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Abstract
Knowledge of the underlying causal relations is essential for inferring the effect of interventions
in complex systems. In a widely studied approach, structural causal models postulate noisy func-
tional relations among interacting variables, where the underlying causal structure is then naturally
represented by a directed graph whose edges indicate direct causal dependencies. In the typical
application, this underlying causal structure must be learned from data, and thus, the remaining
structure uncertainty needs to be incorporated into causal inference in order to draw reliable con-
clusions. In recent work, test inversions provide an ansatz to account for this data-driven model
choice and, therefore, combine structure learning with causal inference. In this article, we propose
the use of dual likelihood to greatly simplify the treatment of the involved testing problem. Indeed,
dual likelihood leads to a closed-form solution for constructing confidence regions for total causal
effects that rigorously capture both sources of uncertainty: causal structure and numerical size of
nonzero effects. The proposed confidence regions can be computed with a bottom-up procedure
starting from sink nodes. To render the causal structure identifiable, we develop our ideas in the
context of linear causal relations with equal error variances.
Keywords: linear structural causal models, graphical models, dual likelihood, causal effects, un-
certainty quantification

1. Introduction

Reasoning about causal relations and inferring the effect of interventions in complex systems is a
central task of scientific research. The field of causal discovery addresses this challenge with much
fundamental research being done over the last decades (Pearl, 2009; Spirtes et al., 2000). In particu-
lar, in many applied settings, access to interventional data is limited, and thus, performing classical
controlled experiments to investigate causal relations is not feasible. To tackle this problem, various
identifiability results clarify under which conditions interventional distributions can theoretically
be identified from observational data alone. Furthermore, many structure learning algorithms have
been proposed that estimate causal structures using only observed data. On the other hand, when the
underlying causal structure is known, causal inference results enable researchers to estimate causal
quantities in complex systems and assess remaining uncertainty. However, when the underlying
causal structure is learned from data, the remaining structure uncertainty needs to be incorporated
into causal inference in order to draw reliable conclusions.

Recently, Strieder et al. (2021) introduced a first ansatz for constructing confidence regions for
causal effects that account for both types of uncertainty, uncertainty about the causal structure and
uncertainty about the numerical size of the effect. They consider bivariate linear structural causal
models (SCMs) and develop a solution based on test inversion. Their strategy was improved and
generalized to higher-dimensional linear SCMs in Strieder and Drton (2023). In this work, we
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take up their idea of using a test inversion ansatz to construct confidence regions for total causal
effects (see Section 2). However, in contrast to the earlier work, we suggest here to employ dual
likelihood for the arising testing problem. An important consequence of the use of dual likelihood
is that we are able to provide a closed-form solution for our proposed confidence regions (Section 3)
and can, thus, avoid the numerical optimization algorithms deployed by Strieder and Drton (2023).
Furthermore, while the earlier methods rely on a top-down procedure starting from the source node,
by employing dual likelihood, we obtain a bottom-up procedure starting from the sink node. Thus,
our proposed dual likelihood method provides an interesting alternative perspective on strategies
to save on computation. Finally, in Section 4.2, we present computational details and analyze the
performance in a simulation study. Further simulation results can be found in Appendix A. In the
concluding Section 5, we discuss extensions and possible future work.

2. Background

A common tool for studying causal relationships among interacting variables are structural causal
models (Peters et al., 2017; Maathuis et al., 2019), where each variable is represented as a function
of other variables (its causes) and a random error term. The causal perspective views these relation-
ships as assignments rather than mathematical equations, and thus, changes in the causes result in
changes in the effects but not vice versa, reflecting the inherent asymmetry in cause-effect relation-
ships. In this section, we review a restricted class of causal models, namely linear structural causal
models with Gaussian errors and equal error variances (Peters and Bühlmann, 2014), as well as the
definition of the total causal effect, which is the causal target of interest in this study. Further, we
review the test inversion ansatz introduced by Strieder et al. (2021) to construct confidence regions
for causal effects that account for structure uncertainty.

2.1. Causal Effects in Linear Structural Causal Models

We assume access to observational data in the form of n independent copies of a random vector
X = (X1, ..., Xd) with zero mean. To ensure unique identifiability, we follow a line of research
introduced by Peters and Bühlmann (2014) that focuses on linear relations and normal distributed
errors with equal variances, represented by the equation system

Xj =
∑
i ̸=j

βj,iXi + εj , j = 1, . . . , d, (1)

whereB := [βj,i]
d
j,i=1 represents the direct causal effects between variables, and εj are independent,

normally distributed error terms with common variance σ2. Such a linear structural causal model is
naturally represented by a directed graph, where a missing edge i → j indicates no direct effects,
that is, bj,i = 0. Further, we assume the underlying graph to be acyclic, which entails the unique
solution X = (Id − B)−1ε of the equation system (1), where Id denotes the d× d identity matrix.
The corresponding covariance matrix is given by Σ = σ2(Id −B)−1(Id −B)−T .

In the remainder of the article, we use the following notation and graphical concepts. We write
i <G j if node i precedes node j in a causal ordering of the corresponding directed acyclic graph
(DAG). If the DAG contains an edge from node i to node j, then node i is called a parent of node
j, and we denote the set of all parents of node j with p(j). Further, if the DAG contains a directed
path from node i to node j, then node j is called a descendant of node i, and we denote the set of
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all descendants of node i with d(i). Finally, we write Σj,i|p(i) for the conditional covariance matrix,
that is,

Σj,i|p(i) := Σj,i − Σj,p(i)(Σp(i),p(i))
−1Σp(i),i.

Our aim is to estimate the total causal effect C(i → j) in linear SCMs and rigorously quantify
the remaining uncertainty. Formally, the total causal effect is defined as the unit change in the
expectation of Xj with respect to an intervention in Xi

C(i→ j) :=
d

dxi
E[Xj | do(Xi = xi)] = Σj,i|p(i)(Σi,i|p(i))

−1.

While this parameter of interest is given as a simple function of the covariance matrix, difficulties
arise in practice when the underlying causal structure is unknown. In such situations, the condi-
tioning set is unknown and has to be inferred from data, which introduces structure uncertainty.
We emphasize that due to the identifiability of Gaussian SCMs with equal error variances (e.g.,
Chen et al., 2019; Ghoshal and Honorio, 2018), estimating the total causal effect is nevertheless a
well-defined problem.

A naive two-step approach that treats the two tasks of causal discovery and causal inference
separately by learning the causal structure first and then calculating confidence intervals in the in-
ferred model does not account for uncertainty in the structure. Furthermore, classical bootstrapping
methods also fail to correctly account for model uncertainty due to singularities at the intersection
of models. To address this issue, Strieder et al. (2021) introduced a framework for constructing
confidence intervals that rigorously account for structure uncertainty, which was then generalized
in Strieder and Drton (2023). However, thoroughly accounting for structure uncertainty proves a
challenging task, given the enormous number of possible structures, even in moderate dimensions.

2.2. Confidence Intervals via Test Inversion

The main idea is to leverage the classical duality between statistical hypothesis tests and confidence
regions (Casella and Berger, 1990). To this end, we consider all possible causal structures in the
following way. If we perform valid hypothesis tests for all attainable causal effects, then all values
that cannot be rejected form a confidence region for the total causal effect. This shifts the task to
constructing suitable hypothesis tests for all attainable causal effects.

Under the assumption of an underlying linear structural causal model with equal error variances,
every possible distribution N(0,Σ) is given by a set of covariance matrices M :=

⋃
G∈G(d)M(G),

where G(d) is the set of all possible complete DAGs on d nodes and

M(G) =
{
Σ ∈ PD(d) : ∃σ2 > 0 with σ2 = Σk,k|p(k) ∀ k = 1, . . . , d

}
.

Here, we write PD(d) for the cone of positive definite d × d matrices. The hypothesis of a fixed
causal effect C(i→ j) of size ψ further restricts the set of possible distributions, where the specific
structure of the constraint depends on the DAG G. Thus, with

Mψ(G) :=
{
Σ ∈ PD(d) : ∃σ2 > 0 with ψσ2 = Σj,i|p(i) and σ2 = Σk,k|p(k) ∀ k = 1, . . . , d

}
,

(2)
and Mψ :=

⋃
G∈G(d)Mψ(G), the task is to invert the statistical testing problem

H
(ψ)
0 : Σ ∈ Mψ against H1 : Σ ∈ M\Mψ (3)

for all ψ ∈ R.

33



STRIEDER DRTON

3. Testing for Total Causal Effects with the Dual Likelihood

Earlier methods (Strieder and Drton, 2023) propose to use constrained likelihood ratio tests for the
testing problem (3). However, the direct maximization of the Gaussian likelihood with constraints
on the total causal effect has no closed-form solution, which leads to algorithms that rely on nu-
merical optimization routines and grid searches. Instead, our proposal is to employ dual likelihood
theory for Gaussian models (e.g., Brown, 1986; Kauermann, 1996) to solve the testing problem (3)
and, thus, obtain a simple closed-form solution.

To obtain our main result, we first introduce the dual likelihood for Gaussian graphical models.
Maximizing the Gaussian likelihood corresponds to the minimization problem

argmin
Σ∈M

KL(P
Σ̂
, PΣ) = argmin

Σ∈M

(
tr(Σ−1Σ̂) + log det(Σ)

)
,

where KL is the Kullback–Leibler divergence with sample covariance Σ̂. As the Kullback–Leibler
divergence is not symmetrical in its arguments, the minimization problem

argmin
Σ∈M

KL(PΣ, PΣ̂
) = argmin

Σ∈M

(
tr(Σ̂−1Σ)− log det(Σ)

)
= argmin

Σ∈M

(
tr(ΣΣ̂−1) + log det(Σ−1)

)
yields a different estimator, the dual maximum likelihood estimator. Along similar lines, the dual
(log-)likelihood of Σ for the observed parameter Σ̂−1 is defined as

2
nℓ
dual
n (Σ|Σ̂−1) := − log det(2πΣ−1)− tr(ΣΣ̂−1).

We note that this dual likelihood is reciprocal to the Gaussian likelihood in the sense that for ob-
served sample covariance Σ̂−1, we have

ℓdualn (Σ|Σ̂−1) = ℓn(Σ
−1|Σ̂−1), (4)

where 2
nℓn(Σ|Σ̂) := − log det(2πΣ)− tr(Σ−1Σ̂).

3.1. Dual Likelihood Ratio Test

In order to construct confidence intervals for the total causal effects, our idea is to invert dual likeli-
hood ratio tests of the testing problem (3) with the dual likelihood ratio test statistic

dual-λ̌(ψ)n : = 2
(

sup
Σ∈M

ℓdualn (Σ|Σ̂−1)− sup
Σ∈Mψ

ℓdualn (Σ|Σ̂−1)
)

(5)

= 2
(

sup
Σ∈M

ℓn(Σ
−1|Σ̂−1)− sup

Σ∈Mψ

ℓn(Σ
−1|Σ̂−1)

)
.

First, we observe that by employing equation (4), this dual likelihood ratio test statistic equals the
classical likelihood ratio test statistic for a modified problem. More precisely, we redefine the model
space M−1 :=

⋃
G∈G(d)M−1(G) with

M−1(G) :=
{
Ω ∈ PD(d) : ∃σ̃2 > 0 with σ̃2 = Ωk,k|d(k) ∀ k = 1, . . . , d

}
,
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where Ω = Σ−1. Similarly, we redefine the hypothesis space M−1
ψ =

⋃
G∈G(d)M

−1
ψ (G) with

M−1
ψ (G) :=

{
Ω ∈ PD(d) : ∃σ̃2 > 0 with σ̃2 = Ωk,k|d(k) ∀ k = 1, . . . , d

and ψ = τj
(
Ωi,d(i)(Ωd(i),d(i))

−1
)}
,

where τj projects the |d(i)|-dimensional vector onto the component corresponding to j if j ∈ d(i)
and zero otherwise. Then, we obtain the following Lemma.

Lemma 1 Let Σ ∈ PD(d). Then the following equivalences hold.

1. Σ ∈ M if and only if Σ−1 ∈ M−1.

2. Σ ∈ Mψ if and only if Σ−1 ∈ M−1
ψ .

Proof This result follows from straightforward calculations using the following observation. If
Σ = σ2(Id − B)−1(Id − B)−T for some DAG G with edge weights B and equal error variance
σ2 > 0, then Σ−1 = σ−2(Id−T )−1(Id−T )−T , where T represents the negative total causal effect
between variables. Thus, Σ−1 corresponds to the covariance matrix of a DAG G′, where the parent
sets p(i) in G′ are the descendants d(i) in G for all i = 1, . . . , d, the edge weights are given by T
and equal error variance σ−2. Constraints on the total causal effects in Σ and G thus correspond to
constraints on direct effects in Σ−1 and G′.

Using Lemma 1, we immediately obtain that the dual likelihood ratio test statistic (5) corre-
sponds to

dual-λ̌(ψ)n = 2
(

sup
Ω∈M−1

ℓn(Ω|Σ̂−1)− sup
Ω∈M−1

ψ

ℓn(Ω|Σ̂−1)
)
,

which is the classical likelihood ratio test statistic for the modified testing problem

H̃
(ψ)
0 : Ω ∈ M−1

ψ against H̃1 : Ω ∈ M−1\M−1
ψ , (6)

with observed sample covariance Σ̂−1. Thus, we can employ similar strategies to Strieder and Drton
(2023) in order to obtain confidence regions for total causal effects.

3.2. Confidence Intervals with Dual Likelihood

In this subsection, we state our main result, a confidence region for total causal effects C(i → j)
that captures structure uncertainty as well as uncertainty about the numerical size of the effect. Our
first step to tackle the testing problem (6) is to relax the alternative M−1 and employ the theory of
intersection union tests, see e.g. Casella and Berger (1990), to obtain a simple upper bound on the
distribution of the dual likelihood ratio test statistic via

dual-λ̌(ψ)n ≤ dual-λ(ψ)n (G) := 2
(

sup
Ω∈PD(d)

ℓn(Ω|Σ̂−1)− sup
Ω∈M−1

ψ (G)

ℓn(Ω|Σ̂−1)
)
.

Further, we define dual-λ̌(ψ)n (i <G j) := minG∈G(d) : i<Gj dual-λ̌(ψ)n (G), where

dual-λ̌(ψ)n (G) := 2
(

sup
Ω∈M−1

ℓn(Ω|Σ̂−1)− sup
Ω∈M−1

ψ (G)

ℓn(Ω|Σ̂−1)
)
.
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Then we obtain our following main result via test inversions of asymptotically conservative
hypothesis test based on the asymptotic distribution of the upper bound dual-λ(ψ)n (G) under every
single hypothesis M−1

ψ (G), see Lemma 3, as well as the closed-form solution of the dual likelihood
estimation under constraints on the total causal effect, see Section 3.3.

Theorem 2 Let α ∈ (0, 1). Then an asymptotic (1 − α)-confidence set for the total causal effect
C(i→ j) is given by

C := {ψ ∈ R : dual-λ̌(ψ)n (i <G j) ≤ χ2
d,1−α} ∪ {0 : dual-λ̌(0)n (j <G i) ≤ χ2

d−1,1−α}.

This confidence set can be constructed explicitly as follows. Define

K := min
G∈G(d)

d∑
k=1

(Σ̂−1)k,k|d(k), Z := min
G∈G(d):j<Gi

d∑
k=1

(Σ̂−1)k,k|d(k),

and for all G ∈ G(d) with i <G j,

DG := (Σ̂−1)2i,j|d(i)\{j}−(Σ̂−1)j,j|d(i)\{j}

( d∑
k ̸=i

(Σ̂−1)k,k|d(k)+(Σ̂−1)i,i|d(i)\{j}−K exp
(χ2

d,1−α
dn

))
.

Moreover, for DG ≥ 0, define

LG :=
−(Σ̂−1)i,j|d(i)\{j} −

√
DG

(Σ̂−1)j,j|d(i)\{j}
, UG :=

−(Σ̂−1)i,j|d(i)\{j} +
√
DG

(Σ̂−1)j,j|d(i)\{j}
.

Then the closed-form solution for the confidence set C is given by

C =
⋃

G∈G(d):DG≥0

[
LG, UG

] ⋃ {
0 : Z ≤ K exp

(χ2
d−1,1−α
dn

)}
.

Proof Let ψ ∈ R and Σ ∈ Mψ. Since Mψ =
⋃
G∈G(d)Mψ(G) there exists a complete graph G,

such that Σ ∈ Mψ(G). If i <G j, it follows with the introduced upper bound and Lemma 3

PΣ

(
dual-λ̌(ψ)n > χ2

d,1−α

)
≤ PΣ

(
dual-λ(ψ)n (G) > χ2

d,1−α

)
→ α.

Furthermore, plugging in the dual likelihood estimates (7) and (8) derived in Section 3.3, we view

dual-λ̌(ψ)n (G)− χ2
d,1−α = 2

(
sup

Ω∈M−1

ℓn(Ω|Σ̂−1)− sup
Ω∈M−1

ψ (G)

ℓn(Ω|Σ̂−1)
)
− χ2

d,1−α

as a strictly convex quadratic polynomial in ψ. With K := minG∈G(d)
∑d

k=1(Σ̂
−1)k,k|d(k) and

DG := (Σ̂−1)2i,j|d(i)\{j}−(Σ̂−1)j,j|d(i)\{j}

( d∑
k ̸=i

(Σ̂−1)k,k|d(k)+(Σ̂−1)i,i|d(i)\{j}−K exp
(χ2

d,1−α
dn

))
,
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this quadratic polynomial has real roots if DG ≥ 0. Thus, the inequality dual-λ̌(ψ)n (G) ≤ χ2
d,1−α

holds if and only if

ψ ∈

[
−(Σ̂−1)i,j|d(i)\{j} −

√
DG

(Σ̂−1)j,j|d(i)\{j}
,
−(Σ̂−1)i,j|d(i)\{j} +

√
DG

(Σ̂−1)j,j|d(i)\{j}

]
.

We obtain an analogous result for j <G i, and the test inversion approach yields the claim.

Note that for non-zero effects, we do not need to test among graphs with j <G i. Thus, our
confidence regions may consist of a non-zero interval and an isolated zero, reflecting the remaining
uncertainty about the direction of the causal relation. In contrast, for zero-sized effects, we need to
consider all causal orderings since multiple paths might cancel.

Our main result employs the following asymptotic distribution of the upper bound dual-λ(ψ)n (G)
under every single hypothesis M−1

ψ (G).

Lemma 3 Let G ∈ G(d) be a DAG and let ψ ∈ R. Then, the relaxed dual likelihood ratio test
statistic dual-λψn(G) satisfies one of the following properties.

a) If i <G j, then under the hypothesis H(ψ)
0 (G)

dual-λ(ψ)n (G)
D→ χ2

d.

b) If j <G i, then under the hypothesis H(0)
0 (G)

dual-λ(0)n (G)
D→ χ2

d−1.

Proof We assume i <G j. Without loss of generality, let (1, 2, . . . , d) be the causal ordering of G.
Then M−1

ψ (G) = {Ω ∈ PD(d) : fψ(Ω|G) = 0}, with

fψ(Ω|G) :=


τj(Ωi,{i+1,...,d}(Ω{i+1,...,d},{i+1,...,d})

−1)− ψ

Ω1,1|{2,...,d} − Ωd,d
...

Ωd−1,d−1|d − Ωd,d

 .

The Jacobian of fψ has full rank d, which follows due to its (nonzero) triangular structure in
derivatives for Ωk,k for all k = 1, . . . , d − 1, while the first row has nonzero derivative for Ωi,j
but zero derivatives for Ωk,k for all k = 1, . . . , i. Thus, M−1

ψ (G) defines a 1
2(d

2 − d)-dimensional

submanifold of R
1
2
(d2+d). The case j <G i follows similarly, and thus, the claim follows. For

details, we refer to Drton (2009).

Note that the constraint of a zero-sized effect does not restrict the submanifold M−1
0 (G) for

j <G i. All edge weights in the corresponding linear SCMs can vary freely, and thus, the two
different degrees of freedom for the chi-square limits arise.

77



STRIEDER DRTON

3.3. Dual Likelihood Estimation

Maximizing the classical Gaussian likelihood under constraints on total causal effects leads to com-
plex optimization problems with polynomial constraints that need to be solved with numerical op-
timization routines. In contrast to that, we can explicitly maximize the dual likelihood under con-
straints on total causal effects. Thus, as an important consequence of the use of dual likelihood, we
are able to provide a closed-form solution for our proposed confidence regions in Theorem 2.

In order to derive this closed-form solution, we need to calculate the dual likelihood ratio test
statistic (5). This involves maximizing the dual likelihood in two cases, the unrestricted case Σ ∈
M, and under the constraint of a fixed-size total causal effect Σ ∈ Mψ. In the following, we solve
the dual likelihood equations for a fixed graph G. In order to consider full uncertainty over all
possible causal structures, we subsequently need to cleverly optimize over the space of DAGs, see
Section 4.1. In the case Σ ∈ M(G), we obtain

2
n sup

Σ∈M(G)
ℓdualn (Σ|Σ̂−1) = sup

Ω∈M−1(G)

− log det(2πΩ)− tr(Ω−1Σ̂−1)

= sup
T∈R−G,σ2>0

−d log(2πσ−2)− σ2tr
(
(I − T )T (I − T )Σ̂−1

)
,

where R−G := {T ∈ Rd×d : tk,l = 0 if l /∈ d(k)}. This immediately follows if we recapitulate

Σ = σ2(Id −B)−1(Id −B)−T = σ2(I − T )T (I − T ),

where T ∈ R−G represents the negative total causal effect between variables. Maximizing over the
equal error variance σ2 then leads to a linear least squares problem with the optimal solution

min
T∈RG

tr
(
(I − T )T (I − T )Σ̂−1

)
=

d∑
k=1

(Σ̂−1)k,k|d(k). (7)

In the second case of an additional constraint of a fixed size total causal effect C(i → j) = ψ,
we can similarly first optimize over the equal error variance σ2 to derive a linear least squares
problem. That is, for Σ ∈ Mψ(G), maximizing the dual likelihood then corresponds to the linear
least squares problem

min
T∈R−G,ψ

tr
(
(I − T )T (I − T )Σ̂−1

)
.

Here, the search space is additionally restricted by the fixed size total causal effect C(i → j) = ψ
and given by R−G,ψ := {T ∈ Rd×d : tk,l = 0 if l /∈ d(k), ti,j = −ψ}. Solving this linear least
squares problem with the constraint of one fixed parameter leads to the solution

d∑
k ̸=i

(Σ̂−1)k,k|d(k) + (Σ̂−1)i,i|d(i)\{j} + ψ2(Σ̂−1)j,j|d(i)\{j} + 2ψ(Σ̂−1)i,j|d(i)\{j}. (8)

Note that maximizing dual likelihood under constraints on total causal effects corresponds with
the reciprocal property (4) to maximizing classical Gaussian likelihood under modified constraints
on direct causal effects. Thus, while directly maximizing the classical Gaussian likelihood under
constraints on the total causal effect is complicated due to the arising polynomial constraint on the
parameters, we are able to obtain a closed-form solution for the maximum dual likelihood estimate
since the constraint only pertains to one parameter.
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4. Computation of Confidence Regions for Total Causal Effects

In the following section, we present important computational shortcuts as well as the results of a
simulation study that analyzes the performance and computation times of our proposed confidence
regions.

4.1. Computational Shortcuts

Our proposal of employing the dual likelihood to construct confidence regions for total causal effects
resolves the need for numerical optimization routines of earlier methods and leads to a closed-
form solution that significantly reduces computation times (see Figure 3). However, the bottleneck
of the task itself is the superexponential growth of the number of possible causal structures with
the number of nodes. Without any knowledge about the underlying causal relation, we have to
consider all possible causal structures in order to make calibrated confidence statements that include
the structure uncertainty. This, already at the scale of systems with 12 involved variables, entails
accounting for more than 1026 possible graphs. Using combinatorial shortcuts that quickly reduce
the search space of plausible causal structures is thus extremely important to compute confidence
regions that solve this task.

First, we highlight that with our methodology, we only need to consider complete DAGs, thus
reducing the search space to d factorial structures for d involved variables. Namely, we have to
search through all permutations of d nodes, which then correspond to all possible topological order-
ings of the involved variables. Furthermore, we employ a branch and bound type search algorithm
to quickly reduce the space of plausible causal orderings before performing the testing procedure
for all possible causal effects ψ ∈ R. The main idea of this procedure in order to immediately reject
implausible causal orderings is the following. We quickly approximate the maximum dual likeli-
hood under the alternative Ω ∈ M−1 with the dual likelihood estimate (7) under the causal ordering
obtained via recursively minimizing (Σ̂−1)k,k|d(k) starting from the sink node. Then, recursively
starting from the sink node, we search through the space of causal orderings in reverse and reject a
partial ordering if the unrestricted partial dual likelihood estimate (7) already exceeds the threshold
of the alternative. This is possible because the dual likelihood estimate (7) collapses into subprob-
lems which only depend on descendants. Moreover, looking at (8), the specific ordering among
the descendants of i is not relevant for the subsequent testing procedure for the precise total causal
effects ψ ∈ R. Therefore, in our branch and bound type search algorithm, it suffices to proceed with
the partial ordering that achieves the highest dual likelihood among all plausible orderings with the
same set of descendants d(i). More specifically, at each step of our algorithm, we reject all partial
orderings that do not achieve the highest dual likelihood among all plausible partial orderings of the
same set of nodes and do not include i.

Combined, all these computational shortcuts vastly improve computation times and lead to a
bottom-up procedure that allows us to compute the proposed confidence region in a reasonable time
for moderate dimensions, see Section 4.2. We emphasize that considering the fast superexponen-
tial growth of the number of possible DAGs with the number of nodes, rigorously accounting for
structure uncertainty over all DAGs is an intrinsically difficult task already in moderate dimensions.
Further, we highlight the interesting distinction to the LRT-method of Strieder and Drton (2023),
that by employing dual likelihood, our method leads to a bottom-up procedure, starting from the
sink node, while their method is a top-down procedure, starting from the source node.
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4.2. Simulation Study

In the following simulation study, we compare the width of the proposed confidence region as well
as the computation times to the LRT-method by Strieder and Drton (2023). For more simulation
results, we refer the reader to the Appendix A. Our experiments are designed as follows. We gener-
ate 1000 synthetic data sets based on linear SCMs corresponding to randomly selected DAGs. The
edge weights are sampled from a normal distribution N(β, 0.1), and the error terms are sampled
from a standard normal distribution. Then we compute the confidence regions for the total causal
effect C(1 → 2) with confidence level α = 0.05. We repeat this procedure for a range of different
average direct effect strengths β, sample sizes n, dimensions d, sparse or dense graphs, and for true
non-zero total effects as well as for no total effect.

First, we note that the theoretical coverage guarantees of our proposed confidence regions are
based on (conservative) asymptotic critical values. Nevertheless, the confidence regions achieve
the desired coverage in all our simulation settings, even in low sample sizes. We explore this in
Table 1 in the Appendix A, which shows the empirical coverage frequencies against the sample size.
Furthermore, while the employed dual likelihood estimators are asymptotically efficient in the sense
of having the same asymptotic variance as ordinary maximum likelihood estimates, differences in
finite samples are possible. Thus, we compare the performance of our confidence regions to the
existing maximum likelihood approach. In Figure 1, we compare the average width of the non-
zero part of the confidence regions, reflecting the remaining uncertainty about the numerical size
of the effect. We show the results for d = 10 and β = 0.5 against the sample size. The main
observation is that the difference in performance between both methods seems negligible. Similar
observations can be made for other performance measures, which we defer to the Appendix A. For
example, we investigate how often the zero is included in the confidence regions when there is a
true nonzero effect and observe no significant differences. Thus, both methods seem to be equally
conclusive about the existence as well as the numerical size of the total causal effects. Further,
the two methods also perform similarly under model misspecification of equal error variances and
linearity.

However, the big advantage of the proposed dual likelihood method is the significantly reduced
computation time. Employing the dual likelihood avoids time-consuming numerical optimization
routines, and we immensely benefit from the closed-form solution calculated in Theorem 2. Figure
2 shows the computation times for β = 0.5 and sample size 1000 against the dimension. Our pro-
posed confidence regions are faster to compute by a factor of up to 102, without any compromises
in terms of information value. This is even more apparent in Figure 3, which compares the compu-
tation times for β = 0.1 and sample size 1000 against the dimension. In this setting, the generated
data encompasses more structure uncertainty, given the lower average edge strength. Thus, the time
difference between repeatedly applying numerical optimization algorithms versus directly comput-
ing the closed-form solution is more fatal, such that we are not able to compute the LRT-confidence
regions in a reasonable time in dimensions beyond d = 8. In contrast, the computation times of our
proposed method seem to vary less with the amount of structure uncertainty inherent in the data set.

Furthermore, we highlight the observation that dense systems generally lead to wider confidence
regions compared to sparse systems. Intuitively, for dense graphs more paths contribute to the total
causal effects on average, and thus, more uncertainty about the numerical size of the effect remains
in the data. In contrast, data generated by sparse DAGs generally exhibits more uncertainty about
the underlying causal structure, which explains the observed increased computation times.
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Figure 1: Mean width of 95%-confidence regions for the total causal effect in randomly generated
10-dim. DAGs (1000 replications).
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Figure 2: Mean computation times of 95%-confidence regions for the total causal effect in ran-
domly generated DAGs with average edge strength β = 0.5 (1000 replications).

In summary, our simulation study validates that our proposed confidence regions based on the
dual likelihood successfully pick up on the direction and the numerical size of the total causal
effect while correctly quantifying the remaining uncertainty in structure as well as effect size. Fur-
thermore, the computation times of our proposed confidence regions, computed with the proposed
bottom-up procedure, are significantly lower than the competition. Here, we immensely benefit
from the available closed-form solution due to employing dual likelihood. Especially under high
structure uncertainty, avoiding repeated numerical optimization algorithms is crucial in order to
compute the confidence regions in a reasonable time.
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Figure 3: Mean computation times of 95%-confidence regions for the total causal effect in ran-
domly generated DAGs with average edge strength β = 0.1 (1000 replications).

5. Conclusion

In this article, we address the important problem of rigorously accounting for uncertainty in causal
inference when the causal structure itself has to be learned from data. We provide a closed-form
solution for constructing confidence regions for the total causal effect that captures structure un-
certainty as well as uncertainty about the numerical size of the effect. The confidence regions are
developed for the concrete context of linear SCMs with equal error variances, where the under-
lying assumption of homoscedasticity across all interacting variables renders the causal structure
identifiable. Thus, causal inference of the total causal effect without knowledge of the underlying
structure is a well-defined task. An interesting conclusion of our work is that even in this spe-
cialized setting, we already observe high levels of uncertainty about causal directions and size of
effects, which highlights the importance of methods that properly account for structure uncertainty
in causal inference.

One thing to note is that our general approach of leveraging test inversions of joint tests for
causal structure and effect size is generalizable to other settings. In particular, if one deals with
parametric models for which the causal DAG is identifiable, then likelihood ratio tests may be de-
ployed with the same stochastic approximation strategies as in this paper, and we anticipate that the
matrix inversion interplay between direct and total effects that is behind our use of dual likelihood
can be similarly exploited.

While unique structure identifiability is required in order to consistently resolve uncertainty
about nonzero causal effects (e.g., when facing full Markov equivalence in linear Gaussian mod-
els without variance assumption, the confidence region would always include zero), our frame-
work could in principle be adjusted to target all effects that correspond to graphs within a Markov
equivalence class. However, in cases where the causal structure is merely identifiable up to some
faithfulness-type assumption, more research needs to be done to fully understand which causal ef-
fects are entailed by a given (possibly unfaithful) distribution.
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The observed reciprocal correspondence between dual likelihood with total effects and classi-
cal likelihood with direct effects could be exploited for other causal inference tasks. The idea is
to leverage tools developed for direct effects and classical likelihood to causal inference results for
total effects via the dual likelihood. In our simulation study, the differences in performance and ex-
planatory power that stem from employing dual likelihood ratio tests instead of classical likelihood
ratio tests are negligible and heavily outweighed by the significantly reduced computation times due
to the available closed-form solution.

Finally, given the fast superexponential growth of the number of possible causal structures with
the dimension of the system, it is essential to quickly reject implausible orderings and reduce the
search space in order to compute confidence regions that account for uncertainty over all struc-
tures. The introduced computational shortcuts lead to a bottom-up procedure that, starting from
sink nodes, recursively reduces the search space by immediately rejecting implausible partial order-
ings. In contrast, using the classical likelihood leads to a top-down procedure that starts with source
nodes. Cleverly alternating between both procedures in a first step to reduce the search space might
even further decrease the computation times of our proposed confidence regions.
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Appendix A. Additional Simulation Results

In this section, we present additional results of our simulation study. The data generation process
and general simulation setup are outlined in Section 4.2. Table 1 shows the observed coverage
probabilities for 10-dimensional graphs. Both methods seem to be conservative and achieve the
desired coverage frequency. Considering that we employ critical values based on an upper bound as
well as the theory of intersection union tests for the arising testing problem, it is not surprising that
the resulting confidence regions are conservative. Further, note that under high structure uncertainty,
it is not possible to compute the competitor LRT in a reasonable time, which we denoted with NA.

As an additional performance measure, in Figure 4, we compare the proportions of times zero
is included in the confidence regions when there is a true nonzero effect. The inclusion of zero in
the confidence regions reflects the remaining uncertainty about the existence of the effect. We show
the results for d = 10 and β = 0.5 against the sample size n as well as for d = 10 and sample
size n = 1000 against the average direct effect strength β. In terms of performance, we observe
no significant differences. However, we note again that for high structure uncertainty, which is the
case for low average direct effect strength β, it is not possible to compute the competitor LRT in a
reasonable time.

Furthermore, with practical applications in mind, Figure 5 investigates the robustness of the
methods towards small deviations from equal error variances. Here, to generate data, we sample
the error variances uniformly from [1 − 0.5v, 1 + 0.5v], where v indicates the degree of deviation
from homoscedasticity across all variables. We show the empirical coverage probabilities for d =
10, β = 0.5, and sample size n = 1000 against the degree of deviation v. Once again, we only
observe negligible differences, and both methods indicate some robustness to small deviations from
equal error variances.

Finally, to further explore aspects of model misspecification, we also investigate the robustness
of the methods towards deviations from linear relations. We generate data as outlined before, how-
ever, with an increasing emphasis on an additional quadratic dependence structure via the relation
Xj =

∑
i∈p(j) βi((1+3v)Xi+0.02vX2

i )+εj , for all j = 1, . . . , d. Thus, v indicates the degree of
deviation from linearity. The scaling ensures similar magnitudes of true causal effects across all in-
vestigated simulation settings. Note that for nonlinear relations, generally, the true total causal effect
is not given by a single parameter but rather by a functional relation. However, when applying linear
models it is natural to consider as a parameter of interest the slope parameter determining the best
linear approximation within the true causal structure. In Figure 6, we consider this ‘pseudo-linear’
total effect and show the empirical coverage probabilities for d = 10, β = 0.5, and sample size
n = 1000 against the degree of deviation v. We observe that even under nonlinearity, the methods
pick up on the direction of the causal relation, and thus, for no causal effect, zero is always covered
by the confidence intervals. Note that in the considered nonlinear additive equal variance setting,
the causal ordering is still implied by ordering conditional variances. Further, the performance dif-
ferences between both methods are negligible, and for nonzero effects, both methods indicate some
robustness to small deviations from linearity.
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Table 1: Empirical coverage of 95%-confidence regions for the total causal effect in randomly gen-
erated 10-dim. DAGs (1000 replications).

TRUE EFFECT NO TRUE EFFECT
SPARSE DENSE SPARSE DENSE

method n\β 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5

DualLRT
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00

LRT
500 NA 0.99 NA 1.00 NA 1.00 NA 1.00

1000 NA 1.00 NA 1.00 NA 1.00 NA 1.00
2000 NA 1.00 NA 1.00 NA 1.00 NA 1.00
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Figure 4: Proportion of times zero contained in 95%-confidence regions for the total causal effect
in randomly generated 10-dim. DAGs with true non-zero effect (1000 replications).
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Figure 5: Empirical coverage of 95%-confidence regions for the total causal effect in randomly
generated 10-dim. DAGs under departure from equal error variances (1000 replications).
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Figure 6: Empirical coverage of 95%-confidence regions for the total causal effect in randomly
generated 10-dim. DAGs under departure from linearity (1000 replications).
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