X=x(y)pX(x) log

(∑
ẋ

pY |X=ẋ(y)pX(ẋ)

)
= −

∑
x

pX(x)
∑
y

pY |X=x(y) log
(
p(y | x0)pX(x0) + p(y | x1)pX(x1)

)
= −pX(x0) log

(
pX(x0) +

1

2
pX(x1)

)
− 1

2
pX(x1)

[
log
(
pX(x0) +

1

2
pX(x1)

)
+ log

(1
2
pX(x1)

)]
≈ 2.04.

(39)

Hence Hc(Y | X ∼ X ′) > H(Y ) for this SCM and intervention protocol.
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Proof [Proof of Corollary 11] Conditional entropy cannot be greater than the entropy before condi-
tioning. By Proposition 8 causal entropy is a conditional entropy obtained from the post-stochastic
intervention entropy by conditioning. The result follows.

Proof [Proof of Proposition 12] We make use of Proposition 8 and the independence bound on
(standard) entropy:

Hc(Y | do(X ∼ X ′)) = H(Y | X, do(X = X ′))

≤
nY∑
i=1

H(Yi | X, do(X = X ′))

=

nY∑
i=1

Hc(Yi | do(X ∼ X ′)).

(40)

Proof [Proof of Proposition 14]

Hc(Y | Z, do(X ∼ X ′)) = Ex∼pX′

[
E
z∼p

do(X=x)
Z

[
H

Y∼p
do(X=x)
Y |Z=z

(Y )

]]
=
∑
x,z

p
do(X=x)
Z (z)pX′(x)H

Y∼p
do(X=x)
Y |Z=z

(Y )

=
∑
x,z

p
do(X=X′)
Z|X=x (z)p

do(X=X′)
X (x)H

Y∼p
do(X=X′)
Y |X=x,Z=z

(Y )

=
∑
x,z

p
do(X=X′)
X,Z (x, z)H(Y | X = x, Z = z, do(X = X ′))

= H(Y | X,Z, do(X = X ′))

(41)

where in the third step we used Lemma 29 twice, and in the last one we used the definition of
conditional entropy.

Proof [Proof of Proposition 15] We will use Proposition 14 and Proposition 8 together with the fact
that conditional entropy can never be larger than the initial entropy (Cover and Thomas, 2006) to
prove the result:

Hc(Y | Z, do(X ∼ X ′)) = H(Y | Z,X, do(X = X ′))

≤ H(Y | X, do(X = X ′))

= Hc(Y | do(X ∼ X ′)).

(42)

Proof [Proof of Proposition 16] Due to Proposition 8 and Proposition 14 we can leverage the chain
rule for entropy to obtain a chain rule for the causal entropy:

Hc(Y, Z | do(X ∼ X ′)) = H(Y, Z | X, do(X = X ′))

= H(Y | X, do(X = X ′)) +H(Z | Y,X, do(X = X ′))

= Hc(Y | do(X ∼ X ′)) +Hc(Z | Y, do(X ∼ X ′)).

(43)
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Proof [Proof of Proposition 17]

Hc(Y | do(X ∼ X ′)) = H(Y | X, do(X = X ′))

=

nY∑
i=1

H(Yi | Y<i, X, do(X = X ′))

=

nY∑
i=1

Hc(Yi | Y<i, do(X ∼ X ′))

(44)

where in the first step and third steps we used Proposition 14, while the second equality follows
from the chain rule for entropy.

Appendix D. Proofs for Results on Causal Information Gain

Proof [Proof of Proposition 20]

Ic(Y | do(X ∼ X ′)) = H(Y)−Hc(Y | do(X ∼ X ′))

=

nY∑
i=1

(
H(Yi | Y<i)−Hc(Yi | Y<i, do(X ∼ X ′))

)
=

nY∑
i=1

Ic(Yi | Y<i, do(X ∼ X ′))

(45)

where in the second step we used the chain rules for the entropy (Cover and Thomas, 2006) and for
the causal entropy (Proposition 17).

Proof [Proof of Proposition 22]

MIc(Y | Z, do(X ∼ X ′)) = Ex∼pX′ [H(Y | do(X = x))]

− Ex∼pX′ [H(Y | Z, do(X = x))]

= Ex∼pX′ [H(Y | do(X = x))−H(Y | Z, do(X = x))]

= Ex∼pX′ [I(Y ;Z | do(X = x))]

(46)
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