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Abstract
Causal Representation Learning (CRL) aims at identifying high-level causal factors and their re-
lationships from high-dimensional observations, e.g., images. While most CRL works focus on
learning causal representations in a single environment, in this work we instead propose a first step
towards learning causal representations from temporal sequences of images that can be adapted in
a new environment, or composed across multiple related environments. In particular, we introduce
DECAF, a framework that detects which causal factors can be reused and which need to be adapted
from previously learned causal representations. Our approach is based on the availability of inter-
vention targets, that indicate which variables are perturbed at each time step. Experiments on three
benchmark datasets show that integrating our framework with four state-of-the-art CRL approaches
leads to accurate representations in a new environment with only a few samples.
Keywords: Causal Representation Learning, Modularity, Composition

1. Introduction

Causal Representation Learning (CRL) (Lachapelle et al., 2022b; Lippe et al., 2022b; Schölkopf
et al., 2021; Yao et al., 2022b) aims at identifying high-level causal factors and their relationships
from underlying low-level observations, e.g., images. While learning structured and disentangled
representations has proved effective for interpretability, efficiency and fairness of deep learning
models (Higgins et al., 2017; Locatello et al., 2019a; Van Steenkiste et al., 2019), most methods
assume independent factors of variation. This assumption is often not met in real-world applica-
tions, which hinders the generalization capabilities of these methods (Dittadi et al., 2021, 2022;
Roth et al., 2022; Träuble et al., 2021). CRL generalizes the disentanglement setting by consider-
ing potential causal relations between the latent causal variables. Recent works rely on auxiliary
variables (Khemakhem et al., 2020; Lippe et al., 2023b), non-stationarity (Yao et al., 2022a,b),
sparsity (Lachapelle et al., 2022a,b), intervention targets (Lippe et al., 2022a,b, 2023a) and coun-
terfactuals (Brehmer et al., 2022; Von Kügelgen et al., 2021) to identify the causal factors. Causal
representations retain the modular nature of the associated causal generative model: an external
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Figure 1: Overview of our approach for the adaptation task in Pong, where the source environment
on which we learn the initial causal representation models the position of the ball as Cartesian
coordinates, while the target environment uses polar coordinates for the ball position.

change, i.e., an intervention, on a specific target variable will not affect the causal mechanism, i.e.,
the conditional distribution of any other variable given its parents (Pearl, 2009).

While most CRL works focus on learning causal representations in a single environment, in
this work we instead propose a first step towards learning causal representations from temporal
sequences of images that can be adapted in new environments, or composed across multiple related
environments. We are motivated by leveraging the implicit modularity of causal representations, as
well as many real-world applications in which we want an agent to leverage its previous knowledge
and adapt to changes in the environment with the least interactions possible.

In particular, we consider the TempoRal Intervened Sequences (TRIS) setting (Lippe et al.,
2022b). In this setting we observe temporal sequences of high-dimensional observations of an
underlying causal system, and at each time step any of the causal variables might be intervened. We
also assume that we have labels for which variables were intervened at each time step, represented
as a binary intervention target vector. We leverage this information in DECAF (DEtect Changes
and Adapt Factors), a framework that detects which causal factors can be reused and which need to
be adapted from previously learned causal representations. DECAF can be combined with any CRL
approach that works in TRIS.

To motivate our approach, we show an application of our framework for the adaptation task in
Pong in Figure 1. In the source environment, we exploit the available intervention targets It at each
timestep t to learn the causal representation of the system, including the position of the two paddles
and the ball. In this environment the position of the ball is measured in Cartesian coordinates x and
y. Instead, in the target environment, the dynamics of the ball are modelled in polar coordinates,
radius r and angle θ. Hence also the available interventions in this environment are changing either
the radius or the angle of a ball. In this setting, DECAF first learns a causal representation learned in
the source domain using a standard CRL approach with an encoder. It also trains a target classifier
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to predict the intervened variables It+1 at time t+1 from the predicted latent states zt at time t and
zt+1 at time t+1. When applying the target classifier to the new environment, DECAF exploits the
discrepancies in the predicted and the intervened targets to detect which of the causal factors need to
be adapted. Only these factors are then adapted by training a normalizing flow (NF) with a transition
prior and an auxiliary target classifier that enforces that each newly learned latent variable models at
most one intervention target. The other causal factors can be directly used in the new environment.
As we show in the experiments, we can use a similar approach also in compositional settings in
which we can combine representations from multiple source environments.

The contribution of this work is three-fold: (i) we formalize a generative model for the changes
across environments for which we can adapt or compose causal representations, (ii) we propose
DECAF (DEtect Changes and Adapt Factors), a novel framework that detects changes, adapts and
composes causal representations, (iii) we validate the benefits of repurposing learned causal repre-
sentations on three existing CRL benchmarks, for which we develop several adaptation and compo-
sition tasks.

2. Background

We assume our data follow the TempoRal Intervened Sequence (TRIS) setting (Lippe et al., 2022b).
In this setting we assume that there is an underlying unobserved causal system, and at each time
step there can be an intervention on a set of causal variables. We only observe a time series of
high-dimensional observations of it and the labels describing which variables have been intervened
on, the intervention targets. Here we summarize the assumptions, and refer to Lippe et al. (2022b)
for details.

Latent causal process. We assume the latent causal process can be described by a Dynamic
Bayesian Network (DBN) (Dean and Kanazawa, 1989; Murphy, 2002) over a set of K multidi-
mensional causal variables (C1, . . . , CK) that generates the data at hand. At each time step, we
only allow that a variable Cti can be potentially a parent of a variable Ct+1

j for i, j ∈ J1..KK, i.e. the
DBN is first-order Markov and has no instantaneous effects, and the causal relations are stationary,
i.e., the causal parents repeat across all timesteps. In other words, each causal variable follows the
structural causal equation Cti = fi(pa(Cti ), ϵi) for i = J1..KK, where pa() are the parents, which
are a subset of the variables in the previous time step, and ϵi is its exogenous noise. We assume
the noises ϵi for i = J1..KK to be mutually independent. Causal factors can be multivariate, i.e.,
Ci ∈ DMi

i with Mi ≥ 1 where Di is R for continuous variables and Z for discrete ones. Hence, the
causal factor space is defined as C = DM1

1 ×DM2
2 × ...×DMK

K . We denote as Ct = (Ct1, . . . , C
t
K)

the causal factors at time step t.

Interventions. We assume that the causal system can be subjected to an intervention at each
time step and that if it happens, we know the intervention targets. In particular, a binary vector
It ∈ {0, 1}K indicates that a variable Cti is intervened upon iff Iti = 1. Intervention values are
unobserved. Interventions can be soft (Eberhardt, 2007), e.g. inducing a change in the mechanism
of the intervened variables without necessarily making the target, or hard, e.g. do-interventions
do(Ci = ci) (Pearl, 2009). Multiple variables can be intervened simultaneously. We model potential
dependencies between intervention targets with an unobserved regime variable Rt (Mooij et al.,
2020). We assume faithfulness of the distribution, hence there are no further independences than
those given by the causal graph.
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Observation function. At each time step t, we observe a high-dimensional observation of the
latent causal factors. Let f : C × U → X be the invertible observation function from the space
of factors C and noises U to the observation space X . We define the high-dimensional observation
Xt = f(Ct1, C

t
2, ..., C

t
K , U

t), where U t ∈ U .

Adaptation of CRL approaches to TRIS. Since the TRIS setting was originally developed for
CITRIS (Lippe et al., 2022b), we can use it as is in this setting. We also adapt three other state-of-
the-art CRL methods to work in the TRIS setting. iVAE (Khemakhem et al., 2020) assumes that
the causal variables are conditionally independent given some auxiliary information. In TRIS, this
information can be provided by {Ct, It+1}. LEAP (Yao et al., 2022b) leverages nonstationarity that
is captured by a categorical auxiliary variable u, which can be represented with the intervention tar-
get vector It+1. Given actions with unknown targets, DMSVAE (Lachapelle et al., 2022b) identifies
the causal factors when the underlying causal graph has a sparse structure. In TRIS, we consider
the information target vector as the action itself.

Since we have multidimensional causal variables, we also need to learn a mapping from a latent
space Z ⊆ RM with M ≥ K + 1 to the causal space C. We call this mapping the assignment
function ψ : J1..MK → J0..KK. We denote the latent variables assigned to a causal variable Cti as
ztψi

for i ∈ J1..KK, while we denote with ztψ0
the latent variables that are not assigned to any causal

variable. CITRIS learns ψ as part of its training, but iVAE, LEAP and DMSVAE do not and their
identifiability is up to permutation and element-wise transformation. To compare them, we then use
supervision to match the latent space learned by iVAE, LEAP and DMSVAE with the ground truth
causal variables.

Remark. While knowledge about the intervention targets might not be always possible, we stress
that there are enough real-world settings in which we might have this information available. As
real-world examples, consider an experiment in which we want to learn the causal relations be-
tween different genes from imaging data, and our experiments consist of gene knockouts of specific
genes. In this setting, we typically have access to intervention targets. Other applications include ex-
periment or intervention design (Eberhardt, 2007; Hyttinen et al., 2013; Shanmugam et al., 2015) in
which we decide which variables we might want to intervene on to identify the graph or CRL (Lippe
et al., 2023b), especially in RL environments.

3. A simple generative model of environments for adaptation and composition

In this section we propose a simple generative model for changes across environments, for which
our framework will be able to adapt and compose causal representations.

3.1. Adaption of causal representations.

For simplicity, we assume that we have two environments, the source S and the target T . We assume
there is an underlying latent causal process with underlying causal variables Ct that is the same for
both environments. In the source, we consider a set of source causal variables CtS , which are an
invertible function of the underlying causal variables Ct. Similarly, we consider a set of target
causal variables CtT , which are an invertible function of Ct. In general, we will assume that some
of underlying causal variables Ctsh are shared across the environments and with the underlying
causal model, while others Ctch can change across the environments and w.r.t. the underlying causal
model.
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Figure 2: Overview of our approach for the composition task in Pong, where the first source environ-
ment models the data with polar ball position and independent paddles and the second environment
employs Cartesian ball coordinates but entangled paddles. The target environment uses Cartesian
coordinates for the ball position and has independent paddles.

More formally, we will assume that the underlying causal variables Ct with size K can be
partitioned in Ctch with size Kch and Ctsh with size Ksh. The source causal variables CtS can be
then defined as CtS = (hS(C

t
ch), C

t
sh), where hS is an invertible function. Similarly, the target

causal variables are defined as CtT = (hT (C
t
ch), C

t
sh) for an invertible hT . We denote with KS the

number of source causal variables and with KT the number of target causal variables. The number
of causal variables may change between source and target, as well as with respect to the underlying
causal variables. Hence, we allow for refinement or coarsening of variables. However, the invertible
functions hS , hT imply that the joint dimensionality of the causal variables is always constant.

3.2. Composition of causal representations.

We can extend the same notation to the case of composition, in which there are multiple source
environments and a single target environment. We again assume that there is an underlying causal
model with variables Ct. Let CtSi

be the source causal variables of one of the L sources, and
define Ctshi as the shared causal variables between the Si-th source and the target environment. We
assume that the target causal variables CtT are a composition of source causal variables that have
been independently learned on the source environments. More formally:

CtT = (hT (C
t
chT

), Ctsh, C
t
sh1 , . . . , C

t
shL

), (1)

where Ctsh are the target causal variables shared with the underlying causal graph and CtchT are the
causal variables that are changed in the target environment with respect to the underlying causal
variables through the invertible function hT . If the shared causal variables Cshi are not disjoint,
then the intersections will still be identical, and we can remove the duplicates.
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4. Detection, Adaptation and Composition of Factors

Here we describe our framework DECAF and show how it adapts or composes causal represen-
tations in environments that follow our generative model. We first introduce how we detect the
changed causal variables, based on the discrepancies in predicting the intervention targets. We then
describe how we adapt the changed factors with a normalizing flow and how we compose causal
representations.

Changing variable detection. Using a CRL approach adapted to the TRIS setting, as described in
Section 2, we can learn a causal representation on the source data. We also learn a target classifier
(Lippe et al., 2022b) that predicts the next step intervention targets It+1

i from the current latent
state zt and the next step latent state assigned to the causal variable Ci, which we denote as zt+1

ψi
.

Intuitively, when we run the target classifier in the target environment, we expect that its accuracy
would drop for the causal variables that have changed from the source to the target. In particular,
for k ∈ J1..KK, we define XS,Ik=1 := {Xt

S | Itk = 1, t ∈ J1..T K} as the set of observations on
the source environment S in which Ck has been intervened upon. Similarly let XT,Ik=1 := {Xt

T |
Itk = 1, t ∈ J1..T K} be the set of observations on the target environment T in which Ck has been
intervened upon. We define FPRkS,i(j) and FNRkS,i(j) as the False Positive Rate and False Negative
Rate for intervention predictions of the classifier on the source environment on samples XS,Ik=1,
when predicting the intervention target Ij from the current time step zt and the subset of latents
assigned to the variable zψi

at time steps t + 1. Similarly, we define the False Positive Rate and
the False Negative Rate for intervention predictions on the target environment as FPRkT,i(j) and
FNRkT,i(j). We detect the changing causal factors Ĉch by considering differences in false positive
rates or false negative rates greater than threshold τ :

Ĉch = {j | ∃ i, k ∈ J1..KK s.t. |FPRkT,i(j)−FPRkS,i(j)| > τ∨|FNRkT,i(j)−FNRkS,i(j)| > τ}. (2)

As the target classifier generally predicts an intervention when the dynamics differ from the learnt
observational ones, it tends to over-predict interventions in unseen environments. Thus, we found
that using FPR to consistently outperforms using FNR and apply it throughout our experiments.

Adaptation. Once we have identified the changing causal variables Cch, we adapt their represen-
tation zch ∈ RMch by a Normalizing Flow (NF) (Rezende and Mohamed, 2015). The Normalizing
Flow maps zch to a new representation r ∈ RMch with the same dimensionality, while guarantee-
ing invertibility between the representations. Similarly to CITRIS (Lippe et al., 2022b), we train
this flow with a transition prior pϕ parameterized by ϕ and condition each latent on exactly one
intervention target Ich of the changing variables:

pϕ(r
t+1 | rt, It+1

ch ) =
∏

Cchi
∈Cch

pϕ(r
t+1
ψchi

| rt, It+1
chi

), (3)

where ψchi is the learnt assignment of the components of zch to the causal variable Cchi , ψch :
J1..MchK → J1..KchK. The model directly learns an invertible map from source to target represen-
tation by maximizing the log-likelihood of the target samples:

Lϕ,ωMLE = log pzch(zch) = log pϕ(NFω(zch)) + log

∣∣∣∣det dNFω(zch)d zch

∣∣∣∣ , (4)
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where NFω represents the normalizing flow with parameters ω, and the original representation zch is
kept frozen. During inference, we construct the final representation by replacing the changed causal
variables zch with the adapted representation r = NFω(zch).

Composing causal factors. Besides adapting causal representations, we can also try to compose
the representations that we have identified across a set of source environments, to form the causal
representation of a new target environment, see Figure 2 for an illustration. More formally, consider
the representation of L source environments zSl

, l = J1..LK. First, we detect the causal variables
Cshl that are shared between each source representation CSl

and the target using the changing vari-
able detection described previously. In a second phase, we then concatenate the latent representation
of all identified shared variables, i.e. ztarget = {zshl |l ∈ J1..LK}. With that, we construct a repre-
sentation that identifies the causal variables in the target environment if all causal variables can be
found in the provided source environments.

5. Experiments

We evaluate DECAF on three benchmark datasets and compare it to baselines for adaptation of
causal representations. We apply DECAF to four different CRL approaches that has been adapted
for the TRIS setting as in Section 2: CITRISVAE (Lippe et al., 2022b), LEAP (Yao et al., 2022b),
DMSVAE (Lachapelle et al., 2022b) and iVAE (Khemakhem et al., 2020). We denote the combina-
tion with DECAF with a suffix *-DECAF. Source models are trained on large data (250K samples),
further details are presented in Appendix A.

5.1. Experimental Setup

Voronoi benchmark. We consider the non-instantenous version of the Voronoi benchmark (Lippe
et al., 2023a) rendering colored Voronoi tiles whose colors are a mixed version of the ground truth
generating factors. The underlying causal representation model is synthetically generated: starting
from a random DAG, each variable is evaluated as sample from a Gaussian centered on the output
of the mechanism randomly initialized neural network. Finally, the variables are mixed by a ran-
dom normalizing flow and depicted as colors of a fixed-structure Voronoi diagram. We experiment
with the 6 variables version of the dataset where all variables undergo perfect interventions. To
allow for the change, we generate a version of the dataset where the 3 changed variables are fed
to a randomly initialized NF. This simulates a coordinate system change for these three variables,
with interventions being applied in the new system. We denote with REG and CH the regular and
changed versions of the dataset, respectively. In another version of the dataset, we enable for joint
interventions on a group of 2 variables, while making sure there is no overlap between changed and
coarse variables. We refer to the coarse version of the dataset as j and with i its independently
intervened counterpart.

InterventionalPong. We generate sequential data starting from InterventionalPong (Lippe et al.,
2022b), based on the known Atari game Pong (Bellemare et al., 2013). Six high-level causal vari-
ables underlie the generated data: ball-pos-x, ball-pos-y, paddle-left-y, paddle-
right-y, score-left, score-right. The game dynamics follow two paddles playing one
versus the other with the aim to score, i.e., let the ball go over the opponent’s line of movement.
Interventions are available for all causal variables, the scores are considered as a coarse variable.
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(a) Voronoi Benchmark (b) InterventionalPong (c) Temporal Causal3DIdent

Figure 3: Spearman CC (higher best, ↑) of inferred latents to the ground truth changed variables
when adapting the representations. CRL approaches are color-coded, the proposed method has a
darker color.

We generate multiple versions of the dataset, depending on different parameterizations of the inter-
ventions. Specifically, we consider a setting where the ball position is modelled in Cartesian (CA)
coordinates and a polar (PO) version where the ball moves in a polar coordinate system whose origin
is the centre of the playground. Further, we consider coarse cases where a group of causal variables
is always jointly intervened on and, hence, cannot be disentangled. In particular, we focus on the
granularity of interventions associated with the paddles that could be independently (PA) or jointly
(jPA) intervened.

Temporal Causal3DIdent. We consider the common benchmark of Temporal Causal3DIdent
from (Von Kügelgen et al., 2021) based on the temporal version in (Lippe et al., 2022b). Sam-
ples visualize a rubber 3D object in the centre of a rendering scene. The dynamics are based on
trigonometric functions. Observations follow 10 causal factors: pos-x, pos-y, pos-z, rot-α,
rot-β, rot-spotlight, hue-obj, hue-spotlight, hue-background, obj-shape.
All causal factors are subject to interventions. We adapt the dataset to support a different param-
eterization of the object position and different intervention granularities. Precisely, we generate a
version of the dataset with rotated z-axis of 30 degrees. As a consequence, the xy coordinate system
is rotated by 30 degrees anticlockwise. We indicate the rotated version as ROT while the non-rotated
version as CA. We take into account different levels of coarsening for the hue variables and denote as
jHUE (HUE) the version of the dataset where hue variables are jointly (independently) intervened.

Baselines. For adapting causal representations from a source to a target environment, we compare
DECAF to two simple adaptation baselines for reference, for each of the CRL methods: (1) 0shot,
where the model trained on the source environment is frozen and directly evaluated on the target
data, and (2) ft, where the source model is fine-tuned on the target data using the same causal
representation learning approach as in the source.

Evaluation metrics. We evaluate the approaches based on the correlation between inferred latents
and the ground truth causal factors, as estimated using the R2 coefficient of determination (Wright,
1921) and Spearman’s rank correlation (Spearman, 1904). For methods that only identify the causal
variables up to permutations, we follow previous works (Lachapelle et al., 2022b; Lippe et al.,
2022b, 2023b) by assigning latents to the ground truth causal variable with the highest correlation.
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Approach Adaptation R2 diag ↑ R2 off-diag ↓ Spearman diag ↑ Spearman off-diag ↓

CITRISVAE 0shot 0.60 ± 0.01 0.60 ± 0.01 0.53 ± 0.01 0.55 ± 0.01

ft 0.77 ± 0.01 0.34 ± 0.02 0.69 ± 0.01 0.33 ± 0.02

DECAF (Ours) 0.93 ± 0.03 0.09 ± 0.04 0.94 ± 0.03 0.14 ± 0.06

LEAP 0shot 0.85 ± 0.01 0.24 ± 0.01 0.87 ± 0.01 0.36 ± 0.01

ft 0.64 ± 0.02 0.16 ± 0.02 0.72 ± 0.02 0.28 ± 0.02

DECAF (Ours) 0.84 ± 0.04 0.18 ± 0.07 0.86 ± 0.06 0.26 ± 0.03

DMSVAE 0shot 0.50 ± 0.01 0.25 ± 0.01 0.57 ± 0.00 0.33 ± 0.01

ft 0.53 ± 0.04 0.18 ± 0.03 0.59 ± 0.04 0.30 ± 0.01

DECAF (Ours) 0.61 ± 0.01 0.14 ± 0.01 0.65 ± 0.01 0.21 ± 0.01

iVAE 0shot 0.59 ± 0.04 0.53 ± 0.01 0.53 ± 0.03 0.49 ± 0.02

ft 0.58 ± 0.03 0.51 ± 0.01 0.55 ± 0.02 0.48 ± 0.03

DECAF (Ours) 0.71 ± 0.17 0.20 ± 0.19 0.77 ± 0.19 0.27 ± 0.15

Table 1 & Figure 4: Left: Diag and off-diag metrics for changing factors when adapting CA → PO
in InterventionalPong dataset. Right: detection confusion matrix for changed causal factors for all
CRL approaches in Voronoi Benchmark when moving from REG → CH and viceversa, changing
factors are indicated with *.

This results in a correlation matrix where the diagonal shows the correlation between matched
learned and ground truth causal variables (higher is better, best 1.0), and off-diagonal elements
the correlation to other variables (lower is better, best 0.0). We propose a summary metric similar
to the F1 score that combines the average diagonal correlation diag and the average max off-
diagonal correlation off diag through a harmonic mean. diag is intuitively similar to recall,
while (1− off diag) is similar to precision. We define then the Combined Correlation (CC) as:

CC = 2
diag · (1− off diag)

diag+ (1− off diag)
. (5)

A model that perfectly identifies all causal variables achieves a score of CC = 1, while it decreases
for models that have low correlation between its identified latents and the ground truth causal vari-
ables (low diag), or large cross correlation across variables (high off diag). Full results are
reported in Appendix B.

5.2. Adaptation of causal representations

Voronoi Benchmark. We conduct experiments on the change REG → CH in the Voronoi Bench-
mark. Results on 750 data points from the target dataset over five seeds are presented in Figure 3a.
Both the baselines and the DECAF approaches show high dependency on the source-to-target vari-
ation, as evidenced by the performance variance. We find that the 0-shot evaluation outperforms
the fine-tuning approach, possibly due to the challenging detection of stochastic interventions in
low-data regimes. As reported in Appendix B, fine-tuning with a larger number of target sam-
ples benefits adaptation. Yet, all DECAF approaches achieve a high CC score and outperform the
baselines for CITRIS, LEAP and iVAE, showing its benefit and efficiency of adapting its source
representation. We investigate the detection of changed causal factors on the synthetic changes
offered by the Voronoi Benchmark and consider the detection on the change REG → CH and the
reversed direction. In Figure 4, we report the aggregated confusion matrix of the variable change
detection for all causal representation approaches. DECAF accurately predicts the changed causal
factors in both the directions of the change. The detector always detects changed factors denoted
with (*). We observe one failure in recognizing an invariant factor only in one transfer over forty,
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(a) DMSVAE - InterventionalPong (b) CITRISVAE - Voronoi Benchmark

Figure 5: Spearman CC (higher best, ↑) when adaptating and composing with increasing number
of samples. Solid lines describe the mean while shaded areas the standard deviation over 5 runs.
(a) Correlation of changed factors for DMSVAE approach when adapting from CA → PO in In-
terventionalPong. (b) Correlation of all factors when composing REG-j+CH-i→REG-i in Voronoi
Benchmark.

where one factor is incorrectly predicted as changing. We refer to Appendix B for the detection
accuracy grouped by datasets and causal representation approaches.

InterventionalPong. In the InterventionalPong dataset, we change the ball coordinate system from
Cartesian in the source domain to polar in the target (CA → PO), providing 5K samples in the target
environment. For all considered CRL methods, the combination with DECAF outperforms the
adaptation baselines as seen in Figure 3b, although notable performance drops are observed for both
iVAE and LEAP methods, where for one seed, the classifier fails to separate intervention targets. As
reported in Table 1, the correlation metrics diag and off diag show that the approach achieves
improved performance for both the metrics. We observe the largest benefit for CITRISVAE that
gains 25% and 19% in the Spearman diag and off diag, respectively. Though data efficient, the
learnt latent-to-factors assignment matrix in CITRISVAE limits its adaptation to new environments.
DECAF aids separation of causal factors, especially for iVAE where the R2 off diag improves
of 31%. With more samples, ft can catch up to DECAF, as seen in Figure 5a. Yet, the low
performance of training from scratch shows the importance of adaptive representations.

Temporal Causal3DIdent. Finally, in Temporal Causal3DIdent, we investigate the adaptation of
the object position variables to a ROTated (ROT) x-y coordinate system, CA → ROT with 1K to-
tal samples, see Figure 3c averaged over 5 seeds. As can be noted, DECAF is still competitive
in the more visually complex scenario. While fine-tuning proves effective for CITRISVAE, in the
other settings DECAF improves over the baselines, with a large gain of about 10% in iVAE. The
DMSVAE approach exhibits high variance, with three runs detecting only one of the two changed
variables. Notably, the high zero-shot performance shows how the two environments are well
aligned one to the other, motivating the incorrectly detected changes and ease of adaptation for
the ft baseline.
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5.3. Composition of causal representations

InterventionalPong. We evaluate composing the causal representation in InterventionalPong where
a new target environment models the ball position and the paddles accordingly to the factors of
the first and second environment, respectively. We consider the first source environment S1 to
model the ball-position with Cartesian coordinates but entangled paddles (CA-jPA) and the second
environment S2 with polar ball position and independently intervened paddles (PO-PA). We aim
to identify the causal factors in a target environement with Cartesian ball position and independent
paddles, CA-jPA+PO-PA→ CA-PA. Figure 6a shows the Spearman Combined Correlation when
addressing the new composed environment. DECAF improves with respect to the baselines in all
but LEAP causal representation approaches. DECAF highly depends on the quality of the source
representations, as shown with the LEAP composition, where the source S1 CA-jPA fails to identify
the position of the ball in its Cartesian coordinates. Nevertheless, DECAF correctly recognizes
changing factors and building on the invariant factors from S2, improves over S1 transfers. However,
the proposed approach falls behind adaptation from polar coordinates due to its good initial 0shot
alignment.

Causal3DIdent. In the Temporal Causal3DIdent dataset, we consider two source environments:
one with Cartesian position and jointly intervened hue (CA-jHUE), and another with a rotated co-
ordinate system for position but independent interventions on hue (ROT-HUE), CA-jHUE+ROT-
HUE→ CA-HUE. The target environment composes the Cartesian position of the first source envi-
ronment with the individual hue variables of the second environment, requiring the algorithms to
identify which variables can be reused and combined from the sources. As shown in Figure 6b,
DECAF finds the correct variables to compose and, especially for CITRISVAE, provides significant
gains over the baselines, while only requiring 1k samples. Composing the representations with DE-
CAF benefits the identification performance on both LEAP and iVAE approaches, while we observe
that most of the variance overlaps for DMSVAE representations.

Voronoi Benchmark. We assess the benefit of DECAF in the composition setting as we increase
the number of target samples. The target combines the first three REG variables from S1 with the
last two independently intervened factors i from S2, REG-j+CH-i→ REG-i. As can be noted in
Figure 5b, DECAF leverages the target samples only for the detection of changing causal factors and
achieves close to perfect Spearman CC starting from 750 samples. The disentanglement is stable as
we increase the number of samples, and it is competitive up to 10K samples. We observe that the
proposed approach improves over all considered baselines. Notably, adaptation of representations
and DECAF composition strategy outperform training from scratch on the target domain, showing
the advantage of re-using previously learnt causal factors in the new environment.

6. Related Work

Disentanglement. A lot of effort in representation learning has been devoted to obtaining a com-
pact lower-dimensional representation of data as product of factors of variation (Bengio et al., 2013).
However, the general assumption of independent latents does not remove spurious solutions (Lo-
catello et al., 2019b). To overcome identifiability limitations, unsupervised disentanglement has
been relaxed to employ some form of supervision (Locatello et al., 2020a,b). Recent works from
the nonlinear ICA (Comon, 1994; Hyvärinen and Pajunen, 1999) have built on non-stationarity (Hy-
varinen and Morioka, 2016), auxiliary information leading to conditionally independent latents (Hy-
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(a) InterventionalPong (b) Temporal Causal3DIdent

Figure 6: Spearman CC (higher best, ↑) of inferred latents to the ground truth of all variables when
composing representations. CRL approaches are color-coded, the proposed method has a darker
color. (a) Composition of factors in InterventionalPong with sources CA-jPA and PO-PA. (b)
Composition of factors in Causal3DIdent with sources CA-jHUE and ROT-HUE.

varinen et al., 2019), or assumptions on the mixing function (Gresele et al., 2021; Zheng et al.). As
the independence assumption is often not met in real data it hinders the generalization capabilities
of these methods (Dittadi et al., 2021, 2022; Roth et al., 2022; Träuble et al., 2021). In contrast,
this work allow for potential causal relationships among latents and investigates how to adapt the
previously learnt representation to address a new unseen target environment.

Causal Representation Learning (CRL). Recent work in CRL (Lachapelle et al., 2022b; Lippe
et al., 2022b, 2023a,b; Yao et al., 2022a,b) identify causal variables and relations in a temporal se-
quence setting where a system may be affected by interventions, i.e., we have access to consequent
observations and performed actions relating them. In this setting, Lippe et al. (2022b) consider
multidimensional causal factors and leverages known intervention targets to disentangle them. In
contrast, DMSVAE (Lachapelle et al., 2022b) builds on recent results on nonlinear ICA to show
how sparsity in the transition function and intervention targets constrain the problem to be identifi-
able. Building on non-stationarity and independence of exogenous noises, LEAP (Yao et al., 2022b)
identifies causal factors thanks to an observable auxiliary variable that modulates the noise distribu-
tion in different regimes. Brehmer et al. (2022) consider a counterfactual learning scenario instead.
Following previous work in multi-view nonlinear ICA (Locatello et al., 2020a; Von Kügelgen et al.,
2021), they cast the problem as a weakly supervised generative process where we observe samples
before and after atomic and perfect interventions. As opposed to the CRL literature that does not
consider available pre-trained representations to identify the causal factors in a new domain, this
work focuses on a multi-environment setting where we can transfer from source representations and
leverage them to address a target environment where few samples are present.

Modularity. Modular causally-inspired representations have been explored in the literature. Paras-
candolo et al. (2018) investigate how training with a winner-takes-all scheme guides the special-
ization of causal mechanisms: independent modules compete on observed samples and only those
maximizing an heuristic activation function get updated. By specializing on their input, a modular
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representation emerges and reverses the effect of the unknown generating mechanisms. Similarly,
an explicitly modular architecture composed of multiple almost-independent subsystems model a
dynamic setting in (Goyal et al., 2019). The subsystems compete based on the strength of their acti-
vations on the observed input, and most firing ones update their internal state. Besserve et al. (2018)
exploit unit-level counterfactual statements to seek for modular structure in generative models and
define disentanglement based on available transformations of data. No guarantees are provided on
the recovered modules e.g., a module can model multiple causal variables at the same time. In
contrast, this work does not seek for a modular representation of the data: we build on the modular
nature of causal representations where causal variables are identified up to an explicit identifica-
tion class to investigate how to detect changed causal factors and how to alter the representation to
address a new related environment.

7. Conclusions

We introduce DECAF, a framework that is a first step towards adapting and composing causal
representations. Our approach detects changing causal variables in a new environment and provides
a method to adapt them with a limited amount of target samples. Experimental results on three
datasets show the benefit of re-using and composing learnt causal representations when applied to
different causal representation approaches. DECAF constructs accurate target representations. We
envision a setup where a bank of re-usable factors are available. Future work involves leveraging
the available causal factors to aid learning of the dynamics in the new domain, identifying changed
causal factors and relaxing the assumption on the observation of intervention targets.
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Appendix A. Implementation details and hyperparameters

In this section we provide further details on the implementation.

A.1. Source models

VAE architecture In order to have the different CRL approaches achieving their highest perfor-
mance on source environments, we tested different variants of the same architecture. A convolu-
tional encoder outputs the mean and standard deviation parameters of independent Gaussians. After
sampling, the embeddings are decoded for reconstruction. For computational reasons, the specific
architecture depends on the dataset. In Voronoi Benchmark and InterventionalPong the encoder is
a 5-layer CNN + 2-layer MLP with a hidden dimension of 32. The decoder uses a symmetric archi-
tecture to the encoder (2-layer MLP and 5-layer deconv). In Temporal Causal3DIdent we followed
the architecture in (Lippe et al., 2022b) and employed a 10-layer CNN and a 10-layer Resnet (He
et al., 2016) decoder with a hidden dimension of 64.

On Voronoi Benchmark and Interventional Pong datasets we found an autoregressive flow prior
(Kingma et al., 2016; Rezende and Mohamed, 2015) to be beneficial on CITRISVAE and DMSVAE,
following the architecture in (Lippe et al., 2022b). The Gaussian samples from the encoder are fed
to a 4-layer normalizing flow including Activation Normalization (Kingma and Dhariwal, 2018),
Invertible 1× 1 convolutions (Kingma and Dhariwal, 2018) and autoregressive affine coupling lay-
ers.

Transition prior The transition prior accepts as input the current time step and some auxiliary
information to predict the next time step. In CITRISVAE the transition prior is a 2-layer MLP fed
with zt and It+1 as input to predict zt+1. Other baselines employ a 3-layer MLP. Following (Lippe
et al., 2022b), we adapted the iVAE prior to accept as input the concatenation of the current time
step zt and the intervention target It+1. Similarly, both LEAP and DMSVAE priors accept as input
a masked version of the concatenation [zt, It+1] where the mask is learned during training. Due to
the density of the temporal graph of both Voronoi Benchmark and InternventionalPong, we found
that restricting DMSVAE to learn the action mask only proved beneficial for the approach.

All the source models are trained with a batch size of 512 samples using AdamW (Loshchilov
and Hutter, 2017) optimization with a learning rate of 1e-3 and Cosine Warmup scheduler. We used
the Swish (Hendrycks and Gimpel, 2016; Ramachandran et al., 2017) non-linearity. We regularized
the source models to avoid overfitting on the source data by controlling for the source training
epochs and adding a L2-norm loss on the representation with hyperparameter βreg. We summarized
the used hyperparameters in Tab. 2.

A.2. Adaptation and Composition

Fine-tuning. The fine-tuning approach resumes the training of the model with the same causal
representation strategy of the source model, e.g., a model pre-trained with the CITRISVAE strategy
adapts to the new environment using the same CITRISVAE algorithm. Fine-tuning adapts the model
with 2500 epochs and a batch size of 512 using AdamW optimizer with a learning rate of 1e-3 and
Cosine Warmup scheduler.

Adaptation. We implemented the adaptation approach using an autoregressive normalizing flow
(Rezende and Mohamed, 2015) following (Lippe et al., 2022b). The flow is based on the MADE
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Voronoi benchmark/InterventionalPong
Hyperparameter CITRISVAE LEAP DMVAE iVAE

Learning rate —- 1e-3 —-
Learning rate warmup —- Cosine Warmup (100 steps) —-
Optimizer —- AdamW (Loshchilov and Hutter, 2017) —-
Batch size —- 512 —-
Number of epochs 75(V)/125(P) 100(V)/200(P) 75(V)/175(P) 100(V)/ 200(P)
KLD Factor (β) —- 1.0 —- 0.5
Num latents —- 16 —-
Model variant VAE+NF VAE VAE+NF VAE
Encoder —- 5 layer CNN + 2 linear layers —-
Prior layers 2 3 3 3
Decoder —- 5 layer (deconv-)CNN + 2 linear layers —-
Hidden dimensionality —- 32 —-
Activation function —- Swish (Ramachandran et al., 2017) —-
Target classifier weight 2 —- n.a. —-
Sparsity regularizer n.a —- 0.01 —- n.a.
Discriminator weight n.a 0.05 —- n.a. —-

Temporal Causal3DIdent dataset
Hyperparameter CITRISVAE LEAP DMVAE iVAE

Learning rate —- 1e-3 —-
Learning rate warmup —- Cosine Warmup (100 steps) —-
Optimizer —- AdamW (Ramachandran et al., 2017) —-
Batch size —- 512 —-
Number of epochs —- 600 —-
KLD Factor (β) —- 1 —-
Num latents —- 32 —-
Model variant VAE+NF VAE VAE+NF VAE
Encoder —- 10-layer CNN —-
Prior layers 2 3 3 3
Decoder —- 10-layer ResNet —-
Hidden dimensionality —- 64 —-
Activation function —- Swish (Ramachandran et al., 2017) —-
Target classifier weight 2 —- n.a. —-
Sparsity regularizer n.a —- 0.01 —- n.a.
Discriminator weight n.a 0.1 —- n.a. —-

Table 2: Summary of the hyperparameters for all source models trained on the Voronoi benchmark,
InterventionalPong and Temporal Causal3DIdent dataset,

(Germain et al., 2015) architecture with 16 neurons per latent variable. The flow includes Activation
Normalization and 1×1 invertible convolutions. The depth of the flow depends on the dataset. As a
flow prior, we employed a 2-layer autoregressive network that follows the same MADE architecture
as the normalizing flow. For each latent variable, the flow outputs the parameters of a Gaussian
distribution. DECAF adapts the model in 5000 epochs with a batch size of 1024 samples. We
optimize using AdamW with a learning rate of 1e-2 and weight decay 5e-3. We applied the same
Cosine Warmup scheduler as in the fine-tuning strategy.
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DECAF Adaptation
Hyperparameter Voronoi Benchmark InterventionalPong Temporal Causal3DIdent

Learning rate —- 1e-2 —-
Learning rate warmup —- Cosine Warmup (100 steps) —-
Optimizer —- AdamW (Loshchilov and Hutter, 2017) —-
Batch size —- 1024 —-
Number of epochs —- 5000 —-
KLD Factor (β) —- 1 —-
Hidden dimensionality —- 64 —-
Activation function —- Swish (Ramachandran et al., 2017) —-
Target classifier weight —- 2 —-
Num flows 2 —- 4 —-
At Least one (βALO) 4 —- 2 —-
L2-Norm regularizer (βreg) 4 —- 2 —-
Changed module threshold (τ ) 0.15 0.2 0.1

Fine-tuning
Hyperparameter Voronoi Benchmark InterventionalPong Temporal Causal3dIdent

Learning rate —- 1e-3 —-
Learning rate warmup —- Cosine Warmup (100 steps) —-
Optimizer —- AdamW (Loshchilov and Hutter, 2017) —-
Batch size —- 512 —-
Number of epochs —- 2500 —-

DECAF Composition
Hyperparameter Voronoi Benchmark InterventionalPong Temporal Causal3DIdent

Learning rate —- 1e-3 —-
Learning rate warmup —- Cosine Warmup (100 steps) —-
Optimizer —- AdamW (Loshchilov and Hutter, 2017) —-
Batch size —- 512 —-
Number of epochs —- 10 —-
Changed module threshold (τ ) 0.15 0.2 0.1

Table 3: Summary of the hyperparameters used for addressing the target environment.

Composition. DECAF stitches together the causal factor representations of modules that are de-
tected to be invariant with respect to the target environement. Since the latent to factors assignment
allows for a variable number of latents per factor, we cannot guarantee that the resulting represen-
tation matches the dimensionality of the pretrained autoencoder. To this end, we learn a projection
function ρ projecting the representation to the same dimensionality as the source embedding. Thus,
we freeze the representation model and learn it on the source data via reconstruction. In practice we
parameterize ρ with a 2-layer feedforward network having 128 hidden dimensionality and Swish
non-linearity. The projection function is trained with AdamW, a learning rate of 1e-3 and batch size
512.

We report the hyperparameters used for adaptation in Tab. 3.
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Figure 7: Visualization of the adaptation of the different CRL appoaches for the TRIS setting and
learning of the target classifier on a pre-trained representation. (a) CITRISVAE (Lippe et al., 2022b)
is used as is and makes available the classifier and the assignment ψ for later re-use. (b) LEAP (Yao
et al., 2022b): since intervention targets are a source of non-stationarity, the previous time step and
the intervention target are concatenated and masked to condition the LEAP transition prior. (c)
DMSVAE (Lachapelle et al., 2022b) conditions the transition prior on the concatenation of previous
time step and intervention targets, masked according to the learnt graph. (d) iVAE (Khemakhem
et al., 2020) conditions the prior on the concatenation of previous time step and intervention targets.
For LEAP, DMSVAE and iVAE we learn a target classifier and the assignment ψ on top of the frozen
representation.

Appendix B. Full Results

Tables 4, 5, and 6 report the complete results on the adaptation setting using the correlation diagonal
(diag) and off-diagonal (off-diag). Similarly, Tables 7, 8, 9 report the correlation metrics for the
considered composition settings.
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Figure 8: Spearman CC (↑) of inferred latents to the ground truth of all variables when composing
representations in Voronoi Benchmark with sources REG-j and CH-i

B.1. Other composition settings

In Figure 8 we report results on the composition setting in Voronoi Benchmark.

B.2. Increasing number of target samples

In Figure 9 we report results on the adaptation of causal representations when increasing the number
of target samples. Similarly, Figure 10 reports the composition results when increasing the number
of target samples.

B.3. Detection of changed factors

In Figure 11 we report the confusion matrix of the changed factor detection grouping by dataset and
method.

B.4. Ablation analysis

Table 10 reports additional ablation experiments when adapting without detecting changed factors.
While Table 11 compares DECAF with CITRISNF (Lippe et al., 2022b) employing a similar adap-
tation strategy, Table 12 evaluates the performance of the model on Temporal Causal3DIdent change
from Cartesian to rotated axis, when changing the degrees of rotation.
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Figure 9: Adaptation with increasing number of target samples. Rows: CITRISVAE, LEAP,
DMSVAE and iVAE. Columns: Voronoi Benchmark, InterventionalPong, Temporal Causal3dIdent.
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Figure 10: Composition with increasing number of target samples. Rows: CITRISVAE, LEAP,
DMSVAE and iVAE. Columns: Voronoi Benchmark, InterventionalPong, Temporal Causal3dIdent.
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Figure 11: Confusion matrix of the chagend factors detection. Rows: CITRISVAE, LEAP,
DMSVAE and iVAE. Columns: Voronoi Benchmark, InterventionalPong, Temporal Causal3dIdent.
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Approach Adaptation R2 diag ↑ R2 off-diag ↓ Spearman diag ↑ Spearman off-diag ↓

CITRISVAE 0shot 0.24 ± 0.09 0.56 ± 0.05 0.40 ± 0.10 0.71 ± 0.03

ft 0.37 ± 0.14 0.35 ± 0.07 0.57 ± 0.13 0.56 ± 0.06

DECAF (Ours) 0.72 ± 0.24 0.18 ± 0.22 0.83 ± 0.18 0.34 ± 0.23

LEAP 0shot 0.67 ± 0.15 0.23 ± 0.10 0.78 ± 0.13 0.43 ± 0.12

ft 0.60 ± 0.08 0.29 ± 0.07 0.74 ± 0.09 0.50 ± 0.07

DECAF (Ours) 0.79 ± 0.09 0.25 ± 0.12 0.88 ± 0.06 0.44 ± 0.09

DMSVAE 0shot 0.67 ± 0.16 0.23 ± 0.10 0.78 ± 0.13 0.42 ± 0.12

ft 0.63 ± 0.10 0.33 ± 0.10 0.78 ± 0.06 0.55 ± 0.09

DECAF (Ours) 0.54 ± 0.18 0.26 ± 0.14 0.70 ± 0.14 0.44 ± 0.16

iVAE 0shot 0.67 ± 0.16 0.23 ± 0.10 0.78 ± 0.14 0.43 ± 0.12

ft 0.59 ± 0.08 0.29 ± 0.06 0.73 ± 0.09 0.50 ± 0.07

DECAF (Ours) 0.70 ± 0.16 0.13 ± 0.11 0.82 ± 0.11 0.29 ± 0.13

Table 4: Voronoi Benchmark, REG → CH (750 samples)

Approach Adaptation R2 diag ↑ R2 off-diag ↓ Spearman diag ↑ Spearman off-diag ↓

CITRISVAE 0shot 0.60 ± 0.01 0.60 ± 0.01 0.53 ± 0.01 0.55 ± 0.01

ft 0.77 ± 0.01 0.34 ± 0.02 0.69 ± 0.01 0.33 ± 0.02

DECAF (Ours) 0.93 ± 0.03 0.09 ± 0.04 0.94 ± 0.03 0.14 ± 0.06

LEAP 0shot 0.85 ± 0.01 0.24 ± 0.01 0.87 ± 0.01 0.36 ± 0.01

ft 0.64 ± 0.02 0.16 ± 0.02 0.72 ± 0.02 0.28 ± 0.02

DECAF (Ours) 0.84 ± 0.04 0.18 ± 0.07 0.86 ± 0.06 0.26 ± 0.03

DMSVAE 0shot 0.50 ± 0.01 0.25 ± 0.01 0.57 ± 0.00 0.33 ± 0.01

ft 0.53 ± 0.04 0.18 ± 0.03 0.59 ± 0.04 0.30 ± 0.01

DECAF (Ours) 0.61 ± 0.01 0.14 ± 0.01 0.65 ± 0.01 0.21 ± 0.01

iVAE 0shot 0.59 ± 0.04 0.53 ± 0.01 0.53 ± 0.03 0.49 ± 0.02

ft 0.58 ± 0.03 0.51 ± 0.01 0.55 ± 0.02 0.48 ± 0.03

DECAF (Ours) 0.71 ± 0.17 0.20 ± 0.19 0.77 ± 0.19 0.27 ± 0.15

Table 5: InterventionalPong, CA→PO (5K samples)

Approach Adaptation R2 diag ↑ R2 off-diag ↓ Spearman diag ↑ Spearman off-diag ↓

CITRISVAE 0shot 0.76 ± 0.00 0.28 ± 0.00 0.87 ± 0.00 0.48 ± 0.00

ft 0.95 ± 0.01 0.01 ± 0.01 0.98 ± 0.00 0.06 ± 0.02

DECAF (Ours) 0.92 ± 0.04 0.05 ± 0.03 0.96 ± 0.02 0.19 ± 0.06

LEAP 0shot 0.75 ± 0.00 0.28 ± 0.00 0.87 ± 0.00 0.47 ± 0.00

ft 0.93 ± 0.00 0.07 ± 0.00 0.96 ± 0.00 0.18 ± 0.00

DECAF (Ours) 0.95 ± 0.01 0.03 ± 0.02 0.97 ± 0.01 0.15 ± 0.04

DMSVAE 0shot 0.66 ± 0.03 0.23 ± 0.01 0.81 ± 0.02 0.44 ± 0.01

ft 0.81 ± 0.03 0.09 ± 0.00 0.90 ± 0.02 0.24 ± 0.02

DECAF (Ours) 0.73 ± 0.08 0.16 ± 0.10 0.85 ± 0.05 0.33 ± 0.15

iVAE 0shot 0.75 ± 0.00 0.28 ± 0.00 0.87 ± 0.00 0.47 ± 0.00

ft 0.87 ± 0.00 0.15 ± 0.01 0.93 ± 0.00 0.31 ± 0.01

DECAF (Ours) 0.95 ± 0.02 0.03 ± 0.01 0.97 ± 0.01 0.14 ± 0.04

Table 6: Temporal Causal3dIdent, CA→ROT (1K samples)
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Approach Adaptation R2 diag ↑ R2 off-diag ↓ Spearman diag ↑ Spearman off-diag ↓

CITRISVAE 0shot-1 0.99 ± 0.00 0.08 ± 0.00 1.00 ± 0.00 0.16 ± 0.00

ft-1 0.95 ± 0.01 0.06 ± 0.01 0.98 ± 0.00 0.20 ± 0.03

0shot-2 0.60 ± 0.04 0.29 ± 0.05 0.69 ± 0.05 0.39 ± 0.04

ft-2 0.79 ± 0.13 0.14 ± 0.10 0.87 ± 0.11 0.27 ± 0.11

DECAF (Ours) 0.99 ± 0.00 0.00 ± 0.01 1.00 ± 0.00 0.03 ± 0.01

LEAP 0shot-1 0.91 ± 0.00 0.08 ± 0.00 0.95 ± 0.00 0.17 ± 0.00

ft-1 0.93 ± 0.00 0.06 ± 0.00 0.96 ± 0.00 0.16 ± 0.00

0shot-2 0.80 ± 0.13 0.15 ± 0.08 0.88 ± 0.08 0.30 ± 0.10

ft-2 0.84 ± 0.13 0.11 ± 0.09 0.88 ± 0.11 0.22 ± 0.11

DECAF (Ours) 0.90 ± 0.08 0.08 ± 0.10 0.92 ± 0.09 0.16 ± 0.11

DMSVAE 0shot-1 0.97 ± 0.00 0.02 ± 0.00 0.99 ± 0.00 0.12 ± 0.00

ft-1 0.92 ± 0.01 0.08 ± 0.01 0.96 ± 0.00 0.20 ± 0.02

0shot-2 0.77 ± 0.05 0.17 ± 0.03 0.85 ± 0.05 0.33 ± 0.03

ft-2 0.78 ± 0.05 0.15 ± 0.03 0.87 ± 0.03 0.32 ± 0.03

DECAF (Ours) 0.98 ± 0.00 0.02 ± 0.00 0.99 ± 0.00 0.11 ± 0.01

iVAE 0shot-1 0.79 ± 0.00 0.17 ± 0.00 0.87 ± 0.00 0.29 ± 0.00

ft-1 0.79 ± 0.00 0.15 ± 0.00 0.87 ± 0.00 0.30 ± 0.01

0shot-2 0.74 ± 0.09 0.17 ± 0.04 0.84 ± 0.06 0.32 ± 0.05

ft-2 0.75 ± 0.09 0.16 ± 0.05 0.83 ± 0.07 0.30 ± 0.05

DECAF (Ours) 0.73 ± 0.08 0.04 ± 0.05 0.76 ± 0.10 0.08 ± 0.08

Table 7: Voronoi Benchmark, REG-j+CH-i→REG-i (750 samples) with sources REG-j and CH-i.

Approach Adaptation R2 diag ↑ R2 off-diag ↓ Spearman diag ↑ Spearman off-diag ↓

CITRISVAE 0shot-1 0.80 ± 0.01 0.22 ± 0.00 0.88 ± 0.00 0.31 ± 0.00

ft-1 0.92 ± 0.01 0.03 ± 0.01 0.95 ± 0.01 0.13 ± 0.03

0shot-2 0.81 ± 0.00 0.17 ± 0.00 0.82 ± 0.00 0.20 ± 0.00

ft-2 0.77 ± 0.01 0.10 ± 0.02 0.79 ± 0.02 0.18 ± 0.02

DECAF (Ours) 0.98 ± 0.00 0.00 ± 0.00 0.99 ± 0.00 0.03 ± 0.00

LEAP 0shot-1 0.60 ± 0.01 0.42 ± 0.00 0.63 ± 0.00 0.49 ± 0.00

ft-1 0.60 ± 0.01 0.40 ± 0.00 0.63 ± 0.00 0.47 ± 0.01

0shot-2 0.98 ± 0.00 0.02 ± 0.00 0.99 ± 0.00 0.08 ± 0.00

ft-2 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.04 ± 0.01

DECAF (Ours) 0.76 ± 0.00 0.30 ± 0.00 0.78 ± 0.00 0.34 ± 0.00

DMSVAE 0shot-1 0.76 ± 0.00 0.21 ± 0.00 0.83 ± 0.00 0.34 ± 0.00

ft-1 0.79 ± 0.01 0.19 ± 0.01 0.83 ± 0.01 0.33 ± 0.02

0shot-2 0.78 ± 0.00 0.13 ± 0.00 0.85 ± 0.00 0.28 ± 0.00

ft-2 0.76 ± 0.02 0.10 ± 0.03 0.80 ± 0.02 0.26 ± 0.03

DECAF (Ours) 0.80 ± 0.00 0.13 ± 0.01 0.86 ± 0.00 0.27 ± 0.01

iVAE 0shot-1 0.99 ± 0.00 0.01 ± 0.00 1.00 ± 0.00 0.06 ± 0.00

ft-1 0.98 ± 0.00 0.01 ± 0.01 0.99 ± 0.00 0.08 ± 0.02

0shot-2 0.96 ± 0.00 0.00 ± 0.00 0.97 ± 0.00 0.05 ± 0.00

ft-2 0.98 ± 0.00 0.02 ± 0.01 0.99 ± 0.00 0.10 ± 0.01

DECAF (Ours) 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.02 ± 0.00

Table 8: InterventionalPong, CA-jPA+PO-PA→CA-PA (5K samples) with sources CA-jPA and
PO-PA.
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Approach Adaptation R2 diag ↑ R2 off-diag ↓ Spearman diag ↑ Spearman off-diag ↓

CITRISVAE 0shot-1 0.74 ± 0.06 0.25 ± 0.03 0.72 ± 0.05 0.28 ± 0.04

ft-1 0.75 ± 0.03 0.21 ± 0.02 0.71 ± 0.03 0.26 ± 0.02

0shot-2 0.83 ± 0.01 0.09 ± 0.00 0.84 ± 0.02 0.21 ± 0.01

ft-2 0.80 ± 0.02 0.10 ± 0.01 0.78 ± 0.02 0.19 ± 0.02

DECAF (Ours) 0.88 ± 0.01 0.04 ± 0.01 0.88 ± 0.01 0.12 ± 0.01

LEAP 0shot-1 0.75 ± 0.02 0.17 ± 0.02 0.74 ± 0.02 0.23 ± 0.01

ft-1 0.72 ± 0.01 0.15 ± 0.01 0.71 ± 0.02 0.22 ± 0.01

0shot-2 0.76 ± 0.00 0.15 ± 0.01 0.78 ± 0.00 0.27 ± 0.01

ft-2 0.74 ± 0.01 0.12 ± 0.01 0.75 ± 0.01 0.24 ± 0.01

DECAF (Ours) 0.78 ± 0.00 0.12 ± 0.01 0.78 ± 0.00 0.21 ± 0.01

DMSVAE 0shot-1 0.64 ± 0.02 0.25 ± 0.02 0.62 ± 0.02 0.29 ± 0.02

ft-1 0.61 ± 0.02 0.19 ± 0.01 0.60 ± 0.01 0.27 ± 0.01

0shot-2 0.67 ± 0.03 0.21 ± 0.04 0.66 ± 0.04 0.28 ± 0.01

ft-2 0.63 ± 0.03 0.19 ± 0.04 0.62 ± 0.04 0.27 ± 0.01

DECAF (Ours) 0.67 ± 0.03 0.21 ± 0.02 0.66 ± 0.04 0.28 ± 0.02

iVAE 0shot-1 0.68 ± 0.02 0.24 ± 0.01 0.64 ± 0.02 0.24 ± 0.01

ft-1 0.64 ± 0.01 0.22 ± 0.00 0.62 ± 0.01 0.26 ± 0.00

0shot-2 0.72 ± 0.02 0.16 ± 0.02 0.73 ± 0.03 0.24 ± 0.01

ft-2 0.71 ± 0.02 0.14 ± 0.02 0.71 ± 0.02 0.26 ± 0.01

DECAF (Ours) 0.74 ± 0.02 0.15 ± 0.03 0.72 ± 0.03 0.20 ± 0.02

Table 9: Temporal Causal3DIdent, CA-jHUE+ROT-HUE→CA-HUE (1K samples) with sources
CA-jHUE and ROT-HUE.

Approach Target samples CITRISVAE LEAP DMSVAE iVAE

Voronoi Benchmark REG → CH
Target 250K 0.96 ±0.02 0.80 ±0.22 0.96 ±0.01 0.95 ±0.04

DECAF w/o detection 750 0.84 ±0.08 0.86 ±0.07 0.64 ±0.16 0.83 ±0.11

DECAF 750 0.67 ±0.29 0.70 ±0.01 0.68 ±0.17 0.75 ±0.16

InterventionalPong CA → PO
Target 250K 0.87±0.09 0.49 ±0.03 0.78 ±0.09 0.66±0.17

DECAF w/o detection 5K 0.44 ±0.04 0.46±0.05 0.42±0.02 0.35±0.03

DECAF 5K 0.88±0.06 0.82±0.01 0.71±0.00 0.69±0.21

Temporal Causal3DIdent CA → ROT
Target 250K 0.99 ±0.00 0.92±0.00 0.69 ±0.02 0.91 ±0.00

DECAF w/o detection 1K 0.35 ±0.11 0.37 ±0.17 0.25 ±0.12 0.41 ±0.23

DECAF 1K 0.88 ±0.00 0.92 ±0.00 0.72 ±0.10 0.92 ±0.03

Table 10: Spearman CC (higher best, ↑) of inferred latents to the ground truth changed variables
when adapting the representations. We report mean ±std over 3 runs. In the table, target denotes the
model trained directly on large target data (250K) and DECAF w/o detection ablates the adaptation
without detection of changed factors.

28323



TOWARDS THE REUSABILITY AND COMPOSITIONALITY OF CAUSAL REPRESENTATIONS

Approach Voronoi Benchmark InterventionalPong Temporal Causal3DIdent
REG → CH CA → PO CA → ROT

CITRISNF 0.42 ±0.16 0.73 ±0.07 0.18 ±0.23

CITRISVAE-DECAF 0.67 ±0.29 0.88±0.06 0.88 ±0.00

Table 11: Spearman CC (higher best, ↑) of inferred latents to the ground truth changed variables
when adapting the representations. We report mean ±std over 3 runs. We compare DECAF when
applied to CITRISVAE with CITRISNF that employs a normalizing flow for identification of causal
factors.

Approach CITRISVAE LEAP DMSVAE iVAE

ft-30 0.96 ±0.0 0.89 ±0.0 0.82 ±0.02 0.80 ±0.01

DECAF-30 0.88 ±0.0 0.92 ±0.0 0.72 ±0.1 0.92 ±0.03

ft-40 0.89 ±0.0 0.86 ±0.0 0.82 ±0.02 0.79 ±0.01

DECAF-40 0.9 ±0.01 0.91 ±0.02 0.78 ±0.11 0.89 ±0.02

Table 12: Spearman CC (higher best, ↑) of inferred latents to the ground truth position variables
when adapting the representations in Temporal Causal3DIdent. We report mean ±std over 3 runs.
We consider the change from Cartesian to rotated axis, when changing the degrees of rotation.
Approach-* indicates the approach when adapting to the setting with the specified * degree of
rotation.
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