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Abstract
“Treatment-confounder feedback” is the central complication to resolve in longitudinal studies,
to infer causality. The existing frameworks of identifying causal effects for longitudinal studies
with repeated measures hinge heavily on assuming that time advances in discrete time steps or
data change as a jumping process, rendering the number of “feedbacks” finite. However, medical
studies nowadays with real-time monitoring involve functional time-varying outcomes, treatment,
and confounders, which leads to an uncountably infinite number of “feedbacks”. Therefore more
general and advanced theory is needed. We generalize the definition of causal effects under user-
specified stochastic treatment regimes to functional longitudinal studies with continuous monitor-
ing and develop an identification framework for a end-of-study outcome. We provide sufficient
identification assumptions including a generalized consistency assumption, a sequential random-
ization assumption, a positivity assumption, and a novel “intervenable” assumption designed for
the continuous-time case. Under these assumptions, we propose a g-computation process and an
inverse probability weighting process, which suggest a g-computation formula and an inverse prob-
ability weighting formula for identification. For practical purposes, we also construct two classes of
population estimating equations to identify these two processes, respectively, which further suggest
a doubly robust identification formula with extra robustness against process misspecification.
Keywords: Causal Inference; Stochastic Process; Panel Data; Functional Data; Continuous Time.

1. Introduction

Causality addresses the definition of quantifiable causal relationships and the undertaking of valid
causal inferences. While double-blinded randomized controlled trials stand as the gold standard
for both aspects, practical considerations, ethical concerns, and costs often lead statisticians to-
wards observational studies. Various causal frameworks have been developed, including potential
outcomes (Neyman, 1923; Rubin, 1974; Holland, 1986), graphical theory (Dawid, 1979; Lauritzen
and Wermuth, 1989; Cox and Wermuth, 2014), structural equation models (Jöreskog, 1978; Pearl,
2009), dynamical models (Commenges and Gégout-Petit, 2009), and decision-theoretic frameworks
(Dawid, 2000; Geneletti, 2005). A common thread across these approaches, in our understanding,
is the principle of physical causality, which asserts that future events cannot influence past events.

Complex longitudinal studies, involving panel data or repeated measures, where treatment, con-
founders, and sometimes the outcome evolve over time, present formidable challenges to valid
causal inference. This is due to the influence of past confounders, including previous outcomes,
on past treatment allocation, which subsequently impacts the current state of patients and the pro-
gression of the disease. This phenomenon, referred to as “treatment-confounder feedback” (Hernán
and Robins, 2020), renders traditional adjustment methods, such as regression with a history of
treatment and confounders, ineffective. Intervening on past treatment values necessitates changes
in future confounders, which, in turn, are conditioned upon for confounding correction.
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Noteworthy contributions have been made by Greenland and Robins (1986); Robins (1986,
1987, 1989, 1997, 1998) in developing extensive theories for causal inference in complex longi-
tudinal studies. However, these methods are limited to well-structured longitudinal data with pre-
determined and fixed discrete time steps, which may not accurately represent the random nature
of visit times. We provisionally refer to these as “regular longitudinal data (RLD)” and “regular
longitudinal studies.”

In contrast, Lok (2001); Johnson and Tsiatis (2005); Røysland (2011, 2012); Hu and Hogan
(2019); Rytgaard et al. (2022); Yang (2022); Røysland et al. (2022) have made strides in formally
establishing identification frameworks that allow for continuous time steps. However, their assump-
tions hinge on treatment and confounder processes with stepwise paths featuring finite jumps, akin
to point processes. For instance, in pharmacoeconomics studies as considered in Rytgaard et al.
(2022), each patient is assumed to have a random finite number of visits at random time points,
during which they may alter their treatment and certain confounders. This approach accommo-
dates longitudinal data with irregular, randomly distributed visit times. We refer to this category as
“irregular longitudinal data (ILD)” and “irregular longitudinal studies.”

In contemporary medical studies, there is a growing need for more comprehensive and ad-
vanced causal inference theories tailored for longitudinal data, particularly when confounders and
treatments are continuously measured over time. For instance, in intensive care and in-patient set-
tings, vital status is continually monitored as part of standard practice (Johnson et al., 2016, 2018).
Additionally, the advent of wearable devices has led to the increasing use of real-time monitor-
ing for the long-term management of chronic diseases, such as continuous glucose monitoring for
diabetes (Mastrototaro, 2000; Klonoff, 2005; Rodbard, 2016). As healthcare providers increas-
ingly rely on real-time monitoring reports for disease management decisions, real-time monitoring
may introduce confounding factors in longitudinal studies. Notably, real-time monitoring generates
functional data, which may be observed discretely over time, but the underlying causal mechanism
operates continuously. This leads to an infinite number of treatment-confounder feedback loops
across the timeline and the absence of a joint density. We informally refer to this as “functional lon-
gitudinal data (FLD)” and “functional longitudinal studies.” This presents a substantial challenge to
existing causal inference methodologies.

As previously discussed, these three types of longitudinal data not only differ in their sources,
motivations, and backgrounds, but also in their inherent nature. See Figure 1 for a comparison
between possible simulated realizations of a stochastic process across three scenarios: fixed visit
time frames (Greenland and Robins, 1986; Robins, 1986, 1987, 1989, 1997, 1998), irregular visit
time frames (Lok, 2001; Johnson and Tsiatis, 2005; Røysland, 2011, 2012; Hu and Hogan, 2019;
Rytgaard et al., 2022; Yang, 2022; Røysland et al., 2022), and real-time monitoring data. Regardless
of the type of variable (binary, categorical, or continuous), both time and path are finite for RLD. In
the case of ILD, time is allowed to vary infinitely, with the random value subject to change at any
time point. However, the jumps of a path remain finite. FLD are truly continuous, as both time and
path are permitted to vary infinitely. It is evident that both RLD and ILD are special cases of FLD.

Given the growing needs of rigorous causality theory around FLD, the fact that current method-
ologies designed for RLD or ILD all fail for FLD, and rare development of methods around FLD,
this paper seeks to develop a novel causal framework for FLD. This paper presents an initial ex-
ploration into this topic. It serves as a precursor to a more comprehensive study, which is being
developed for a detailed journal paper. The journal paper will extend the discussions and find-
ings presented here, incorporating a wider perspective on its generality, nonparametric property,
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Figure 1: Possible realizations from three type of longitudinal data. The top left is from a regular
longitudinal study with fixed visit times. The top right is from a irregular longitudinal
study with irregular and random visit times. The bottom one is from a functional longi-
tudinal study with real-time monitoring data.

and accommodating time-varying outcome of interest, mortality and right censoring, as typically
complications in longitudinal studies.

We first give an intensive literature review over RLD, ILD and FLD. This helps the readers to
understand the common standard and structure of causal inference within these settings, and the re-
search upfront of these directions. With the dimensionality challenge posed by the temporal aspect
in longitudinal data, it is intuitive to consider strategies for dimension reduction in statistical in-
ference. This leads to two primary directions: model-based methods and estimand-based methods.
The key distinction lies in whether the identification of the parameter of interest is nonparametric.
Model-based methods typically focus on a parameter that indexes a specific model, be it parametric
or semiparametric. In contrast, estimand-based methods target simpler parameters, such as marginal
means, without imposing restrictions on the underlying distribution. For a comprehensive discus-
sion on these statistical strategies, see Vansteelandt and Dukes (2022). In this draft, we proceed with
estimand-based methods and review the literature on causal inference for three types of longitudinal
data, placing a particular emphasis on estimand-based approaches.
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In the case of RLD, a joint density of the random vectors exists, allowing statisticians to poten-
tially intervene in the treatment process by substituting the treatment density with another density.
Within this context, well-established methods for nonparametrically inferring the marginal distri-
bution of potential outcomes include the g-computation formula (Greenland and Robins, 1986),
inverse probability weighting (IPW) estimators (Rosenbaum and Rubin, 1983; Hernán et al., 2000,
2001, 2002), and doubly robust estimators, all designed to correct for potential time-varying con-
founding. Additionally, there exist model-based frameworks such as marginal structural models
(Robins, 1998; Ying et al., 2023) and structural nested models (Vansteelandt and Joffe, 2014).

For ILD, Lok (2001); Johnson and Tsiatis (2005); Røysland (2011, 2012); Hu and Hogan
(2019); Yang (2022); Røysland et al. (2022) have proposed and developed structural models. More
recently, Rytgaard et al. (2022) thoroughly characterized assumptions and identification strategies
by leveraging marked point process theories, with a focus on marginal parameters. In ILD, the point
process under consideration is the simplest type of continuous-time stochastic process, for which a
Riemann-Stieltjes measure exists pathwise.

Data originating from either fixed visit time frames or irregular random visit time frames ex-
hibit a finite number of treatment-confounder feedback loops and admit a joint density, significantly
simplifying theoretical and computational complexities. Due to these characteristics, while there
may be some distinctions between the two frameworks in terms of data characteristics, they are not
fundamentally distinct in their underlying mathematical theories. Both frameworks draw upon sim-
ilar mathematical concepts and principles, and share many of the same foundational assumptions.
Most importantly, a joint likelihood exists for both RLD and ILD. In contrast, no likelihood but only
probability measure exists for FLD, which hence necessitates much more advanced mathematical
theory to be effectively analyzed. Existing frameworks tailored for RLD or ILD cannot be straight-
forwardly applied to FLD. Within the potential outcomes framework, the causal quantity of interest
is scarcely well defined for functional data, let alone identification procedures and associated plau-
sible identification assumptions. Notable exceptions that have considered FLD include continuous-
discrete state-space models (Singer, 2008), dynamic models (Commenges and Gégout-Petit, 2009),
and structural rank-preserving models (Sun and Crawford, 2022). However, these approaches are
model-based and typically rely on complex statistical models with low-dimensional parameters in-
dexing an uncountable number of potential functional data points through stochastic differential
equations, potentially leading to unrealistic restrictions on the observed data. Our framework, in
contrast, commences by postulating an estimand rather than a statistical model. Our assumptions
are purely for causal interpretation, imposing no restrictions on the observed data. This aligns with
recent efforts to provide assumption-free causal inference (van der Laan, 2010; Vansteelandt and
Dukes, 2022).

There is also literature on causal inference dealing with functional treatment or functional co-
variates in point observational studies (Miao et al., 2020; Zhang et al., 2021; Tan et al., 2022). The
data format under consideration aligns with our setting. However, our paper distinguishes itself by
addressing the temporal dimension introduced by longitudinal studies, whereas these studies pri-
marily focus on point exposure. As a result, in principle, if we concentrate on the same quantity and
disregard the treatment-confounder feedback, our paper should extend their identification results.

In this paper, we leverage stochastic process theory and measure theory (Bhattacharya and
Waymire, 2007; Durrett, 2019) to establish a novel estimand-based causal framework for longi-
tudinal studies where confounders and treatments are continuously measured over time under a
stochastic treatment regime. This framework encompasses causal interpretation and identification,
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operating within the potential outcome (or counterfactual) framework (Neyman, 1923; Rubin, 1974;
Holland, 1986). Unlike existing literature (Greenland and Robins, 1986; Robins, 1986, 1987, 1989,
1997, 1998) or (Lok, 2004, 2008; Røysland, 2011; Rytgaard et al., 2022), our framework does not
impose path restrictions on confounder, treatment, and outcome processes, except for them being
càdlàg. The framework is built on assumptions including a generalized consistency assumption,
a generalized sequential randomization assumption, and a generalized positivity assumption, typi-
cally required in RLD and ILD for identification. In addition, we introduce a novel “intervenable”
assumption tailored for the continuous case, designed to ensure compatibility between the target
treatment regime and the observed data distribution. While this set of assumptions is sufficient for
identification, it may be challenging to interpret. To facilitate a more straightforward understanding,
we present an additional set of stronger assumptions based on generalized “coarsening at random”
assumption (Heitjan and Rubin, 1991). We define a g-computation formula through a g-computation
process, and an inverse probability weighting (IPW) formula through an IPW process. Notably, our
framework provides a unified comprehension of g-computation formula and IPW formula in terms
of projections and Radon-Nikodym derivatives over filtration, respectively. For practical applica-
tions, we construct two classes of population estimating equations that identify these two processes,
respectively. These population estimating equations also suggest a doubly robust formula, providing
additional safeguarding against process misspecification.

Our work establishes a rigorous framework for defining the estimand in causal inference for
FLD, addressing a significant limitation of existing approaches. Unlike existing frameworks, ours
can handle longitudinal data where both time and state space (the space of càdlàg paths) are un-
countably infinite. Because of our path assumption being only càdlàg, our framework naturally
unifies identification theory for longitudinal data encompassing both discretely repeated measures
and continuous monitoring. Also, our IPW characterization is particularly valuable in generalizing
the propensity score, a challenging task given the typical ill-posed nature of propensity scores with
functional data, where probability density functions for random functions are often non-existent.
Our framework also immediately implies identification for RLD and FLD when at each observation,
functional data were to be recorded, which has only been developed for point observation studies
(Miao et al., 2020; Zhang et al., 2021; Tan et al., 2022). To our best knowledge, this paper is the
first attempt of building an estimand-based framework without any modeling or path assumptions.

2. Causal Identification in Functional Longitudinal Studies

Suppose that there is a functional longitudinal study during 0 to τ , where τ > 0 is a positive constant
representing the end of the study.

• Define (Ω,F ,P) as the underlying sample space, σ-algebra, and probability measure.

• A(t) and L(t) are a treatment received and measured confounders at time t. The treatment
A(t) at time t can be binary, categorical, continuous or even itself functional. L(t) is also
allowed to take any form. We write Ā(t) = {A(s) : 0 ≤ s ≤ t} and L̄(t) = {L(s) : 0 ≤ s ≤
t}. We abbreviate Ā = {A(s) : 0 ≤ s ≤ τ} and L̄ = {L(s) : 0 ≤ s ≤ τ}.

• A subset of Y ⊂ L(τ) measured at the end of study is considered as the outcome of interest,
similar to Choi et al. (2002); Ying et al. (2023).

• A is the set of all possible values of ā.
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• Also, write the counterfactual outcome Yā and counterfactual confounders Lā(t), for any
ā ∈ A and any t ∈ [0, τ ], as the outcome and confounders if the treatment were to set as ā.

• When there is no confusion, we may write P(dādl̄) to represent the distribution on the path
space induced by the stochastic processes and the probability measure P on the sample space
Ω. Note that this is not a density or a likelihood. This notation is well adopted by probabilists
(Bhattacharya and Waymire, 2007; Durrett, 2019) and also statisticians (Gill and Robins,
2001).

• Define Ft = σ{A(s), L(s) : ∀s ≤ t} as a filtration of information collected before time t.
Also we write Ft− = σ(∪0≤s<tFt) and Gt = σ(Ft−, A(t)). We define Gτ+ = Fτ . We
write F0− and G0− as the trivial sigma algebra for convenience.

• We assume the event space is Polish so that conditional probability can be chosen to be
regular. We understand conditional distribution as a function over a sigma algebra multiplied
with a path set. For instance, P(dā|l̄) can be seen as a function over Borel space generated
by {ā} and the path set {l̄}. Importantly, conditional distribution is defined almost surely and
one needs to take extra caution when replacing and intervening treatment distributions when
conducting causal inference.

• We use the upper case for random variables and the lower case for their realized values. An
important caveat is that conditional probability is only uniquely defined almost surely. There-
fore throughout this draft, otherwise stated, for the measure zero subset where the conditional
probability is not uniquely defined, we set the conditional probability to be zero.

• A partition ∆K [0, τ ] on [0, τ ] is a finite sequence of K + 1 numbers of the form 0 = t0 <
· · · < tK = τ . The mesh |∆K [0, τ ]| of a partition ∆K [0, τ ] is maxi=0,··· ,K−1(tj+1 − tj),
representing the maximum gap length of the partition.

• We use ‖ · ‖TV to represent the total variation norm over the space of signed measures of the
path space, which is a Banach space.

Here are two real-life examples:

Example 1 (Intensive care unit) MIMIC-III (‘Medical Information Mart for Intensive Care’) is a
large, single-center database comprising information relating to patients admitted to critical care
units at a large tertiary care hospital (Johnson et al., 2016, 2018). The timing and duration of
treatment are important concepts for researchers seeking to understand issues that relate to the
intensity of an administered intervention. For instance, A(t) can be antibiotics usage at time t,
and L(t) may include the severity of illness scores, immediate vital signs, laboratory values, blood
gas values, urine output, weight, height, age, gender, service type, total fluid intake, total fluid
output, etc, at time t. The user-specified treatment regime can be chosen to understand the effect of
antibiotics on certain illnesses progression Y .

Example 2 (Continuous glucose monitoring) Continuous glucose monitoring (CGM) provides in-
formation unattainable by intermittent capillary blood glucose (Rodbard, 2016). A(t) typically is
insulin dosage at time t, andL(t) may include glucose level immediate changes in behaviors such as
diet, medications, physical activity, etc, at time t. The user-specified treatment regime can be chosen
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to understand the effect of insulin dosage and usage frequency on the glucose level Y measured at
the end.

Suppose one is interested in evaluating the average treatment effect of one treatment regime ver-
sus another one. One way that he/she could do this is to identify the mean of some transformation of
the potential outcome under both treatment regimes and compare them. As an illustration, through-
out the draft, suppose we are interested in learning a marginal mean of a transformed potential
outcome under a user-specified treatment regime,∫

A
E{ν(Yā)}G(dā), (1)

where ν is a user-specified function and G is a priori defined (signed) measure onA and we assume
E{ν(Yā)} is integrable against G. This estimand include those considering the marginal mean of
outcomes under a static treatment regime, either deterministic (Robins, 1997; Sun and Crawford,
2022) or stochastic (Cain et al., 2010; Young et al., 2011). We list some examples of the intervention
G for FLD below:

• When the causal outcome under a specific regime ā is of interest, for instance, all patient
were under treatment, the point mass (delta) measure G = 1(Ā = ā) can be considered. If a
contrast between a specific regime ā and the control 0̄ needs investigation, then G = 1(Ā =
ā)− 1(Ā = 0̄).

• Though the data are allowed to be functional and the underlying data generating mech-
anism can have uncountably infinite number of treatment-confounder feedbacks, a finite-
dimensional distribution intervention can still be considered, for example, intervening dosage
of certain drug hourly or daily.

• Likewise, a marked point process considered in Rytgaard et al. (2022) measure represents
intervening both dosage and frequency of usage for certain drugs.

• If considering certain fluid intake that is continuously used, one might leverage stationary
process measure that allows noise of fluid usage yet conforms to time regularity. One may also
consider continuous Gaussian process (including Wiener measure, also known as Brownian
motion) as a typical example considered in stochastic processes.

2.1. Weak identification assumptions

The paramount principle of adjusting for “treatment-confounders” feedbacks and creating a pseudo-
population under which treatment distribution were to follow G is intervening the treatment dis-
tribution for each time point iteratively. This principle is the central idea for literature on RLD
and ILD. However, given the uncountably infinite number of feedbacks “treatment-confounders” in
FLD, such adjustment becomes impossible. Instead, we adopt a net convergence idea (like in the
definition of the Riemannian integral) to overcome this complication.

For any sequences of partitions {∆K [0, τ ]}∞K=1 with |∆K [0, τ ]| → 0 as K → ∞, we have the
following decomposition

P(dādl̄) =

K∏
j=0

[
P{dl̄(tj)|ā(tj), l̄(tj−1)}P{dā(tj)|ā(tj−1), l̄(tj−1)}

]
.
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We define

P∆K [0,τ ],G(dādl̄) =

K∏
j=0

[
P{dl̄(tj)|ā(tj), l̄(tj−1)}G{dā(tj)|ā(tj−1)}

]
.

Assumption 1 (Intervenable) The measures P∆K [0,τ ],G(dādl̄) converges to the same (signed) mea-
sure in the total variation distance on the path space, regardless of the choices of partitions, in
which case we may write the limit as PG = PG(dādl̄). That is, ‖P∆K [0,τ ],G−PG ‖TV → 0, as
|∆K [0, τ ]| → 0. We call PG the target distribution.

We note that Assumption 1 is a novel assumption imposed uniquely for the continuous framework
yet holds trivially for discrete-time cases. Intuitively, Assumption 1 claims any sequence of discrete-
time studies represented by a sequence of partitions that approximates our continuous study, the
substitution in probability measures approximates the same limit, regardless of the choices of par-
titions on time. We provide plausible sufficient assumption based on a generalized “coarsening at
random” assumption (Heitjan and Rubin, 1991) in Section 2.3.

Next, we impose the positivity assumption.

Assumption 2 (Positivity) The target distribution PG induced by the target regime G is absolutely
continuous against P, that is, PG � P, where we may write dPG

dP = dPG
dP (ā, l̄) as the corresponding

Radon-Nikodym derivative.

This assumption implies that there are enough data to infer the expectation EG(Y ) of the outcome
Y under the target distribution, where EG is the mathematical expectation under PG. The following
generalized consistency assumption and sequential randomization assumption ensures us to show
that EG(Y ) has a causal interpretation, that is, it equals the target parameter (1).

Assumption 3 (Consistency) Y = YĀ, almost surely.

Like in the discrete case, the consistency assumption links the observed outcome and the potential
outcome via the treatment actually received. It says that if an individual receives the treatment
Ā = ā, then his/her observed outcome Y matches Yā. Before stating the last assumption, we define
‖ ·‖p, ‖ ·‖p,G as the Lp distance and we denote Lp(P) as the space of p-th order integrable functions
over P and PG.

Assumption 4 (Continuous-time randomization) There exists a bounded function ε(t, η) > 0
with

∫ τ
0 ε(t, η)dt→ 0 as η → 0, such that for any ā ∈ A, t ∈ [0, τ ], η > 0,∥∥E{ν(Yā)|Ā(t), L̄(t)} − E{ν(Yā)|Ā(t+ η), L̄(t)}

∥∥
1
< ε(t, η).

Assumption 4 states that given the information history Ft up to time t, the expectation of ν(Yā)
merely depends on a short period of treatment assignment between (t, t + η]. Indeed, such depen-
dence is upper bounded by this bounded function ε(t, η) whose integral over t ∈ (0, τ) tends to
zero, as the gap η goes to zero. The condition

∫ τ
0 ε(t, η)dt → 0 is needed to handle longitudinal

studies on time range [0, τ ]. The assumption is likely to hold if the treatment assignment in a short
amount of time (t, t+ η] purely depends on the history of treatment and covariates.
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2.2. Identification formulas

Definition 1 (G-computation process) Under Assumptions 1 and 2, define

HG(t) = EG{ν(Y )|Gt},

as a projection process, which is apparently a PG-martingale. We call HG(t) the g-computation
process. Note that HG(τ) = EG{ν(Y )|Gτ+} = ν(Y ) and HG(0−) = EG{ν(Y )}.

The g-computation process intuitively serves as a consecutive adjustment of the target Y from τ to
0.

Theorem 1 (G-computation formula) Under Assumptions 1 - 4, (1) is identified via a g-computation
formula as ∫

A
E{ν(Yā)}G(dā) = HG(0−).

Definition 2 (Inverse probability treatment weighting process) Under Assumptions 1 and 2, de-
fine

QG(t) = E
{

dPG
dP

∣∣∣∣Ā(t), L̄(t)

}
,

as a Radon-Nikodym derivative at time t, which is apparently a P-martingale. We call QG(t) the
inverse probability weighting (IPW) process. Note that QG(τ) = QG(τ+) = dPG

dP (Ā, L̄) and
QG(0−) = 1.

The IPW process intuitively serves as a continuous adjustment of the treatment process Ā from
0 to τ .

Theorem 2 (Inverse probability treatment weighting formula) Under Assumptions 1 - 4, (1) is
identified via an inverse probability weighting formula as∫

A
E{ν(Yā)}G(dā) = E {QG(τ)ν(Y )} .

We have defined two processesHG(t),QG(t) in Definitions 1, 2, which provided two identifica-
tion formulas for (1) in Theorems 1, 2. However, such definitions of HG(t), QG(t) via projections
and Radon-Nikodym derivatives are not useful for identifying themselves because recursive identifi-
cation approaches across time for the discrete-time version g-computation process and IPW process
cannot be utilized for FLD. Furthermore, unlike a density, a Borel measure cannot be learned from
data, to our best knowledge. In this subsection, we establish identification (also can be seen as alter-
native definitions) of both processes via two classes of population estimating equations which can
be more useful for practice and may inspire Z-estimators (Ghassami et al., 2022) or M-estimators
(Kompa et al., 2022) in the future. Identification for HG(t) and QG(t) also turns out to be useful
for constructing the doubly robust formula later.

For any two Gt-adapted processes H(t) and Q(t), and a partition ∆K [0, τ ] = {0 = t0 < · · · <
tK = τ}, we define

Ξout,∆K [0,τ ](H,Q)

=Q(τ){ν(Y )−H(τ)}+

K−1∑
j=0

Q(tj)

[∫
H(tj+1)G{dā(tj+1)|Ā(tj)} −H(tj)

]
.
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We also define Ξout(H,Q) as the limit of Ξout,∆K [0,τ ](H,Q) in probability whenever it exists, as
|∆K [0, τ ]| → 0. We define

Mout :={
(H,Q) : Ξout(H,Q) exists and E {Ξout(H,Q)} = lim

|∆K [0,τ ]|→0
E
{

Ξout,∆K [0,τ ](H,Q)
}}

.

With some regularity conditions,
(HG, Q) ∈Mout,

at least for any locally bounded process Q. This can happen, for example, defining such limit Ξout
is similar to defining stochastic integral in L2 limit or Riemann-Stieltjes integral. The discussion
on this details is beyond the scope of this paper but definitely of probabilistic interest. To prove the
next theorem, we need a further assumption on the rate of how fast P∆K [0,τ ],G approaches PG in a
tiny interval.

Assumption 5 (Approximating rate) For any Gt-adapted process H(t), and any 0 ≤ s < t ≤ τ ,∣∣∣∣E [∫ H(t)G{dā(t)|Ā(s)}P{dl̄(t)|Gs} − EG{H(t)|Gs}
]∣∣∣∣ ≤ κ‖H(s)‖1(t− s)α,

for some constant κ > 0 and α > 1.

With the help of this assumption, one may obtain the following theorem, which states that a
process is the g-computation process if and only if it is the solution to some class of estimating
equations. Therefore, if one imposes a parametric or semiparametric form on HG(t) as HG(t; θ),
one might estimate θ via some Z-estimation. Or, this theorem may inspire nonparametric estimation
of HG(t) via minimax estimation (Ghassami et al., 2022) or maximum moment restriction (Kompa
et al., 2022).

Proposition 1 (Identification of the g-computation process) Under Assumptions 1, 2, and 5, for
any Gt-adapted process Q(t) with (HG, Q) ∈ Mout and supt ‖HG(t)Q(t)‖1 <∞, Ξout(HG, Q) is
unbiased for zero, that is,

E {Ξout(HG, Q)} = 0. (2)

Moreover, suppose there exists an Gt-adapted process H(t) and supt ‖H(t)‖1,G < ∞, so that for
any Gt-adapted process Q(t) with supt ‖H(t)Q(t)‖1 <∞, we have (H,Q) ∈Mout and

E {Ξout(H,Q)} = 0. (3)

Then H(t) equals the g-computation process HG(t) in Definition 1 for any t ∈ [0, τ ] almost surely.

For any two Gt-adapted processes H(t) and Q(t), and a partition ∆K [0, τ ] = {0 = t0 < · · · <
tK = τ}, we define

Ξtrt,∆K [0,τ ](H,Q)

=

K∑
j=1

[
Q(tj)H(tj)−Q(tj−1)

∫
H(tj)G{dā(tj)|Ā(tj−1)}

]

+

[
Q(0)H(0)−

∫
H(0)G{dā(0)}

]
.
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We also define Ξtrt(H,Q) as the limit of Ξtrt,∆K [0,τ ](H,Q) in probability whenever it exists, as
|∆K [0, τ ]| → 0. We define

Mtrt :={
(H,Q) : Ξtrt(H,Q) exists and E {Ξtrt(H,Q)} = lim

|∆K [0,τ ]|→0
E
{

Ξtrt,∆K [0,τ ](H,Q)
}}

.

Likewise with some regularity conditions, we have

(H,QG) ∈Mtrt,

for any locally bounded processes H and Q. Here we provide a theorem for identifying the IPW
process like Theorem 1.

Proposition 2 (Identification of the IPW process) Under Assumptions 1, 2, and 5, for any Gt-
adapted processH(t) with (H,QG) ∈Mtrt and supt ‖H(t)QG(t)‖1 <∞, Ξtrt(H,QG) is unbiased
for zero, that is,

E {Ξtrt(H,QG)} = 0. (4)

Moreover, suppose there exists a Gt-adapted process Q(t) and supt ‖Q(t)‖1 < ∞, so that for any
Gt-adapted process H(t) with supt ‖H(t)Q(t)‖1 <∞, we have (H,Q) ∈Mtrt and

E {Ξtrt(H,Q)} = 0. (5)

Then Q(t) equals the IPW process QG(t) in Definition 2 for any t ∈ [0, τ ] almost surely.

Finally, we establish a doubly robust formula identifying (1). For any two Gt-adapted processes
H(t) and Q(t), and a partition ∆K [0, τ ] = {0 = t0 < · · · < tK = τ}, we define

Ξ∆K [0,τ ](H,Q) =Ξout,∆K [0,τ ](H,Q) +

∫
H(0)G{dā(0)}

=Q(τ)ν(Y )− Ξtrt,∆K [0,τ ](H,Q).

We also define Ξ(H,Q) as the limit of Ξ∆K [0,τ ](H,Q) in probability whenever it exists. Then
clearly Ξ(H,Q) = Ξout(H,Q)+

∫
H(0)G{dā(0)} = Q(τ)ν(Y )−Ξtrt(H,Q). The following theo-

rem is immediate from the previous two theorems and fact that supt ‖HG(t)QG(t)‖1 = EG |ν(Y )| <
∞.

Theorem 3 (Doubly robust formula) Under Assumptions 1 - 5, and assuming (HG, QG) ∈Mout∩
Mtrt, (1) is identified via a doubly robust formula as∫

A
E{ν(Yā)}G(dā) = E {Ξ(HG, QG)} . (6)

Furthermore, Ξ(H,Q) is doubly robust in the sense that (6) remains true when either H or Q
is correct but not necessarily both. That is, for any Gt-adapted processes Q(t) and H(t) with
(HG, Q) ∈ Mout, (H,QG) ∈ Mtrt and supt ‖HG(t)Q(t)‖1 < ∞, supt ‖H(t)QG(t)‖1 < ∞, we
have ∫

A
E{ν(Yā)}G(dā) = E {Ξ(HG, Q)} = E {Ξ(H,QG)} .
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2.3. Strong but interpretable identification assumptions

We outline a sufficient set of conditions for our Assumptions 1 - 4 for easier interpretation. We start
with a generalized “coarsening at random” assumption (Heitjan and Rubin, 1991; Gill et al., 1997;
Tsiatis, 2006).

Assumption 6 (Coarsening at random) The treatment assignment is independent of the all po-
tential outcomes and covariates given history, in the sense that there exists a bounded function
ε(t, η) > 0 with

∫ τ
0 ε(t, η)dt → 0 as η → 0, such that for any ā′ ∈ A, t ∈ [0, τ ], η > 0,

E(‖P{dlā′ |Ā(t+ η), L̄(t)} − P{dlā′ |Ā(t), L̄(t)}‖TV) < ε(t, η).

This assumption claims that, the treatment distribution, or equally, the probability of coarsening, in
a small period of time around t, only depends on the observed data up to time t and independent
of other unobserved counterfactuals. We additional define counterfactual confounders Lā(t) and
assuming that the future cannot affect the past, that is, Lā(t) = Lā′(t) whenever ā(t) = ā′(t). We
strengthen the consistency assumption into:

Assumption 7 (Strong consistency) L(t) = LĀ(t), for any t, almost surely.

Assumption 8 (Positivity) P(dl̄ā)G(dā)� P(dādl̄), almost surely.

Proposition 3 Under Assumptions 6 and 7,

‖P∆K [0,τ ],G(dādl̄)− P(dl̄ā)G(dā)‖TV → 0,

whenever |∆K [0, τ ]| → 0. It is immediate that Assumption 2 is equivalent to Assumption 8. As-
sumptions 1 and 4 hold for any bounded function ν(·).

Consequently, one may, in principle, substitute Assumptions 6 - 8 for Assumptions 1 - 4 as foun-
dational premises if Assumption 6 is found to be more intuitive and easier to grasp. Nevertheless,
Assumptions 1 to 4 persist as the most minimalistic set of assumptions in this paper. It is worth
noting a subtle distinction, namely that Assumption 4 is applicable solely to bounded functions ν,
as implied by Assumption 6. This arises from the fact that Assumption 6 operates within the scope
of total variation, necessitating boundedness for the dominated convergence theorem to hold.

3. Discussion

We establish a comprehensive framework for valid causal inference in continuous-time longitudi-
nal studies, allowing for both continuous time progression and continuous data operation, without
imposing constraints on the observed data distribution. We introduce two sets of sufficient assump-
tions for causal identification, which significantly expand upon the existing literature, encompassing
scenarios involving both mortality and censoring. Additionally, we present three distinct identifi-
cation approaches: the g-computation formula, IPW formula, and DR formula. Furthermore, we
furnish a population estimating equation to discern the g-computation and IPW processes. While
this study provides foundational insights into causal inference for FLD, our ongoing research is
expanding these findings. A more extensive investigation, which is currently being prepared for
journal submission, will explore additional facets such as official claims of its generality, nonpara-
metric property. It will also accommodate additional complications in longitudinal studies like
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time-varying outcome of interest like mortality and right censoring. This forthcoming journal paper
aims to provide a deeper understanding.

While numerical results often play a crucial role in validating statistical methods and providing
empirical insights, it is essential to recognize the value of rigorous theoretical and population-level
investigations. The functional data estimation framework is still in its early stages for longitudinal
causal inference and there is a substantial theoretical gap that needs to be addressed. In fact, func-
tional estimation has barely been developed for cross-sectional studies just in 2020s (Miao et al.,
2020; Zhang et al., 2021; Tan et al., 2022), and it has not been considered for RLD or ILD (where if
one considers data at each time point is functional), let alone FLD. Even without numerical results,
theoretical contributions can establish fundamental concepts, identify key assumptions, and delin-
eate the limitations of statistical methods. Such theoretical insights serve as a foundation for future
empirical research and guide the development of more robust and effective statistical tools. Our
paper focuses on the theoretical underpinnings of longitudinal causal inference, specifically for the
FLD setting. This also helps to avoid shifting the focus from the theoretical framework’s construc-
tion using stochastic process theory and measure theory, refraining from introducing sample-level
notation and empirical process theory. This significant gap warrants dedicated attention in a sepa-
rate, comprehensive paper.

Given the novelty of this direction, a multitude of unanswered questions persists. Firstly, delv-
ing deeper into Assumption 1, including exploring alternative sufficient conditions and conducting
sensitivity analyses, is of paramount interest. Secondly, the positivity assumption in longitudinal
studies may face challenges, as only a limited number of subjects in the observed study population
may adhere to any given regimen. In practice, amalgamating information from diverse regimes
becomes imperative. Hence, extending to semiparametric models, such as marginal structural mod-
els (Robins, 1998; Røysland, 2011) and structural nested models (Robins, 1999; Lok, 2008), holds
promise. To further relax the positivity assumption, one can consider dynamic treatment regimes
(Fitzmaurice et al., 2008; Young et al., 2011; Rytgaard et al., 2022) or incremental interventions
(Kennedy, 2017). Generalizing the framework in cases where Assumption 4 falters, including
situations involving time-dependent instrumental variables (Tchetgen Tchetgen et al., 2018) and
time-dependent proxies (Tchetgen Tchetgen et al., 2020; Ying et al., 2023), is also a viable av-
enue for exploration. While the primary focus has been on extending the identification results of
causal inference from discrete to continuous longitudinal studies, the formalization of estimation
and inferential outcomes has garnered considerable interest and is currently under active investi-
gation. We posit that with a judicious estimation of the g-computation process, the IPW process,
and leveraging the doubly robust formula (6), one can achieve both model double-robustness and
rate double-robustness (Smucler et al., 2019) for estimation. While the real functional data are typ-
ically stored in a discrete manner, we do believe the discretely observed data can identify the causal
effects, but it needs careful assumptions on how the sample size approaches infinity and grid size
approaches to zero. Characterizing the efficiency lower bound for the quantity of interest, leveraging
semiparametric theory, is an enticing prospect. Additionally, a formal delineation of assumptions
and theory underpinning the limit in probability of pairs (H,Q) inMout,G andMtrt,G is of profound
probabilistic interest. From a simulation standpoint, investigating if, and under what conditions, we
can consistently estimate (1) using discrete-time observed processes with diminishing meshes poses
intriguing questions. Moreover, exploring the extent of partial identification using a discrete-time
observed process constitutes an area of continued interest.
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Appendix A. Proofs

A.1. Proof of Theorem 1

Since PG(dādl̄) is a limit of measures in total variation norm of

P∆K [0,τ ],G(dādl̄),

whenever |∆K [t, τ ]| → 0, we have∫
f(ā, l̄)P∆K [0,τ ],G(dādl̄)→ EG{f(Ā, L̄)},

for any indicator functions f(ā, l̄). Therefore, with linearity of expectations and possibly monotone
convergence theorem, we have∣∣∣∣HG(0−)−

∫
E{ν(Yā)}G(dā)

∣∣∣∣
≤
∣∣∣∣∫ ν(y)P(dādl̄)−

∫
ν(y)P∆K [0,τ ],G(dādl̄)

∣∣∣∣
+

∣∣∣∣∫ ν(y)P∆K [0,τ ],G(dādl̄)−
∫

E{ν(Yā)}G(dā)

∣∣∣∣
=

∣∣∣∣∫ ν(y)P∆K [0,τ ],G(dādl̄)−
∫

E{ν(Yā)}G(dā)

∣∣∣∣+ o(1)

≤
∣∣∣∣∫ ν(y)P∆K [0,τ ],G(dādl̄)−

∫
E[E{ν(Yā)|ā(t1), L̄(t0)}]G(dā)

∣∣∣∣
+

∣∣∣∣∫ E[E{ν(Yā)|ā(t1), L̄(t0)}]G(dā)−
∫

E[E{ν(Yā)|L̄(t0)}]G(dā)

∣∣∣∣+ o(1)

≤
∣∣∣∣∫ ν(y)P∆K [0,τ ],G(dādl̄)−

∫
E[E{ν(Yā)|ā(t1), L̄(t0)}]G(dā)

∣∣∣∣
+ ε(t0, t1 − t0) + o(1)

≤
∣∣∣∣ ∫ ν(y)P∆K [0,τ ],G(dādl̄)

−
∫

E(E[E{ν(Yā)|ā(t1), L̄(t1)}|ā(t1), L̄(t0)])G(dā)

∣∣∣∣
+ ε(t0, t1 − t0) + o(1)

· · ·

≤
∣∣∣∣ ∫ E(E[E{ν(Yā)|ā(tK), L̄(tK−1)}| · · · |ā(t0), L̄(t−1)])G(dā)

−
∫
ν(y)P∆K [0,τ ],G(dādl̄)

∣∣∣∣
+

K−1∑
j=0

ε(tj , tj+1 − tj) + o(1)

=

K−1∑
j=0

ε(tj , tj+1 − tj) + o(1)→ 0,

as K →∞ and hence the conclusion.

14678



CAUSALITY FOR FUNCTIONAL LONGITUDINAL DATA

A.2. Proof of Theorem 2

The proof is immediate by noting that

E {QG(τ)ν(Y )} = EG{ν(Y )} =

∫
A
E{ν(Yā)}G(dā),

by Theorem 1.

A.3. Proof of Proposition 1

We first prove the first part of the theorem that HG is a solution to the class of estimating equations
(2) given in the theorem. To that end, we need to show that for any Gt-adapted process Q(t) with
(HG, Q) ∈Mout and supt ‖HG(t)Q(t)‖1 <∞, (2) holds. Indeed,

|E{Ξout(HG, Q)}|
≤
∣∣E{Ξout,∆K [0,τ ](HG, Q)

}∣∣+
∣∣E{Ξout,∆K [0,τ ](HG, Q)

}
− E {Ξout(HG, Q)}

∣∣
=

∣∣∣∣E (Q(τ)[ν(Y )− EG{ν(Y )|Ā, L̄}]
)

+
K−1∑
j=1

E
(
Q(tj)

[∫
HG(tj+1)G{dā(tj+1)|Ā(tj)} −HG(tj)

]) ∣∣∣∣+ o(1)

=

∣∣∣∣∣0 +

K−1∑
j=1

E
(
Q(tj)

[∫
HG(tj+1)G{dā(tj+1)|Ā(tj)} −HG(tj)

]) ∣∣∣∣∣+ o(1)

≤
K−1∑
j=1

∣∣∣∣∣E
(
Q(tj)

[∫
HG(tj+1)G{dā(tj+1)|Ā(tj)} −HG(tj)

]) ∣∣∣∣∣+ o(1)

≤
K−1∑
j=1

∣∣∣∣∣E
(
Q(tj)

[∫
HG(tj+1)G{dā(tj+1)|Ā(tj)} − EG

{
HG(tj+1)|Gtj

}]) ∣∣∣∣∣+ o(1)

≤
K∑
j=0

κ‖HG(tj)Q(tj)‖1(tj+1 − tj)α + o(1)

≤κ sup
t
‖HG(t)Q(t)‖1

K−1∑
j=1

(tj+1 − tj)α + o(1)

→0,

when |∆K [0, τ ]| → 0.
We now prove the second part of the theorem. Now suppose H(t) is a solution to the class of

estimating equations (3). To prove H(t) = HG(t), it suffices to show that H(t) is a PG martingale
with initial condition H(τ) = ν(Y ), that is, by Doob’s theorem, also equivalent to showing

EG

{∫ τ

0
Q(t)dH(t)

}
= 0,
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for a sufficiently rich set of Q(t). We plug in a process Q′(t) = QG(t)Q(t) for some bounded
process Q(t). We have supt ‖H(t)Q′(t)‖1 = supt ‖H(t)Q(t)‖1,G < ∞. It hence follows that
(H,Q) ∈Mout and

E
{

Ξout(H,Q
′)
}

= 0.

Therefore we have

EG

{∫ τ

0
Q(t)dH(t)

}

=EG

 lim
|∆K [0,τ ]|→0

K−1∑
j=1

Q(tj) {H(tj+1)−H(tj)}


= lim
|∆K [0,τ ]|→0

EG

K−1∑
j=1

Q(tj) {H(tj+1)−H(tj)}


= lim
|∆K [0,τ ]|→0

EG

K−1∑
j=1

Q(tj)
[
EG{H(tj+1)|Gtj} −H(tj)

]
= lim
|∆K [0,τ ]|→0

EG

K−1∑
j=1

Q(tj)

[∫
H(tj+1)G{dā(tj+1)|Ā(tj)}P{dl̄(tj+1)|Gtj} −H(tj)

]
= lim
|∆K [0,τ ]|→0

E

K−1∑
j=1

Q′(tj)

[∫
H(tj+1)G{dā(tj+1)|Ā(tj)}P{dl̄(tj+1)|Gtj} −H(tj)

]
= lim
|∆K [0,τ ]|→0

E

K−1∑
j=1

Q′(tj)

[∫
H(tj+1)G{dā(tj+1)|Ā(tj)} −H(tj)

]
=E

 lim
|∆K [0,τ ]|→0

K−1∑
j=1

Q′(tj)

[∫
H(tj+1)G{dā(tj+1)|Ā(tj)} −H(tj)

]
=E

{
Ξout(H,Q

′)
}

= 0.

By Doob’s Theorem, H(t) is a PG-martingale with respect to Ft withH(τ+) = HG(τ+) = ν(Y ).
Therefore we have H(t) = EG{H(τ)|Gt} = EG{ν(Y )|Gt} = HG(t) for any t ∈ [0, τ ] almost
surely.

A.4. Proof of Proposition 2

We prove the first part of the theorem that QG is a solution to the class of estimating equations (4)
given in the theorem. To that end, we need to show that for any PG-integrable process H(t) with
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(H,QG) ∈Mtrt and supt ‖H(t)QG(t)‖1 <∞, (4) holds. Indeed,

|E{Ξtrt(H,QG)}|
≤
∣∣E{Ξtrt,∆K [0,τ ](H,QG)

}∣∣+
∣∣E{E{Ξtrt,∆K [0,τ ](H,QG)

}
− Ξtrt(H,QG)}

∣∣
=

∣∣∣∣∣E
 K∑
j=0

[
QG(tj)H(tj)−QG(tj−1)

∫
H(tj)G{dā(tj)|Ā(tj−1)}

]
− E

[
QG(0)H(0)−

∫
H(0)G{dā(0)}

] ∣∣∣∣∣+ o(1)

=

∣∣∣∣∣E
 K∑
j=0

[
QG(tj)H(tj)−QG(tj−1)

∫
H(tj)G{dā(tj)|Ā(tj−1)}

]+ 0

∣∣∣∣∣+ o(1)

≤
K∑
j=0

∣∣∣∣E [QG(tj)H(tj)−QG(tj−1)

∫
H(tj)G{dā(tj)|Ā(tj−1)}

]∣∣∣∣+ o(1)

=
K∑
j=0

∣∣∣∣E [QG(tj−1)EG{H(tj)|Gtj−1}

−QG(tj−1)

∫
H(tj)G{dā(tj)|Ā(tj−1)}P{dl̄(tj)|Gtj−1}

]∣∣∣∣+ o(1)

≤κ
K∑
j=0

‖H(tj−1)QG(tj−1)‖1(tj − tj−1)α + o(1)

≤κ sup
t
‖H(t)QG(t)‖1

K∑
j=0

(tj − tj−1)α + o(1)→ 0,

when |∆K [0, τ ]| → 0.

We now prove the second part of the theorem. Now suppose Q(t) is a solution to the class of
estimating equations (5). To proveQ(t) = QG(t), it suffices to show thatQ(t) satisfies the property
of a Radon-Nikodym derivative process, that is, for any u,

E {H(u)Q(u)} = EG {H(0)} ,

for a sufficiently rich set of H(t). To that end, we plug in any bounded process H(t) with H(t) = 0
for any t > u and H(t) = EG{H(u)|Gt} for any t ≤ u, for some u > 0, treating H(t−1) =
H(0−) = EG {H(0)}. We have supt ‖H(t)Q(t)‖1 < ∞ and it hence follows that (H,Q) ∈ Mtrt
and

E {Ξtrt(H,Q)} = 0.
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Therefore we have

E {H(u)Q(u)} − EG {H(0)}

= lim
|∆K [0,u]|→0

E

 K∑
j=0

{Q(tj)H(tj)−Q(tj−1)H(tj−1)}


= lim
|∆K [0,u]|→0

E

 K∑
j=0

[
Q(tj)H(tj)−Q(tj−1)EG{H(tj)|Gtj−1}

]
= lim
|∆K [0,u]|→0

E

 K∑
j=0

[
Q(tj)H(tj)−Q(tj−1)

∫
H(tj)G{dā(tj)|Ā(tj−1)}

]
=E

 lim
|∆K [0,u]|→0

K∑
j=0

[
Q(tj)H(tj)−Q(tj−1)

∫
H(tj)G{dā(tj)|Ā(tj−1)}

]
=E {Ξtrt(H,Q)} = 0.

Therefore M(u) satisfies the definition of Radon-Nikodym derivative and by the uniqueness of the
Radon-Nikodym derivative we conclude that Q(t) = QG(t) for any t ∈ [0, τ ] almost surely.

A.5. Proof of Proposition 3

Below we use Assumption 3, 6, and a triangular inequality,

∥∥P∆K [0,τ ],G(dādl̄)− P(dl̄ā)G(dā)
∥∥

TV

=

∥∥∥∥∥∥
K−1∏
j=0

[
G{dā(tj+1)|ā(tj)}P{dl̄(tj+1)|ā(tj+1), l̄(tj)}

]
− P(dl̄ā∈A)G(dā)

∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥
K−1∏
j=0

[
G{dā(tj+1)|ā(tj)}P{dl̄ā(tj+1)|ā(tj+1), l̄ā(tj)}

]
− P(dl̄ā)G(dā)

∥∥∥∥∥∥
TV

≤

∥∥∥∥∥∥
K−1∏
j=0

[
G{dā(tj+1)|ā(tj)}P{dl̄ā(tj+1)|l̄ā(tj)}

]
− P(dl̄ā)G(dā)

∥∥∥∥∥∥
TV

+

∥∥∥∥∥∥
K−1∏
j=0

(
G{dā(tj+1)|ā(tj)}

[
P{dl̄ā(tj+1)|ā(tj+1), l̄ā(tj)} − P{dl̄ā(tj+1)|l̄ā(tj)}

])∥∥∥∥∥∥
TV

=

∥∥∥∥∥∥
K−1∏
j=0

(
G{dā(tj+1)|ā(tj)}

[
P{dl̄ā(tj+1)|ā(tj+1), l̄ā(tj)} − P{dl̄ā(tj+1)|l̄ā(tj)}

])∥∥∥∥∥∥
TV

→ 0.
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Miguel Ángel Hernán, Babette Brumback, and James M Robins. Marginal structural models to
estimate the causal effect of zidovudine on the survival of hiv-positive men. Epidemiology, 11
(5):561–570, 2000.

Paul W Holland. Statistics and causal inference. Journal of the American Statistical Association,
81(396):945–960, 1986.

Liangyuan Hu and Joseph W Hogan. Causal comparative effectiveness analysis of dynamic
continuous-time treatment initiation rules with sparsely measured outcomes and death. Biomet-
rics, 75(2):695–707, 2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific Data, 3(1):1–9, 2016.

Alistair EW Johnson, David J Stone, Leo A Celi, and Tom J Pollard. The mimic code repository:
enabling reproducibility in critical care research. Journal of the American Medical Informatics
Association, 25(1):32–39, 2018.

Brent A Johnson and Anastasios A Tsiatis. Semiparametric inference in observational duration-
response studies, with duration possibly right-censored. Biometrika, 92(3):605–618, 2005.
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Jersey Neyman. Sur les applications de la théorie des probabilités aux experiences agricoles: Essai
des principes. Roczniki Nauk Rolniczych, 10(1):1–51, 1923.

Judea Pearl. Causality. Cambridge university press, 2009.

Jamees M Robins. Marginal structural models. In 1997 Proceedings of the Section on Bayesian
Statistical Science, pages 1–10. Alexandria, VA: American Statistical Association, 1998.

James M Robins. A new approach to causal inference in mortality studies with a sustained exposure
period—application to control of the healthy worker survivor effect. Mathematical Modelling, 7
(9-12):1393–1512, 1986.

James M Robins. A graphical approach to the identification and estimation of causal parameters in
mortality studies with sustained exposure periods. Journal of Chronic Diseases, 40:139S–161S,
1987.

James M Robins. The analysis of randomized and non-randomized aids treatment trials using a
new approach to causal inference in longitudinal studies. Health service research methodology:
a focus on AIDS, pages 113–159, 1989.

James M Robins. Causal inference from complex longitudinal data. In Latent variable modeling
and applications to causality, pages 69–117. Springer, 1997.

James M Robins. Association, causation, and marginal structural models. Synthese, 121(1/2):151–
179, 1999.

David Rodbard. Continuous glucose monitoring: a review of successes, challenges, and opportuni-
ties. Diabetes Technology & Therapeutics, 18(S2):S2–3, 2016.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

Kjetil Røysland. A martingale approach to continuous-time marginal structural models. Bernoulli,
17(3):895–915, 2011.

21685



YING

Kjetil Røysland. Counterfactual analyses with graphical models based on local independence. The
Annals of Statistics, 40(4):2162–2194, 2012.
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