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Abstract
We study the phenomenon of in-context learning (ICL) exhibited by large language models, where
they can adapt to a new learning task, given a handful of labeled examples, without any explicit
parameter optimization. Our goal is to explain how a pre-trained transformer model is able to per-
form ICL under reasonable assumptions on the pre-training process and the downstream tasks. We
posit a mechanism whereby a transformer can achieve the following: (a) receive an i.i.d. sequence
of examples which have been converted into a prompt using potentially-ambiguous delimiters, (b)
correctly segment the prompt into examples and labels, (c) infer from the data a sparse linear re-
gressor hypothesis, and finally (d) apply this hypothesis on the given test example and return a
predicted label. We establish that this entire procedure is implementable using the transformer
mechanism, and we give sample complexity guarantees for this learning framework. Our empir-
ical findings validate the challenge of segmentation, and we show a correspondence between our
posited mechanisms and observed attention maps for step (c).
Keywords: in-context learning, transformers

1. Introduction

In-context learning has emerged as a powerful and novel paradigm where, starting with Brown et al.
(2020), it has been observed that a pre-trained language model can “learn” simply through prompt-
ing with a handful of desired input-output pairs from a new task. Strikingly, the model is able to
perform well on future input queries from the same task by simply conditioning on this prompt,
without updating any model parameters, and using a surprisingly small number of examples in the
prompt to learn a target task. While model fine-tuning for few shot learning can be explained in
terms of the vast literature on transfer learning and domain adaptation, ICL eludes an easy explana-
tion for its sample-efficiency and versatility. In this paper, we study the question: What are plausible
mechanisms to explain ICL for some representative tasks and what is their sample complexity?

Before discussing potential answers, we note why the ICL capability is surprising, and mer-
its a careful study. Typical few-shot learning settings consist of a family of related tasks among
which transfer is expected. On the other hand, the pre-training task of predicting the next token
for language models appears largely disconnected from the variety of downstream tasks ranging
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from composing verses to answering math and analogy questions or writing code, that they are later
prompted for. More importantly, a typical prompt consists of a sequence of unrelated inputs for
a problem, followed by the desired outputs. This should constitute a very unlikely sequence for
the model, since its training data seldom contains input, output pairs for a single concept occurring
together. Due to this abruptness of example boundaries, recognizing such a prompt as a sequence of
independent examples to learn across is an impressive feat in of itself. Once the model segments this
prompt, it still needs to learn a consistent hypothesis across examples in the prompt to map inputs to
desired outputs, and then apply this learned hypothesis to fresh query inputs. Given that this capa-
bility has been primarily observed in transformer based models, we investigate if there are aspects
of self-attention which are particularly well-suited to addressing the aforementioned challenges?

In this paper, we study all the questions mentioned above. A formal investigation of ICL was
pioneered in Garg et al. (2022), who trained transformer models (Vaswani et al., 2017) from scratch
that can learn linear regression via ICL. Within this model, gradient descent or closed form ridge
regression approaches to map the prompt to a hypothesis were put forth in von Oswald et al. (2022)
and Akyürek et al. (2022). These works show that the posited mechanisms can be implemented us-
ing a transformer, given an appropriate formatting and tokenization of the inputs. From a statistical
perspective, Xie et al. (2021) and Zhang et al. (2022) cast ICL as posterior inference, with the former
studying a mixture of HMM models and the latter analyzing more general exchangeable sequences.
These works do not, however, provide mechanisms to implement the desired learning procedures
using a transformer. Olsson et al. (2022) give some evidence that ICL might arise from a mechanism
called induction heads, but do not discuss the sample complexity aspects or describe how induction
heads might be leveraged to address a variety of learning tasks. More recently, Zhang et al. (2023);
Ahn et al. (2023) further the closed form ridge regression perspective by showing convergence to a
transformer that implements this formula in pre-training, but use a linearized self-attention mech-
anism. Concurrently to our work, Bai et al. (2023) show constructions to implement L steps of
gradient descent using O(L) transformer layers on regularized loss objectives, and bound the sam-
ple complexity of ICL for many tasks including sparse regression which we study here. Most related
to our results on learning sparse retrieval tasks is the work of Edelman et al. (2022). The authors
study the inductive bias of self-attention layers and demonstrate that self-attention layers are able to
represent sparse functions efficiently. Further, a careful union bound on the class of bounded norm
self-attention mechanisms implies that transformers can learn sparse functions efficiently. However,
Edelman et al. (2022) do not show how the self-attention mechanism can implement a learning rule
for the class of sparse functions. We defer a more detailed discussion relative to these works, as
well as connections with the broader literature on uses of the ICL capability to Appendix A, and
highlight some of the key departures in our study from prior work below.

Our Contributions. Our work studies the ICL process in an end-to-end manner. Unlike
most prior works on ICL, which either require pre-training task to be identical to the downstream
task (Garg et al., 2022; von Oswald et al., 2022; Akyürek et al., 2022), or comprised of some mixture
of downstream tasks (Xie et al., 2021; Wies et al., 2023), we abstract the details of this procedure
by representing it as a fixed and given prior distribution over sequences. Our results include:

• Prompt segmentation: We propose a segmentation mechanism for the prompt, which maxi-
mizes the likelihood of a proposed segmentation under the prior learned during pre-training.
The mechanism crucially leverages aspect of the attention architecture to learn the segmen-
tation with few examples. The sample complexity scales logarithmically with the number
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of candidate delimiters and inversely in a gap parameter between the prior likelihoods of
correctly and incorrectly segmented sequences.

• Inferring consistent hypothesis: We then take the segmentation of the prompt and illustrate
how to infer a consistent hypothesis which explains all the (input, output) pairs in the prompt
using a transformer model. For this part, we specialize to a family of sparse retrieval tasks,
where the output is simply a token of the input, or the sum of a subset of input tokens. This
family is a useful abstraction of token extraction and manipulation tasks in practical ICL
settings. We show how attention can naturally leverage correlations to identify a consistent
hypothesis on such tasks. The proposed mechanism finds an ε accurate hypothesis from a
class F using O

(
1
ε ln |F|

)
examples.

• Inference with the learned hypothesis: We also show that the attention mechanism is well-
suited to carry the learned hypothesis from the prompt and apply it to subsequent query inputs.

• Empirical validation: Finally, we validate some of our theoretical findings through exper-
iments, showing the dependence of ICL on easily identifiable delimiters. For hypothesis
learning, we show that transformer models can be indeed trained to solve the sparse retrieval
tasks studied here, and that the attention outputs correspond to the key steps identified in our
theoretical mechanisms.

Some of the key differentiators in our work from prior studies are that we specify the input vec-
tors x and labels y by tokenizing each scalar value to a vector, which is more representative of how
transformers process text, rather than giving covariates x as the d-dimensional input vector to the
transformer. None of the prior works mentioned above consider this tokenized input representation.
With this representation, we show that the self-attention mechanism provides a particularly conve-
nient abstraction for ICL of functions that are sparse combinations of input tokens. The family of
sparse functions is attractive as extracting some subset of tokens from specified text is perhaps the
simplest text analysis task, which we abstract into a regression setup. Unlike many prior works, we
use the properties of self-attention as an integral mechanism in our construction. In contrast, many
of the arguments of ICL as gradient descent or closed form ridge regression are often simplified by
adopting a linear or other simplified self-attention maps, that do not apply softmax (Zhang et al.,
2023; Ahn et al., 2023; Bai et al., 2023), meaning that the self-attention mechanism is a hindrance
rather than a helpful feature in these works. Taken together, we find that the change in our task setup
and analysis sheds novel insights from a differernt perspective on ICL, than merely explaining it via
gradient descent, and offer an interesting direction for further research.

2. Problem Setting and Notation

A language model LM is an oracle that takes as input elements of a language V∗, sequences of
tokens from a vocabulary V , with V := |V|. A typical language model is autoregressive: it aims to
predict the next sequence of tokens from an prefix. To complete the phrase “I came, I saw”, we con-
struct prompt = [<begin>,I,<space>,came,<comma>,<space>,I,<space>,saw],
and input prompt→ LM→ output, and we expect that
output = [<comma>,<space>,I,<space>,conquered,<end> ].
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2.1. The Transformer Architecture

We describe the design of a language model using the architecture known as the decoder-only trans-
former (Vaswani et al., 2017). In short, transformers are models that process arbitrary-length token
sequences by passing them through a sequence of layers in order to obtain a distribution over the
next token.

For the following definition, we will need some special operators, which we describe here. The
operation softmax(M) returns a matrix the same shape as M whose i, j entry is exp(Mi,j)∑

j′ exp(Mi,j′ )
. The

concat(M1,M2) operation stacks the matrices vertically. The operation mask(M) takes a square
matrix M and returns M ′ such that M ′i,j = Mi,j for i ≤ j and M ′i,j = −∞ otherwise. (The −∞
is converted to a 0 after the softmax operation.) The GeLu operation is the Gaussian Error Linear
Unit.

Definition 1 Let d, datt, κ be arbitrary positive integers. A transformer layer is a function TΠ

parameterized by matrices Π := {Qk,Kk, Vk ∈ Rdatt×d for k ∈ [κ],WO ∈ Rd×κ·datt}, that maps,
for any length N sequence, Rd×N → Rd×N using the following procedure:

Input: X ∈ Rd×N , Set: Ak ← softmax ◦mask(d
−1/2
att X>Q>kKkX) ∀k ∈ [κ]

Set: X ′ ←WO concat(V1XA1, . . . , VκXAκ), Output: X + GeLu(X ′) ∈ Rd×N .

We omit the layer normalization present in implementations (Vaswani et al., 2017) for ease of pre-
sentation. A convenient aspect of transformer layers is their composability. Assume we have L
transformer layers, where the `-th layer is parameterized by Π` := {W `

O ∈ Rd×κ·datt ;Q`k,K
`
k, V

`
k ∈

Rdatt×d, k ∈ [κ]}. The remaining piece we need for the full transformer model is the token embed-
ding layer, which is parameterized by a matrix WE ∈ Rd×|V|. If we take a prefix x ∈ V∗ with N
tokens, and write it using one-hot encoding as a matrix Z ∈ {0, 1}|V|×N , thenWEZ is referred to as
the “embedded” tokens. Once these embedded tokens are passed through one or more transformer
layers to obtain Z ′, we can convert back to vocab space by W>E Z

′. Here Zi,j represents the model’s
estimated probability that the j + 1th token will be token i given the first j tokens in the sequence.
We need these embeddings to be reasonably distinct.

Definition 2 A (decoder-only)L-layer transformer is a parameterized function that maps R|V|×N →
R|V|×N for any sequence length N where the input X is a one-hot encoding of a token sequence x
in V∗, and the output is a column-stochastic matrix Z. The parameters are given by the matrix WE

and the sequence Π1, . . . ,ΠL. The full map is defined as the composition,

X 7→ Z = softmax(W>E · TΠL ◦ · · · ◦ TΠ1(WE ·X)).

The one-hot encoding can be replaced with other (possibly learned) encodings when V is large or
infinite. Of much interest in this work is to understand what operations can be implemented using

a transformer. To establish our results, we often show that certain operations Rd×N φ→ Rd×N
on embedded token sequences can be implemented using a transformer layer parameterized by Π.
When there is a Π such that TΠ ≡ φ for all N , then φ can be implemented as a transformer layer.
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2.2. In-Context Learning

Let us now imagine that we hope to solve the following learning problem. We are given an input
space X and output space Y . We assume that X ,Y ⊂ V∗ for simplicity –i.e., we are able to express
inputs/outputs in the given language. Assume we have a set F of functions f : X → Y . A task in
this setting is a pair f,D, with f ∈ F a function and D ∈ ∆(X ) a distribution on inputs x ∈ X . A
sample Sn from this task is a collection of n labelled examples {(x1, y1), . . . , (xn, yn)} ⊂ X × Y
where the xi’s are samples i.i..d. fromD and yi = f(xi) for every i ∈ [n]. When viewed as a typical
supervised learning setting, we would design a learning algorithm A that is able to estimate f̂ ∈ F
from a sample Sn, {(x1, y1), . . . , (xn, yn)} → A → f̂n. The goal of A is to minimize
expected loss Ex∼D[loss(f(x), f̂n(x))] with respect to a typical sample x ∼ D and (unknown)
function f .

The in-context learning framework poses the idea that perhaps for a large family of tasks we do
not need to design such an algorithm A and instead we can leverage a pre-trained language model
in order to solve a large family of learning tasks. That is, for a sample above and a test point x ∼ D,
we have the following setup

Encoding({(x1, y1), . . . , (xn, yn)}, x) → LM → output,

and, if the ICL process succeeds, we expect that output = f(x)<end>.
Since there is no canonical procedure to encode a set of example-label pairs guaranteed to

be understood by LM, the choice of Encoding influences its output behavior. Empirical works
use typical delimiters—special tokens that are typically used to give structure to documents by
segmenting text into lists, relations, etc.—for this task. As part of our language definition, we
assume that there is a set of special tokens Vdelims ⊂ V including, e.g. punctuations (<comma>,
<colon>, <semicolon>), or spacing characters (<space>, <newline>, <tabspace>). We
assume that the user has selected one delimiter that separates the n examples, which we will call
<esep>, and another that distinguishes between xi and yi, which we will call <lsep>. The only
requirement is that <esep> and <lsep> are distinct elements of Vdelims, and that <esep> and
<lsep> do not occur in any x, y examples generated in the task. With this in mind, we define
Encoding({(x1, y1), . . . , (xn, yn)}, x) as

<begin>x1<lsep>y1<esep>x2<lsep>y2<esep> . . .<esep>xn<lsep>yn<esep>x<lsep>.
(1)

We note that the x’s and y’s have variable length and are being concatenated above.

3. An Overview of Results

We now survey the core results of the paper on segmenting the input sequence through delimiter
identification, and the subsequent hypothesis learning.

3.1. Segmenting an input sequence

Suppose we have an underlying distribution p0(·) on V∗, which measures the typical likelihood
of sequences observed “in the wild”, and this distribution is encoded in a transformer through the
pre-training process. The goal of the segmentation mechanism is to identify a pair of separators
<lsep>,<esep> ∈ Vdelims × Vdelims, such that the input z can be reasonably decomposed as:

z = <begin>x1<lsep>y1<esep> . . .<esep>xk<lsep>yk<esep>x∗<lsep>.
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To formalize a reasonable decomposition of z obtained using delimiters <lsep>,<esep>,
we define its likelihood by leveraging the base model p0 and then follow a maximum likelihood
segmentation:

̂<lsep>, ̂<esep> = argmax
<lsep>∈Vdelims
<esep>∈Vdelims

p0(x∗)
k∏
i=1

p0(<begin>xi<end>)p0(<begin>yi<end>),

(2)
We note that the number k of examples as well as the sequences xi and yi identified depend

on the separators used, and hence are all functions of the optimization variables <lsep>,<esep>
in the objective (2). This is a natural objective to decompose an input sequence, as it posits that
the individual x, y sequences in ICL should be plausible under the base distribution. Crucially, if
the true label separator <lsep>? is very unlikely to occur in a natural sequence, then a wrong
segmentation which mistakenly includes <lsep>? as part of some xi or yi will be very unlikely
under p0.

The first result of our paper is that the objective (2) can be implemented using a transformer.

Theorem 3 (Transformers can segment) There exists a transformer withO(1) layers andO(Vdelims×
Vdelims) heads per layer which computes ̂<lsep>, ̂<esep> according to (2).

Next, we evaluate the sample requirements to learn an accurate segmentation.

Theorem 4 (Sample complexity of segmentation, informal) Let cmeasure how much more likely
a correctly segmented sequence is than an incorrectly segmented one under the task distribution D.
Given a minimum probability parameter ν, maximum likelihood segmentation (2) returns the correct

label and example separators with probability 1− δ after seeing n = Ω

(
(log(1/ν))2 log

|Vdelims|
δ

c2

)
.

In practice, the example and label separators are chosen so as to make the segmentation fairly
unambiguous, ensuring that c is large, and the sample cost of learning segmentation is quite small.
We can further enhance the objective (2) to include priors over <lsep> and <esep> being delim-
iters to zoom in on typical choices faster. We omit this extension to convey the basic ideas clearly.
We note that among the various prior works that study ICL, the task of segmenting an input se-
quence is only considered to any degree in Xie et al. (2021) in an HMM-like model, while we offer
a much more general explanation.

3.2. Learning a consistent hypothesis

Having generated a segmentation, the next step in ICL is to take the inputs (xi, yi)
n
i=1 identified

above and generate a hypothesis f̂ such that f̂(x) ≈ f?(x), where yi = f?(xi). To formalize the
hypothesis learning setup, we focus on a specific family of learning problems that we define next.

Definition 5 (Tokenized sparse regression) Fix an input space X , an output space Y , a basis
map ψ(x) : Rdim(X ) → Rm, and distribution D over X . Given s ≤ m, an s-sparse tokenized
regression problem is defined by weights β1, . . . , βm ∈ {0, 1}m such that |{j : |βj | = 1}| = s and
y =

∑m
j=1 βjψ(x)j .
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In words, a tokenized sparse regression problem maps from inputs to outputs by taking sparse linear
combinations of the inputs under some fixed basis transformation. We call the task tokenized due to
the way in which the transformer processes the input x during ICL, accepting it one coordinate at
a time as we will see momentarily. This is to distinguish from the regression tasks studied in prior
works (Garg et al., 2022; Akyürek et al., 2022; von Oswald et al., 2022; Ahn et al., 2023; Bai et al.,
2023; Zhang et al., 2023), which consider each vector x to be a token.

In particular, we study problems where the basis ψ is fixed across contexts and only the coeffi-
cients βi vary across tasks. Since ψ is fixed, it can be assumed to be known from pre-training and
we focus on the case of X = Rm and ψ(x)i = xi, that is the basis is just the standard basis and the
task is sparse linear regression. We focus on these tasks because extracting and manipulating a few
input tokens is emblematic of many text processing tasks where ICL is often used in practice.

We analyze the following estimator for all i ∈ [n]:

fi ∈
{

(j1, . . . , js) ∈ [m]s : maxt=1,2,...,i |xt,j1 + . . .+ xt,js − yt| ≤ ε
}
. (3)

The optimization problem (3) can be implemented with a transformer, as stated next.

Theorem 6 (Transformers find a consistent hypothesis) There exists a transformer with O(m)
layers and 1 head per layer which computes an fi according to (3) after reading example xi.

The estimator above is natural for the task, as it finds a solution with a zero loss on the training
samples. Implementing this estimator is particularly natural with a transformer using properties
of the attention mechanism, that is well suited to extracting coordinates of x which are highly
correlated with the label y. In fact, the actual mechanism computes a weighting over {1, 2, . . . ,m}
as candidate solutions from each example, and then returns fi as the coordinate with the largest
cumulative weight (across examples) after each example i. This provides further robustness in case
of label noise. For this procedure, we provide the following sample complexity guarantee.

Theorem 7 (Sample complexity of hypothesis learning, informal) For any ε > 0, suppose the
initial token embeddings are such that tokens zα, zγ with |zα − zγ | ≥ ε have nearly orthogonal
embeddings. Let fn be any hypothesis returned by Equation 3 after seeing n examples from the
s-sparse token regression task. Then for n = Ω(s log(m/ε)/ε) we have E[|fn(x)− f?(x)|] ≤ 2ε.

The condition on the token embeddings is natural, since aliased tokens with different values can be
problematic for learning. Our sample complexity matches the typical guarantees in sparse regres-
sion, which scale with the s logm

ε . Note that the estimator (3) learns fn from scratch, in that there
is no use of the pre-training to bias the estimator towards certain functions. While this is also done
in several prior works on ICL (Garg et al., 2022; Akyürek et al., 2022; von Oswald et al., 2022),
in practice ICL is often used in settings where the correct y has a high probability under the base
distribution p0, given x. Improving the estimator (3) to prioritize among the consistent tokens j
using the prior probabilities p0(xi,m+1|xi,1, . . . , xi,m) is an easy modification to our construction
and allows us to further benefit from an alignment between p0 and D.

We highlight that the estimator (3) is very different from closed form linear regression or gra-
dient descent mechanisms offered in Akyürek et al. (2022); von Oswald et al. (2022), as well as
proximal gradient for regularized objectives studied for sparse regression in Bai et al. (2023), and
is much more tailored to the attention mechanism as mentioned above. This offers an alternative
hypothesis for how ICL happens, which will be partially verified by some of our empirical findings.
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Double, double toil and trouble: / Macbeth; To die, - To sleep, - To sleep!
/ Hamlet; This above all: to thine own self be true / Hamlet; A deed without a name /

Figure 1: An example of an ICL task: quotes from Shakespeare followed by the name of the play. Correct
delimiters are (<lsep>,<esep>) = (/,;), yet the presence of other potential delimiters creates ambiguity.

4. Segmenting an ICL Instance

In this section, we provide more details about the segmentation mechanism and the underlying as-
sumptions. Given a sequence ofN tokens z = z1, . . . , zN , and given a pair σ = (<lsep>,<esep>),
we first segment the sequence into as many chunks as possible, separated by <esep> tokens:

z = <begin>u1<esep>u2<esep> . . .<esep>uk.

Then, for each chunk we segment ui = xi<lsep>yi according to the occurrence of <lsep>. If
we find multiple occurrences of <lsep>, we infer that this σ is infeasible, setting pσ(z) = ν to be
a minimum probability. If no <lsep> is found, then we set ui = xi. With this segmentation in
mind, we can now define our probability model pσ as follows,

pσ(z) = p0(x∗)
∏k
i=1 p0(<begin>xi<end>)p0(<begin>yi<end>). (4)

To understand the meaning of this definition better, it is helpful to look at an example. In
Figure 1, we show a concatenation of quotes from Shakespeare and the corresponding play names.
Using candidate delimiter pairs σ = (/,;) and σ′ = (:,-), we get two different likelihood models:

pσ(z) = p0(<begin>Double,...trouble:<end>)p0(<begin>Macbeth<end>)

· p0(<begin>To die, <end>)...

pσ′(z) = p0(<begin>Double,...trouble<end>)p0(<begin>/ Macbeth;...To die,<end>)

· p0(<begin>To sleep,<end>)p0(<begin><end>)...

It is also important to note that, even though the model above provides a nicely-factored estimate
of the sequence likelihood, we are still able to compute the probability of other segments. For any
1 ≤ i < j ≤ N , pσ(zi · · · zj |z1 · · · zi−1) can be evaluated from the model above, even if [i : j] may
cross delimiter boundaries. The objective (2) maximizes pσ(z) over σ to select the model.

Implementation using a transformer. We now describe a high-level sketch of a transformer that
can implement the objective (2). As mentioned in Theorem 3, our construction uses one head for
each candidate σ, where we use the head corresponding to σ to compute pσ(z1:i) at each token i. The
maximum over delimiter pairs σ by looking across heads is subsequently taken by the output MLP
layers. Here we focus on the operations within each head. For a fixed σ = (<lsep>,<esep>),
the first two layers of the transformer identify the nearest occurrences of <esep> and <lsep>
to each token i. This can be done by attending to the occurrence of these tokens with the largest
index, which is natural with softmax and position embeddings. Next, we find the first occurrence of
<lsep> following each <esep> and add the log probabilities of the subsequence from <esep>
to the token before <lsep> and from the token after <lsep> to zi. Implementing these operations
is again relatively straightforward using a composition of soft attention layers, assuming access to a
certain conditional probability evaluation module from pre-training, that returns log of conditional
probability of a token, conditioned on a prefix sequence. Adding all the log probabilities gives us
the desired output. Details of this construction are provided in Appendix C.
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Sample complexity of segmentation. Let σ? be the true pair of delimiters used to generate the
input z. Then we expect the procedure (2) to return σ? only if the sequences ui identified under
σ? are more probable than those identified under a different delimiter σ′. To facilitate this, we now
make an assumption, before stating the formal sample complexity guarantee.

Assumption 1 Let D ∈ ∆(V∗) and f define the task at hand, with the input segmentation de-
termined by σ? = (<lsep>,<esep>). For an ICL sequence z, let ui = xi<lsep>yi be the
i-th example/label chunk (under σ?). Consider the expected log-likelihood ratio of ui conditioned
on its prefix according to two probability models, one with the correct segmentation using σ? and
alternatively with some other delimiter pair σ′, conditioned on prefixi−1, which is the prefix of the
sequence before ui. Now, for some c > 0 we assume that for any σ′ 6= σ? and with probability 1 for
any prefixi−1

E xi∼D
yi=f(xi)

[
log

pσ?(ui|prefixi−1)

pσ′(ui|prefixi−1)
| prefixi−1

]
≥ c.

Note that in both cases above, the segmented chunks, ui, are always determined by σ? even though
their likelihood is evaluated on the “false” σ′. What does this assumption mean? It may appear
to be highly technical, but it encodes something that we would very naturally expect: incorrectly
segmented data should look very weird (unlikely) relative to correctly interpreted data. For instance,
revisiting the example from Figure 1, consider the second chunk according to the true segmentation
with σ? = (/,;), ui =“To die, - To sleep, - To sleep! / Hamlet;”. When correctly segmented
we obtain the pair xi = To die, - To sleep, - To sleep! and yi = Hamlet, and
the likelihood pσ?(ui) = p0(xi)p0(yi). On the other hand, when we use the incorrect delimiters
σ′ = (:,-) we get a much less natural segmentation, with model estimate

pσ′(ui | prefixi−1) = p0(To die,<end> | <begin>/ Macbeth;)

·p0(<begin>To sleep,<end>) · p0(<begin><end>)p0(<begin>To sleep!/Hamlet).

Assumption 1 says that the model estimate for these chunks according to pσ? should be much higher,
on average, than that for pσ′ . This is indeed the only needed assumption to obtain the following.

Theorem 8 Let ν > 0 be such that pσ′(ui|prefixi−1) ≥ ν where ui is the i-th chunk under σ?, for all
σ′, ui and prefixi−1 almost surely. Under Assumption 1, the maximum likelihood segmentation algo-

rithm (2) outputs the correct delimiters σ? w.p. at least 1− δ, as long as n ≥ 16(log 1
ν )

2
log
|Vdelims|

δ

c2
.

5. Learning a Consistent Hypothesis for Tokenized Sparse Regression

We now formalize the results for extracting a consistent hypothesis for the tokenized sparse regres-
sion tasks described in Definition 5. For intuition, we begin with s = 1.
The 1-sparse tokenized regression task: Recall that when s = 1, we have yi = xi,f? for each
example i ∈ [n], and f? ∈ [m] is the coordinate of xi being copied to y. The objective (3) simplifies
to finding an index fi ∈ [m] such that |xt,fi − yt| ≤ ε for all examples t ≤ i. We now describe
the key elements of a transformer that implements such a procedure; details in Appendix D. The
construction is depicted in Figure 2. Let z̄α be the initial token embedding, i.e. the α-th column of
WEX in Definition 2.

9
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Figure 2: A transformer for 1-sparse tokenized regression with n = 2 exam-
ples and m = 3 tokens per example. The curved lines show attentions, with
heights proportional to the attention. The blue and red attention lines show
the attentions of y1 and y2 over the previous tokens. The green attention lines
show the attentions of x2,2 and x2,3 over the previous tokens. In this case,
f? = 2. After the first example, there is ambiguity between f1 ∈ {2, 3}, hence
the output f1(x2) mixes these and is not correct. After the second example,
the answer is uniquely determined, for inference on third example and beyond.
In the first layer, each yi attends to tokens xi,j from example i to find all con-
sistent hypotheses in example i. By attending across previous yt’s, each yi
aggregates these hypotheses over all preceding inputs t ≤ i. Example i + 1

attends to yi to predict using the aggregated hypothesis in the final two layers.

Assumption 2 Let z̄α be the input embedding of a token zα. For any zα, zγ , such that |zα−zγ | ≥ ε,
we have |〈z̄α, z̄γ〉| < 1/2τ , for some τ ≥ 1. If |zα − zγ | ≤ ε, then 〈z̄α, z̄γ〉 ≥ 0 and 〈z̄α, z̄α〉 = 1.

One embedding which satisfies the assumption maps all zα, zγ s.t. |zα − zγ | ≥ ε to orthogonal
unit vectors in Rd(1/ε)e. In Appendix D we discuss ways to cut the dimension from O(1

ε ) to Õ(τ2).
Given such an embedding, we can now use inner products between tokens to detect similarity,

which is the key first step in our construction. This is also very natural to implement using attention.
We define the first attention layer so that each xi,j only attends to itself and yi only attends to
xi,1, . . . , xi,m using the position embeddings. The attention weight between yi and xi,j is defined
using the inner product of their first layer embeddings. By Assumption 2, this inner product is large
for j = f? and small whenever |xi,j − yi| > ε. In Appendix D, we define the query and key
matrices to induce such an attention map. Under Assumption 2, this attention map identifies a good
hypothesis for example i, as formalized below.

Lemma 9 Given an example i, let Ji = {j : |xi,j − yi| ≤ ε}, and let f? ∈ [m] be such that
yi = xi,f? . Under Assumption 2, for any m ≥ 2, the output of the first layer at f? is larger than the
output at any j ∈ [m] \ Ji by at least e/(4(m+ 1)).

This key step in our construction gives us some consistent hypothesis from Ji, for each example i
individually. The second layer now finds a hypothesis consistent with all examples (xt, yt), t ≤ i,
and saves this hypothesis in token y3

i , which is the input to the third layer. The remaining two layers
implement appropriate copy and extraction mechanisms for the hypothesis fi identified at yi to be
applied to the next input xi+1 by first extracting the value at xi+1,fi and then outputting this value
at the token xi+1,m as the ICL prediction at the (i + 1)th example. We illustrate the key points of
the construction in Figure 2. For more details, we refer the reader to Appendix D.

Prior work has focused on tasks where xi is not decomposed into one token per coordinate but
rather given to the transformer as a vector in Rm directly. In Appendix F we demonstrate how this
setting can be reduced to the tokenized setting that we study here.

Iterative deflation for s-sparse token regression: For the more general case, it is tempting to
directly apply the 1-sparse construction once more and hope that all the tokens in f? will be iden-
tified simultaneously, since they all should have a high inner product with yi under Assumption 2.
However, suppose that f? = (1, 2) and let us say that the hypothesis (1, 3) is also consistent. Then
an approach to learn 2 coordinates independently using the approach from the previous section can

10
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result in the estimate (2, 3) which might not be consistent. To avoid this, we identify coordinates
one at a time, and deflate the target successively to remove the identified coordinates from further
consideration. The deflation procedure works because of the following crucial lemma.

Lemma 10 Under Assumption 2 with τ ≥ 2s, for any C ⊆ f? and, j ∈ f? \ C, we have 〈x̄i,j , ȳi −∑
j′∈C x̄i,j′〉 ≥

3
4 ,1 while if |xi,j−xi,j′ | ≥ ε for all j′ ∈ f? then we have 〈x̄i,j , ȳi−

∑
j′∈C x̄i,j′〉 ≤

1
4 .

This lemma says that the deflated target favors unidentified coordinates in f?. Next, we show that
the deflation procedure, to remove all previously identified tokens from each yi, can be implemented
using attention. We then stackO(s) layers of the 1-sparse task, with a deflation layer after extracting
each coordinate to identify a complete consistent hypothesis that optimizes the objective 3. Putting
everything together, we have the following formal version of the earlier informal Theorem 7

Theorem 11 For any ε > 0, let fn be an optimum of (3) after seeing n examples from the s-sparse
token regression task. Then there exists an embedding of xi,j , yi,∀i ∈ [n], j ∈ [m] in RO(s/ε)

satisfying Assumption 2, s.t. for any n = Ω(s log(m/ε)/ε), w.p. 1− δ, E[|fn(x)− f?(x)|] ≤ 2ε.

More details for the construction and the proof of the sample complexity are in in Appendix E.

6. Empirical Results

In this section, we report some empirical findings on the 1-sparse tokenized regression task. For
other experiments detailing the sensitivity of ICL to delimiters, we refer the readers to Appendix G.3.

We follow the experimental setup from Garg et al. (2022) and Akyürek et al. (2022), building
on the implementation of Akyürek et al. (2022). We use transformers with 8 layers, 1 head per layer
and embedding size 128. We experiment on the 1-sparse tokenized regression task with (xi, yi)i∈[n]

generated in the following way. First a random hypothesis f? is drawn uniformly at random from
[m], where m = 5. Next, xi ∈ Rm is sampled i.i.d from a fixed distribution which is either a
standard Gaussian (xi ∼ N (0, I5×5)), or uniform over {+1,−1}5 (xi ∼ Unif({+1,−1}5)). yi
is always set to f?(xi). We refer to the first setting as the Gaussian setting and the second as the
Rademacher setting. We train three different transformers, one for each of the two settings, and
one where the samples come from a uniform mixture over both Gaussian and Rademacher settings.
After pre-training we carry out the ICL experiments by generating 64 example sequences of length
5, either all from the Gaussian setting or the Rademacher setting. A randomly drawn f? is sampled,
fixed and shared across these 64 sequences, to allow averaging of results across multiple sequences.

In Figure 3 we show the averaged loss of a model pre-trained on the uniform mixture of the
settings, attention weights at the final layer (8) and attention weights at layer 6 for both settings.
Appendix G.1 shows results for models trained using Gaussian or Rademacher examples only and
results for tasks with sparsity s = 3. For the loss plots, y-axis is the loss of the ICL inference at each
example and x-axis is the number of in-context examples observed. All examples are indexed from
0. We see that the model reaches a loss of 0 in the Gaussian setting from a single sample, which
is information theoretically optimal. In the Rademacher setting there are often multiple coordinates
consistent with f? on the first 3 or 4 examples, which results in higher loss compared to the Gaussian
setting. In this setting f? is typically learned as soon as the correct coordinate is disambiguated. In
Figures 3 (b) and (e) we plot a heatmap of the attention of the tokens at which the model outputs its
predicted label, corresponding to the last x token. TheX-axis corresponds to example index i ∈ [n]

1. Here x̄i,j and ȳi refer to the input embeddings of these tokens satisfying Assumption 2.
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(a) Loss (Gaussian), yi = xi,0 (b) Attention at layer 8 (Gaus-
sian)

(c) Attention at layer 6 (Gaus-
sian)

(d) Loss (Rademacher). yi = xi,2 (e) Attention at 8 (Rademacher) (f ) Attention at 6 (Rademacher)

Figure 3: Loss and attention plots for 1-sparse tokenized regression for Gaussian (top) and Rademacher
(bottom) inputs. Loss drops to zero as soon as f? is determined, and attentions follow the construction of
Section 5. In panels (b) and (e), the prediction tokens for each example (on X-axis) attend to the index of
f? ≡ 0 in xi (on Y -axis) to predict yi correctly. In panels (c) and (f), the prediction tokens attend to all
previous labels (indices 5, 11, 17, . . .) to aggregate a consistent hypothesis across previous examples.

and the Y -axis shows allmn tokens across examples. The tokens for each example are separated by
the red lines in the heatmap. For example i (starting at i = 0), the label is predicted at token index
6 ∗ (i+ 1)− 2 in our sequence (corresponding to the input xi,5), and we show the attention weights
from this token over all tokens in the sequence. For these experiments f? is fixed to be the 0 index.
For the Gaussian setting (b), we see that the attention weights, starting at example i = 1, are peaked
at f?. The prediction token for example 1 attends to token 6 accordingly to correctly predict y1. In
the Rademacher setting (e) we see that there is more variance, due to the fact that there are often
multiple consistent hypothesis for the first few examples, however as the transformer processes more
examples from the sequence the attention becomes more peaked at f?. This behavior is consistent
with our theoretical construction. We note that our theoretical construction from Section 5 implies
that attention weights in the last layer should be split uniformly over all j which are consistent with
f? up to example i. In Appendix G we also empirically demonstrate that this is the case by looking
at the attention on a single randomly sampled sequence. In Figure 3 (c) and (f) we plot the attention
of the prediction tokens but at layer 6 of the transformer, that is the third layer counting from the
final layer. Surprisingly, we see that attentions are peaked at the tokens holding the labels for f?,
that is xi,5. This is analogous to the step where yi attends to all previous ys in our construction to
aggregate across examples, and we expect its role is the same here. We emphasize that this behavior
is not consistent across our experiments but was only observed for the 1-sparse 5-dimensional tasks.
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(a) Loss (Gaussian) (b) Attention at layer 8 (Gaussian) (c) Attention at layer 6 (Gaussian)

(d) Loss (Rademacher) (e) Attention at (Rademacher) (f ) Attention at (Rademacher)

Figure 4: Loss and attention for m = 10, s = 3 for Gaussian and Rademacher inputs with f? ≡ [4, 7, 9].
The (j, i)-th entry of the heatmaps corresponds to the attention of the predictor token, 11(i + 1) − 2, of the
i-th example to the j-th token in the i-th example, 11i + j. X-axis indexes the predictor tokens and Y -axis
indexes the token ids within each example.

In Figure 4 we include experiments for the Gaussian and Rademacher token tasks with m = 10
and s = 3. In this experiment the target is f? ≡ [4, 7, 9], that is yi = xi,4 + xi,7 + xi,9. We observe
similar behavior to the m = 5, s ∈ {1, 3} experiments for both the loss and attention at the final
layer, however, the attention weights deviate slightly from the uniform distribution on {4, 7, 9}.
The attention at layer 6, however, did not follow the pattern observed in Figure 3 and is seemingly
arbitrary as can be observed from Figure 4 (c) and (f). In summary, we find that the attention maps
at the final layer of the transformer in these experiments bear striking correspondence to our theory.
We refer the reader to Appendix G for more results that validate this correspondence, including
results for 3-sparse tasks.

7. Conclusion

In this paper, we take a fresh look at the in-context learning capability of transformers. We provide
mechanisms that can implement sequence segmentation and hypothesis learning for a family of
ICL tasks, and provide statistical guarantees showing that a fairly small number of examples indeed
suffice to convey a target concept using ICL. More broadly, the ability of ICL to demonstrate infor-
mation theoretically optimal learning in the types of tasks used both here and in prior works (Garg
et al., 2022; von Oswald et al., 2022; Akyürek et al., 2022) is quite impressive. It would be interest-
ing to understand if there are learning tasks where this optimality fails to hold in ICL, and determine
the necessary scaling of model size as a function of problem size needed to achieve sample-optimal
learning, when possible.
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Appendix A. Related Work

There is a rich literature on fine-tuning a pre-trained model through various forms of meta-learning
or bi-level optimization (Schmidhuber et al., 1996; Andrychowicz et al., 2016; Finn et al., 2017),
which typically update all or some of the model’s parameters to adapt it to a target task, with
theoretical underpinnings either through direct analysis (Finn et al., 2019) or through the broader
literature on transfer learning (see e.g. (Redko et al., 2020) and rerefences therein). Starting with
the work of Brown et al. (2020), and with careful prompt design, this has become a predominant
mechanism for adaptation in large language models (Zhao et al., 2021; Gao et al., 2020; Wei et al.,
2022), including to complex scenarios such as learning reinforcement learning algorithms (Laskin
et al., 2022). A consistently striking feature of these works is that it takes just a handful of examples
from the target task to teach a new concept to the language model, once the inputs have been
carefully phrased and formatted.

This has naturally motivated a number of studies on the mechanisms underlying ICL, as well
as its sample complexity. A formal treatment of this topic is pioneered in Garg et al. (2022), who
study ICL for linear regression problems, by pre-training a transformer architecture specifically for
this task. That is, the model is trained on prompts consisting of (x, y) pairs from a linear regression
instance, with the regression weights randomly chosen for each prompt. They showed that ICL
can learn this task using a prompt of O(d) examples when x ∈ Rd. Subsequent work of von
Oswald et al. (2022) proposes an explanation for ICL in this task by showing that self-attention
can simulate gradient descent steps for linear regression, so that the model can effectively learn an
optimizer during pre-training. Akyürek et al. (2022) further extend this by suggesting that given
enough parameters, the model can compute a full linear regression solution. Both works present
some empirical evidence as well suggesting that these operations correspond to the final outputs
and some intermediate statistics of the transformer, when trained for this task. Dai et al. (2022)
study the relationship between linear attention and gradient descent, and Li et al. (2023) study
transformers as producing general purpose learning algorithms. Xie et al. (2021) and Zhang et al.
(2022) cast ICL as posterior inference, with the former studying a mixture of HMM models and the
latter analyzing more general exchangeable sequences. Wies et al. (2023) give PAC guarantees for
the sample complexity of ICL, when pre-trained on a mixture of downstream tasks. Olsson et al.
(2022) and Elhage et al. (2021) view ICL as an algorithm which copies concepts previously seen in
a context example and then does inference by recalling these concepts when a new prompt matching
previous examples occurs. Elhage et al. (2021) explain this behavior formally for transformers with
a single attention head and two layers and Olsson et al. (2022) conduct an empirical study on a
wider variety of tasks for larger transformers.

Despite this growing literature, many aspects of the ICL capability remain unexplained so far.
First, only Li et al. (2023), Wies et al. (2023) and Zhang et al. (2022) provide any kind of sample
complexity guarantees. Of these, the pre-training distribution in Wies et al. (2023) is too specific as
the downstream task mixture, while Li et al. (2023) depend on an measure of algorithmic stability
that is hard to quantify apriori. Secondly, all the works with the exception of Xie et al. (2021) require
that the prompt has already been properly parsed into input and output examples, so as to facilitate
the explanation of learning in terms of familiar algorithms, and the explanation of Xie et al. (2021)
relies on a particular mixture of HMMs model. Further, we note that none of these works take into
consideration the specifics of the transformer architecture and how self-attention can implement the
proposed learning mechanisms.
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The concurrent work of Ahn et al. (2023) and Zhang et al. (2023) study both the pre-training
process and how it can lead to transformers implementing ICL as gradient descent. Ahn et al.
(2023) study the landscape of the optimization problem for pre-training single attention layer linear
transformers over random linear regression instances, and show that at the global minimum of the
objective, the transformer is able to implement a step of pre-conditioned gradient descent as ICL.
Zhang et al. (2023) study the dynamics of gradient flow in the same setting as Ahn et al. (2023) and
show that the dynamics converge to a global optimum. At the optimum, the authors argue that the
transformer can achieve low prediction error through approximating the LLS solution in the limit of
infinite in-context examples.

The concurrent work of Bai et al. (2023) also studies ICL as a form of gradient descent. The
authors show how a transformer can approximately implement L steps of gradient descent, using
O(L) self-attention layers for the ridge regression objective, the lasso objective, generalized lin-
ear models, and 2-layer feed-forward neural networks. The authors are able to show the statistical
and computational efficiency of the approximate GD procedures. The authors also argue that trans-
formers are able to model-select between the objectives by using part of the ICL examples as a
validation set. As such, this is the only work, outside of our own, that we are aware of, which is able
to recover efficient sparse linear regression results. The gradient descent view coupled with model
selection is certainly a plausible explanation of the ability of transformers to learn sparse regression
problems efficiently. However, the constructions in Bai et al. (2023) do not rely on the established
self-attention mechanism to enable ICL but rather tailor the GD construction to fit the self-attention
mechanism. Further, the authors use a relu-based self-attention mechanism instead of the softmax
self-attention used in practice. Compared to the GD view, we see our construction as one which
naturally leverages properties of the softmax attention with predictions which are borne out in the
empirical study.

The work of Edelman et al. (2022) has the most similar construction in terms of how self-
attention layers can approximate or exactly represent s-sparse functions. This work has two main
contributions. First, the authors show careful capacity based union bounds on the class of bounded
norm transformer blocks, that is a self-attention layer together with an MLP layer. Next, the au-
thors demonstrate how a transformer block can represent s-sparse symmetric Boolean functions
of f : {0, 1}N → R. The capacity bound (Theorem 4.7) is a bound on the `∞-covering num-
ber of the class of transformers with depth L, which scales logarithmically with the embedding
dimension, d, and the context length, N . The bound also includes the norms of K,Q, V,WE and
scales exponentially with the depth as is standard for capacity bounds for DNNs. The s-sparse
representation results (Proposition 5.1), demonstrate how transformers with bounded ‖Q‖F ≤
log(sN), ‖K‖F , ‖V ‖F , ‖WE‖ ≤ O(s) can approximate s-sparse functions. Together with the
capacity bound this result implies that a transformer can learn the s-sparse regression functions we
study with sample complexity similar to that of our own Theorem 11. While our construction for
representing the functions is similar to that of Edelman et al. (2022), we emphasize that the authors
do not study ICL, and do not provide a learning mechanism which explains how ICL might work,
which is a main contribution of our work. Notably, while they provide a credible theory for learning
a single sparse concept, when given a dataset generated according to it, they do not show how trans-
formers can efficiently learn and represent a learning algorithm for the entire class of sparse linear
functions, which we study in this paper.

While we do not study the properties of the pre-training process and data distribution in the ICL
capability, these factors have been found to be crucial in empirical investigations (Chan et al., 2022;
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Shin et al., 2022), and expanding the theoretical model to address such phenomena is an important
direction for future research.

Appendix B. Notation

We denote the input sequence as z ∈ VN consisting of N tokens. Each sequence is assumed to
contain up to n i.i.d. samples corresponding to a task, where sample i consists of an example
xi ∈ Vm

′
and label yi ∈ V , where m′ ≤ m is the token length of example xi. For majority of

the learning tasks that we analyze, the label yi consists of only 1 token, and xi consists of up to m
tokens. We use xi,j ∈ V for j ∈ [m] to denote the tokens of xi. The ICL instance is encoded as we
have already described, where each xi and yi is separated by <lsep> ∈ Vdelims, and <esep> ∈
Vdelims is found between between each successive pair (xi, yi), where σ = (<lsep>,<esep>)
are segmentation tokens. We will often refer to the “ground truth” segmentation token pair as
σ?, where σ ∈ Vdelims × Vdelims is an arbitrary pair of delimiters. We also recall the notation
pσ?(z) = Πn

i=1p0(xi)p0(yi) for some underlying distribution p0 on V∗, where the segmentation is
determined by σ∗, and we remind the reader that we can analogously define pσ(z) for any other
delimiter, which segments z into another sequence of (x, y) pairs.

When it comes to constructing transformer architectures, we will generally follow the same no-
tation laid out in Section 2.1, but with a few new symbols and additional conventions. When we
write 〈u, v〉M for matrix M and vectors u, v we mean the inner product 〈uM, v〉 = 〈u,Mv〉. For
characters z, x, y, o, v,K,Q, V , which describe the algorithmic objects of the transformer architec-
ture, a numeric superscript, as the 2 in x2

i,j , shall be used to identify the layer index and should not
be interpreted as an exponent.

We described the attention mechanism in Definition 1, where the operation performed at layer
` ∈ [L] and head k ∈ [κ] is parameterized by the query, key, and value matrices Q`k, K`

k and V `
k ,

respectively. The initial embeddings of the token sequence z is the matrix (equiv., list of vectors)
[z1

1 , . . . , z
1
N ] ∈ Rd×N , which is the matrix WEX where X ∈ {0, 1}|V|×N is the one-hot encoding

of the tokens z. In general, when a token variable is superscripted with 1, we mean the embedded
token, i.e. after multiplying by WE . So x1

i,j is the column of WE corresponding to the token index
of xi,j .

The attention operation computes the matrix A`k ∈ [0, 1]N×N . Normally we index this matrix
with token indices i, j ∈ [N ], but occasionally we will find it convenient to interpret A`k is a func-
tion on pairs of embedded tokens z`i , z

`
j , meaning that overload notation by setting A`k(z

`
i , z

`
j) :=

A`k(i, j). This is well defined as our token embeddings contain a positional encoding, and we note
that this allows us to avoid determining the exact index of the embedded token xi,j , which can be
cumbersome to describe. Thus we have

A`k(z
`
i , z

`
j) =

exp

(〈
z`i , z

`
j

〉
Q`k(K`

k)>

)
∑

j′≤i exp

(〈
z`i , z

`
j′

〉
Q`k(K`

k)>

) , (5)
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Finally, v`k,i and o`k,i refer to the “value vector” computed at position i for head k and layer `, and
the corresponding output vector:

v`k,i := V `
k z

`
i and o`k,i :=

∑
j≤i

A`k(z
`
i , z

`
j)v

`
k,j .

For each i we vertically concatenate all of the outputs (o`k,i)k∈κ to obtain a tall vector o`i ∈ Rdattκ,
and the final output z`+1 = [z`+1

1 , . . . , z`+1
N ] ∈ Rd×N is defined for all i ∈ [N ] as

z`+1
i := z`i + GeLU(W `

Oo
`
i).

In our constructions in the remainder of this appendix, we make a number of simplifications for
convenience. Let us state these here, and argue why these are acceptable without loss of generality.

1. We often assume that κ = 1 and we drop the reference to head k. Similarly, when ` is omitted
it should be clear from context.

2. We often implicitly assume that either there is no “skip connection,” thus z`+1
i = GeLU(W `

Oo
`
i),

and often go further and assume z`+1
i = o`i , avoiding the GeLU transformation. While we did

not use this feature in Definitions 1 and 2, in most transformer architectures there is an addi-
tional skip connection that makes this possible.

3. We occasionally refer to the dimension of the embedding d as being different between input
and output, i.e. din and dout. This is for notational ease, and we may do this by padding earlier
or later embedding dimensions with 0’s.

Appendix C. Proofs of the segmentation results

In this section we will use infinite weights in the query and key matrices to set some attention
weights to 0. It is possible to instead use finite weights, which would scale only poly-logarithmically
with the context length as we do in the construction for learning a consistent hypothesis in Section ??
We first give a proof of Theorem 8, and then give the details of the transformer construction from
Theorem 3.
Proof Let the distribution U (σ′,i)

σ? := pσ′(ui|prefixi−1) where ui is the ith chunk as parsed by the
correct segmentation σ?. Let σ be the correct choice of delimiters (we drop the ? superscript for
ease of reading). Our goal will be to show that, if we construct the ICL sequence z by sampling i.i.d.
x1, . . . , xn ∼ D, computing y1, . . . , yn by applying yi = f(xi), and assembling these example/label
pairs into a sequence with σ, then the model estimate pσ(z) is very likely to be much larger than
pσ′(z) for every alternative σ′ 6= σ. What we analyze is the log ratio

log
pσ(z)

pσ′(z)
= log

∏n
i=1 U

(σ,i)
σ∏n

i=1 U
(σ′,i)
σ

=
n∑
i=1

log
U

(σ,i)
σ

U
(σ′,i)
σ

,

which we aim to show is very likely to be positive. We do this by converting the above to a mar-

tingale sequence. Let µi := Exi∼D
[
log U

(σ,i)
σ

U
(σ′,i)
σ

| prefixi−1

]
, and observe that µi > c according to

Assumption 1. Now we have that the sequence ξj :=
∑j

i=1

(
log U

(σ,i)
σ

U
(σ′,i)
σ

− µi
)

is a martingale.
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We note that, since we have a lower bound ε on the model probabilities, we have that log U
(σ,i)
σ

U
(σ′,i)
σ

falls within the range [log(ν), log(1/ν)]. We can then apply Azuma’s Inequality to see that

Px1:n∼D

(
n∑
i=1

log
U

(σ,i)
σ

U
(σ′,i)
σ

< 0

)
= P

(
ξn < −

n∑
i=1

µi

)
≤ P (ξn < −nc)

≤ exp

(
−nc2

8 log2(1/ν)

)
.

Setting n as in the Theorem statement ensures that the right hand side above is smaller than δ
|Vdelims|2 .

Now if we take a union bound over all possible choices of σ′ 6= σ ensures that

P (∃σ′ 6= σ : pσ′(z) > pσ(z)) < δ

and thus we are done.

C.1. Segmenting example and label delimiters

We show how to identify example and label delimiters using one head per combination of an ex-
ample delimiter δe and label delimiter δl in Vdelims × Vdelims. To simplify notation and avoid
subscripts, we first focus on one such head for a fixed delimiter pair (δe, δl). We assume that the

input to the transformer consists of the vector z1
i =


z̃1
i

i
1− 1(zi = δe)
1− 1(zi = δl)

, where z̃1
i ∈ Rd is the

(pre-trained) encoding of zi which we augment for convenience.

First transformer layer: The goal of the first layer is to take the input at index i and map it to an

output o1
i =


z1
i

i
me(i)

1− 1(zi = δl)

, where me(i) is the largest index j < i such that zj = δe. Let Q1

and K1 matrices in this head be such Q1(K1)> is 0 on the first d coordinates and 0 on the last coor-
dinate. The remaining 2× 2 coordinates are specified as sending 〈θ, θ′〉Q1(K1)>(d+1:d+2,d+1:d+2) =

γ(θ′(1)θ(2) − θ(1)θ′(2)) for any θ, θ′ ∈ R2 for γ → ∞. That is the attention weights act as a
selector of the me(i) as

〈z1
i , z

1
j 〉Q1(K1)> = γ(j(1− 1(zi = δe))− i(1− 1(zj = δe))).

Consequently the soft attention weights act like hard attention and we get that A1(zi, zj) = 1(j =
me(i)). We further define the value tokens to be v1

j = j, so that o1
i = me(i). Using the skip

connection, we further augment the input to the second layer as z2
i =


z1
i

i
me(i)

1− 1(zi = δl)

.
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Second transformer layer: The second transformer layer is constructed in a similar way as the
first layer, however, it’s goal is to extract ml(i). We are going to assume that each example token
can also be treated as a label token (e.g. by adding the indicator of example delimiter to the indicator
of label delimiter in the previous layer), so that in the case that there are no label tokens between two
example tokens we have me(i) = ml(i). Further, for any xi it also holds that me(i) = ml(i) and
for any yi it will hold that ml(i) > me(i). This will allow us to distinguish between xi tokens and
yi tokens, which is important for computing the necessary probabilities for the proof of Theorem 8.
We also extend the input z3

i to contain the following

z3
i =



z1
i

i
me(i)
ml(i)

ml(i)me(i)
m2
l (i)

m2
e(i)

m2
l (i)me(i)

m2
e(i)ml(i)

0


.

This is easily accomplished by the MLP at in the second layer, following the attention.

Third attention layer: In the third attention layer we are going to check for consistency of the
positions on all separator tokens. Suppose that we have tokens z3

i and z3
i′ s.t. i ≤ i′. Then the

following must be satisfied:

me(i) = me(i
′) =⇒ ml(i) = ml(i

′) or ml(i) = me(i), (6)

that is there can not be more than one label token between two example tokens. To check this
consistency we use an attention head for ml(i) ≤ ml(i

′). The attention between zi, z′i is computed
as

〈z3
i′ , z

3
i 〉Q3(K3)> = γ(ml(i

′)−ml(i))

(
me(i)−me(i

′) +
1

2

)
(ml(i)−me(i))

+
γ

n
(i− i′)

for γ → ∞, where n is the max sequence length. Note that by construction it holds that me(i
′) ≥

me(i) so that this inner product is only∞ if the following hold together ml(i
′) > ml(i), ml(i) >

me(i) and me(i) = me(i
′). me(i) = me(i

′) implies that i and i′ are part of the same example,
ml(i) > me(i) implies that i is part of the answer sequence for that example and ml(i

′) > ml(i)
implies that there is <lsep> between token zi′ and token zi. The value vectors v3

i ∈ Rd+9 are set
as v3

i = ied+9. The resulting output of the attention layer is now o3
i′ = i′ed+9 iff the condition in

Equation 6 are met, otherwise o3
i′ = ied+9 for some i where the condition is violated. Next, we
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describe how the MLP acts on o3
i′ + z3

i′ (obtained using skip connection) as follows

o3
i′ + z3

i′ =



z1
i′

i′

me(i
′)

ml(i
′)

ml(i
′)me(i

′)
(ml(i

′))2

(mi(i
′))2

(ml(i
′))2me(i

′)
(me(i

′))2ml(i
′)

ι


→


z1
i′

i′

max(me(i
′),ml(i

′))
1(ι− i′ ≥ 0)

 =: z4
i′

Fourth transformer layer: The input to the third layer effectively gives a mapping from the
current token to the proposed start of an example and most recent label under the delimiters being
considered. Since our objective (2) evaluates candidate delimiters in terms of the probabilities of
the segmented sequences under a pre-trained distribution p0, we need to map the tokens z4

i to the
appropriate conditional probabilities related to the objective. In fact, we assume that the pre-training
process provides us with a transformer which can do this mapping, as we state formally below.

Assumption 3 (Conditional probability transformer) There exists a transformer which takes as
input a token sequence ζi, . . . , ζT , with each token ζi =

(
z1
i , i, j, δerr

)
for z1 ∈ Rd, i, j ∈ [T ], δerr, δdelim ∈

{0, 1}. It produces, ln pi, for each ζi s.t. δerr = 0, where

ln pi =


ln p0(zi|zi−1, ..., zj+1) if j < i− 1

ln p0(zi) if j = i− 1

0 if j = i.

Further if δerr = 1 it returns ln ν.

We note that since the basic language models are trained to do next word prediction through
log likelihood maximization, this is a very reasonable abstraction to assume from pre-training. As
a result, we assume that the fourth layer produces z5

i = ln pi.
Assumption 3 allows us to compute conditional probabilities of sequences according to their

segmentation in the following way. Consider the sequence

<begin>z1, z2,<lsep>, z3, z4<esep>, z5,<lsep><end>.

What we feed to the transformer from Assumption 3 is
z1

1

1
0
0

 ,


z1

2

2
0
0

 ,


<lsep>

3
3
0

 ,


z1

3

4
3
0

 ,


<esep>

5
5
0

 ,


z1

5

6
5
0

 ,


<lsep>

7
7
0

 .

The transformer, respectively, computes

p1 = p0(z1), p2 = p0(z2|z1), p3 = 1, p4 = p0(z3), p5 = 1, p6 = p0(z5), p7 = 1.
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Fifth transformer layer: Note that so far we have acquired the conditional probabilities of in-
dividual tokens, when conditioned on a prefix. Further, these conditional probabilities have the
following properties. If i is a delimiter then pi = 1. If i is such that i − 1 is a delimiter then
pi = p0(zi), that is the marginal of zi is returned and finally pi = ν for some small ν > 0
if there is some inconsistency in the token segmentation. Note that this ensures that inconsistent
token segmentations will have small probability. The fifth transformer layer just assigns uni-

form attention with the 0 matrix for QKT and use vj =

(
ln pj

1

)
. This results in an output

∑i
j=1(ln pj)/i at token i and z6

i =

(∑i
j=1(ln pj)/i

i

)
. Finally, we use two MLP layers to send

z6
i → z6

i (1)× z6
i (2) =

∑i
j=1(ln pj).

Lemma 12 For any token pair σ the output at token k of the transformer at attention head associ-
ated with σ satisfies the factorization in Equation 4.

The above lemma is a direct consequence of the construction of the transformer. We have already
seen how the fourth layer acts on the sequence

<begin>z1, z2,<lsep>, z3, z4<esep>, z5,<lsep><end>.

The final layer of the transformer will now output for token 7 the sum

7∑
i=1

ln pi = ln Π7
i=1pi = ln (p0(z1)× p0(z2|z1)× p0(z3)× p0(z4|z3)× p0(z5))

= ln(p0(z1, z2)p0(z3, z4)p0(z5)),

which is precisely the factorization in Equation 4 which is also used in the proof of Theorem 8.

Final layer to select across delimiters: Finally, the network implements the objective (2) for a
particular delimiter in one head. By using the MLP to implement maximization across heads from
the concatenated output values, we can identify the optimal delimiter.

Appendix D. Learning the the 1-sparse tokenized regression task

Here we give the construction of a transformer mechanism and sample complexity for the 1-sparse
tokenized regression task, to build intuition for general the s-sparse case. We start with the mecha-
nism before giving the sample complexity result.

D.1. Transformer mechanism for 1-sparse tokenized regression

Recall that the 1-sparse tokenized regression task is defined by a vector in x ∈ Rm and the hypothe-
sis class F consists of all basis vectors {ei}mi=1 in Rm. Each instance of the task is defined by fixing
a vector ef ∈ {ei}mi=1. The labels for the task are yi = 〈xi, e?f 〉 for some unknown f? ∈ F . The
i-th element of the sequence given to the transformer for the task is (xi,1, . . . , xi,m, yi), where xi,j
denotes the j-th coordinate of the vector xi. We now describe how ICL can learn the above task, by
using 1 head per layer and 4 attention layers.

We begin by stating a useful lemma which will allow us to set attention weights between any
two tokens zi, zj to 0 by only using positional embedding dependent transformations.
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Lemma 13 For any given token embeddings {z̄α}α∈[mn] ∈ Rd, there exist embeddings {z`α}α∈[mn] ∈
R(d+1)mn which only depend on the positions i ∈ [mn] such that for any two tokens z`α, z

`
β we have

〈z`α, z`β〉Q`k(K`
k)> = c1

α,β + c2
α,β 〈z̄α, z̄β〉 ∈ R,∀α, β ∈ [nm].

Proof The first mn coordinates of z`α are set to

z`α(t) = 1(α = t), t ≤ mn.

We partition the remaining dmn coordinates into mn blocks, each consisting of d coordinates. The
α-th block equals z̄α and the remaining blocks are equal to 0, that is:

z`α(tmn+ 1 : tmn) = 1(α = t)z̄α, d− 1 ≥ t ≥ 1.

We now describe Q`k ∈ R(d+1)(mn)×(d+1)(mn). The first mn columns act on z`i by sending it to the
vector with β-th coordinate c1

α,β . This is done by setting Q`k(α, β) = c1
α,β , where α, β ≤ mn and

Q`k(α, β) = 0 if α ≤ mn < β. The remaining dmn columns are partitioned into mn blocks of size
d, similarly to how the embedding of z`α is handled. The d entries in the α-th row block and the β-th
column block are constant and equal c2

α,β , that is

Q`k(s, t) = c2
α,t, s ∈ [αmn+ 1, (α+ 1)mn], t ∈ [βmn+ 1, (β + 1)mn].

We now have that the vector (z`α)>Q`k ∈ R(d+1)(mn) has coordinates in its β-th block equal to
c2
α,β z̄α, that is

(z`α)>Q`k(βmn+ 1 : βmn) = c2
α,β z̄α.

The key matrix K`
k ∈ R(d+1)(mn)×(d+1)(mn) now only needs to select the appropriate entries from

our query embedding. That is the first mn coordinates of (K`
k)
>z`β(1 : mn) = eβ and on the

remaining dmn coordinates the key matrix acts as the identity.

Notation for embedded tokens. Following the notation in Lemma 13, we use the notation x̄i,j
and ȳi to denote the input embeddings of xi,j and yi respectively, such that these embeddings satisfy
Assumption 2. This helps in clearly distinguishing the input embeddings from the representations
x`i,j and y`i which are subsequently constructed at layer ` of the transformer architecture.

Recall that Assumption 2 gives approximate orthogonality of the embeddings in the first layer
of the transformer. We note that the assumption is not hard to satisfy, e.g., one can use the ”bucket”
construction described right after the assumption in Section 5. Other possible embeddings include
a Random Fourier Feature approximation to a Gaussian kernel with appropriate bandwidth. In fact,
since the lemma only requires only approximate orthogonality, we can further assign each bucket in
the bucket embedding to a random Gaussian vector in O(τ2) dimensions and obtain the same result
with dimension Õ(τ2) with high probability. We now give the construction of a transformer for this
learning task, assuming the availability of such an embedding satisfying Assumption 2 in Rdε for
some dε.
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Construction of the first transformer layer. We now specify the first transformer layer, by speci-
fying the value vectors and the attention weights. We begin with the following result for the attention
weights:

Lemma 14 There exists a setting for the query and key matrices such that the following holds for
any ε̄ > 0. ∣∣∣∣A1(yi, xi,j)−

exp(〈ȳi, x̄i,j〉)∑m
s=1 exp(〈ȳi, x̄i,s〉)

∣∣∣∣ ≤ ε̄ (7)

A1(yi, xi′,j) ≤
ε̄

mn
, A1(yi, yi′) ≤

ε̄

mn
∀i and∣∣A1(xi,j , xi,j)− 1

∣∣ ≤ ε̄, A1(xi,j , xi′,j′) ≤
ε̄

mn
∀(i, j) 6= (i′, j′).

Further, the entries of the query and key matrices do not exceed O(log((mn)/ε̄).

Proof Recall that WLOG we take the norm of any z̄α from Lemma 13 to be ‖z̄α‖ ≤ 1, α ∈ [mn].
Further, from the construction in Lemma 13, because we add the index of the embedding as a
standard basis vector, it holds that ‖z1

α‖ ≤
√

2. We use Lemma 13 with c2 ≡ 1. We also set
c1 ≡ log(ε̄/(mn)) − 2 for all pairs (yi, yi′), (yi, xi′,j) and (xi,j , xi′,j′) where i′ 6= i, j′ 6= j, and
zero otherwise. Since |〈y1

i , x
1
i′,j〉Q1(K1)> | ≤ ‖yi‖‖xi′,j‖ ≤ 2 it follows that 〈y1

i , x
1
i′,j〉Q1

k(K1
k)> ≤

log(ε̄/(mn)). This impliesA1(yi, xi′,j) ≤ ε̄
mn and a similar argument shows thatA1(yi, yi′) ≤ ε̄

mn .
Further, we have ∣∣∣∣A1(yi, xi,j)−

exp(〈ȳi, x̄i,j〉)∑m
s=1 exp(〈ȳi, x̄i,s〉)

∣∣∣∣
=

exp(〈ȳi, x̄i,j〉)∑m
s=1 exp(〈ȳi, xi,s〉)

−A1(yi, xi,j)

≤ exp(〈ȳi, x̄i,j〉)∑m
s=1 exp(〈ȳi, x̄i,s〉)

− exp(〈ȳi, x̄i,j〉)∑m
s=1 exp(〈ȳi, x̄i,s〉) + ε̄

≤ ε̄.

The final set of inequalities for A1(xi,j , xi′,j′) and A1(xi,j , xi,j) follow in the same way as above.

Lemma 14 shows how we can have attention weights that only depend on inner products be-
tween tokens within an example, and each xi,j token only attends to itself, while the yi attends to all
the tokens in xi with different weights. Next, the value transformation is chosen as the map which
sends any x1

i,j ∈ Rdin to v1
i,j ∈ Rdin+m, where the first din coordinates of v1

i,j are equal to x1
i,j and

the remaining m coordinates are equal to the basis vector ej ∈ Rm. We will shortly see how ICL
learns a hypothesis consistent with all examples but the main idea is that the consistent hypothesis
will have the highest weight within the lastm coordinates of the vector

∑n
i=1

∑m
j=1A

1(yi, xi,j)v
1
i,j ,

that is the sum of the output vectors associated with each of the answer tokens yi, i ∈ [n], after the
attention layer has been applied.
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Let v1
i,m+1 = 0. Now the outputs o1

i,j ∈ Rdin+m of self-attention at the first layer satisfy for any
choice of norm ‖ · ‖

‖o1
i,j − v1

i,j‖ ≤ ε̄,

∥∥∥∥∥∥o1
i,m+1 −

m∑
j=1

A1(yi, xi,j)v
1
i,j

∥∥∥∥∥∥ ≤ ε̄. (8)

We now argue that output from the yi tokens identifies all positions j such that |xi,j − yi| ≤ ε.

Lemma 15 (Generalization of Lemma 9) Given an example i, let Ji = {j : |xi,j − yi| ≤ ε},
and let f? ∈ [m] be such that yi = xi,f? . Under Assumption 2, for any m ≥ 2, the output of the
first layer satisfies that for any i ∈ [n]:

o1
i,m+1(din + f?) ≥ max

j∈[m]\Ji
o1
i,m+1(din + j) +

1

4(m+ 1)
,

if ε̄ in Equation 7 satisfies ε̄ ≤ 0.07/(m+ 1). Further, it holds that

o1
i,m+1(din + f?) ≥ max

j∈Ji
o1
i,m+1(din + j)− ε̄.

Proof By Equation 8, we know that under Assumption 2, for any sample i and index j /∈ Ji,
A1(y1

i , x
1
i,j) ≤ ε̄+ e1/(2τ)/Zi ≤ ε̄+ e1/2/Zi, where Zi is denominator in Equation 7. On the other

hand, A1(yi, yi) = A1(yi, xi,f?) ≥ e/Z − ε̄, under Assumption 2. Hence, we see that

o1
i,m+1(din + f?)− max

j∈[m]\Ji
o1
i,m+1(din + j) ≥ e− e1/2

Zi
− 2ε̄ ≥ 0.39e

Zi
− 2ε̄,

where the second inequality uses m ≥ 2. Since Zi ≤ e(m+ 1) under our definition of the attention
weights, we further get

o1
i,m+1(din + f?)− max

j∈[m]\Ji
o1
i,m+1(din + j) ≥ 0.39

m+ 1
− 2ε̄ ≥ 1

4(m+ 1)
,

for any ε̄ ≤ 0.07/(m+ 1).
For the second claim of the lemma we note Lemma 14 implies that

o1
i,m+1(din + f?) = A1(yi, xi,f∗) ≥

exp(〈ȳi, x̄i,f?〉)∑m
s=1 exp(〈ȳi, x̄i,s〉)

− ε̄

=
e∑m

s=1 exp(〈ȳi, x̄i,s〉)
− ε̄.

Further, for any j ∈ Ji we have

o1
i,m+1(din + j) = A1(yi, xi,j) ≤

exp(〈ȳi, x̄i,j〉)∑m
s=1 exp(〈ȳi, x̄i,s〉)

≤ e∑m
s=1 exp(〈ȳi, x̄i,s〉)

.

Combining the two inequalities finishes the proof.

We assume that the following MLP layer acts as the identity and x2
i,j = o1

i,j , ∀j ∈ [m + 1], where
we take x2

i,m+1 ≡ y2
i . Notice that the embedding dimension changes from din in the first layer to

din +m for the second layer.
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Second transformer layer. For inference we set the attention weights in the second attention head
in the following way, which is permitted by Lemma 13:

|A2(x2
i,j , x

2
i,j)− 1| ≤ ε̄, A2(x2

i,j , y
2
i′) ≤

ε̄

mn
,A2(y2

i , x
2
i′,j) ≤

ε̄

4(mn)2
∀i′ ≤ i

|A2(y2
i , y

2
t )− 1/i| ≤ ε̄

2mn
, ∀t ≤ i.

(9)

In words, the xi,j tokens only attend to themselves again, while yi attends uniformly to all the
previous labels, including itself. This is achieved by setting c2 to be one for all (xi,j , xi,j) pairs
and zero everywhere else. c1 is set to zero for (xi,j , xi,j) pairs and (yi, yt) pairs with t ≤ i, and
log(ε̄/mn) − 2 otherwise. We set v2

i,j = o1
i,j to be the output of the first transformer layer. This

construction yields the following lemma on the second layer outputs, which effectively aggregate
across all examples in positions corresponding to the labels yi.

Lemma 16 The construction of the first transformer layer and the attention weights in Equation 9
imply ∥∥∥∥o2

i,j −
(
x1
i,j

ej

)∥∥∥∥ ≤ 2ε̄, j ∈ [m],∥∥∥∥∥o2
i,m+1 −

1

i

i∑
t=1

o1
t,m+1

∥∥∥∥∥ ≤ ε̄.
(10)

Proof For the first bound we note that

‖o2
i,j − v2

i,j‖ ≤ ε̄ and
∥∥∥∥o1

i,j −
(
x1
i,j

ej

)∥∥∥∥ ≤ ε̄,
where the first inequality follows from Equation 9 and the second inequality follows from Equa-
tion 8. A triangle inequality now shows the first part of Equation 10. For the second part we have

o2
i,m+1 =

∑
t≤i,j≤m

A2(y2
i , x

2
t,j)v

2
t,j +

∑
t≤i

A2(y2
i , y

2
t )v

2
t,m+1

=
∑

t≤i,j≤m
A2(y2

i , x
2
t,j)v

2
t,j +

∑
t≤i

A2(y2
i , y

2
t )o

1
t,m+1

This allows us to further conclude that∥∥∥∥∥o2
i,m+1 −

1

i

i∑
t=1

o1
t,m+1

∥∥∥∥∥ ≤∑
t≤i

∣∣∣∣1i −A2(y2
i , y

2
t )

∣∣∣∣ ∥∥ot,m+1
∥∥

+
∑

t≤i,j≤m
A2(y2

i , x
2
t,j)‖o1

t,j‖ ≤
i
√

2ε̄

2mn
+

√
2ε̄

4mn
≤ ε̄

where in the last inequality we have used the fact that ‖x1
i,j‖ ≤ 1, ‖y1

i ‖ ≤ 1,∀i, j and hence
‖o1
i,j‖ ≤

√
2, ∀i, j.

We assume that the following MLP acts as the identity mapping on the first d coordinates of
the value vectors and then sends the remaining m coordinates to the basis vector corresponding to
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the index with highest value. That is, MLP2o2
i,m+1 = (v efi), with v ∈ Rdin equal to the first din

coordinates of o2
i,m+1, and fi = argmaxj∈[m] o

2
i,m+1(j). Ties are broken arbitrarily but consistently.

In particular, together with the construction of the attention weights at the previous layer we
have the following

Lemma 17 For ε̄ ≤ e
16(m+1)n it holds that∥∥∥∥x3

i,j −
(
x1
i,j

ej

)∥∥∥∥ ≤ 2ε̄, j ∈ [m], y3
1,i(d+ 1 : d+m) = efi ∈ Rm, fi ∈ Jt, ∀t ≤ i. (11)

Proof First,
∥∥∥∥x3

i,j −
(
x1
i,j

ej

)∥∥∥∥ ≤ 2ε̄, j ∈ [m] follows from Equation 10. To show fi ∈ Jt, ∀t ≤ i

we first argue that there is a sufficient gap between 1
i

∑i
t=1 o

1
t,m+1(fi) and 1

i

∑i
t=1 o

1
t,m+1(j) for

any j for which there exists t ≤ i s.t. j 6∈ Jt. Assume that there exists t ≤ i s.t. fi 6∈ Jt. Due to the
first part of Lemma 15, it holds that o1

t,m+1(din + f?) ≥ o1
t,m+1(din + fi) + e

4(m+1) . Further for all
t ≤ i it holds that o1

t,m+1(din + f?) ≥ o1
t,m+1(din + fi) − ε̄ due to the second part of Lemma 15.

This implies that for our choice of ε̄∑
t≤i

o1
t,m+1(din + f?) >

∑
t≤i

o1
t,m+1(din + fi) +

e

4(m+ 1)
− iε̄

≥
∑
t≤i

o1
t,m+1(din + fi) +

e

8(m+ 1)
,

for any m ≥ 2, n ≥ 2. Since ‖ · ‖∞ ≤ ‖ · ‖ in Equation 10, we further get

o2
i,m+1(din + f?) ≥ 1

i

∑
t≤i

o1
t,m+1(din + f?)− ε̄

≥ 1

i

∑
t≤i

o1
t,m+1(din + fi) +

e

i8(m+ 1)
− ε̄

≥ o2
i,m+1(din + fi) +

e

i8(m+ 1)
− 2ε̄

≥ o2
i,m+1(din + fi),

where the last inequality follows form the setting of ε̄. This contradicts the maximality of fi for
example i, which completes the proof.

In the next section, we show that this aggregation across examples followed by the maximization
selects some coordinate such that |xi,j − yi| ≤ ε for all examples i in the context, and that any such
hypothesis has a small prediction error on future examples in this task. That is, the first two layers
identify an approximately correct hypothesis for the task.

Inference with learned hypothesis. Finally we explain how to apply the returned hypothesis fi
to the next example. This will also describe how to do inference with the hypothesis fn on the
n+ 1-st example. The attention pattern required here is a bit different in that each xi,j only attends
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to the previous label yi and itself. Q3
1(K3

1 )> only acts on coordinates [d+ 1 : d+m] as the identity
and sends everything else to 0. In particular, the unnormalized attention weights are

exp(〈x3
i+1,j , y

3
i 〉Q3(K3)>) = exp(〈ej , efi〉) = exp(1(fi = j))

exp(〈x3
i+1,j , x

3
i+1,j〉Q3(K3)>) = exp(〈ej , ej〉) = e

exp(〈x3
i+1,j , x

3
i+1,j′〉Q3(K3)>) ≤ ε̄

mn

This results in attention values

∣∣∣∣A3(x3
i+1,j , y

3
i )− 1(fi = j)

1

2
− (1− 1(fi = j))

1

1 + e

∣∣∣∣ ≤ ε̄, (12)

that is we approximately have

A3(x3
i+1,j , y

3
i ) ≈

{
1
2 fi = j

1
1+e <

1
2 otherwise

The remaining attention outputs are not used and hence not specified here. The value vectors in R2

are set as

v3
i,j = 2

(
xi,j
0

)
, v3
i,m+1 = 2

(
0
1

)
.

Notice that this requires access to the raw input token, which can be done by either providing a skip
connection from the inputs, or by carrying the input token as part of the embedding through all the
layers at the cost of one extra embedding dimension. As a result, for the index fi selected at the end
of example i, we have that ∥∥o3

i+1,fi
−
(
xi+1,fi , 1

)∥∥ ≤ ε̄,
and for any other j ∈ [m] we have o3

i+1,j(1) ≤ 1
1+e + ε̄ in the second coordinate. The next MLP

layer thresholds the second coordinate of o3
i+1,j so that

x4
i+1,j =

(
xi+1,j ,1(j is consistent with f? up to example i)

)
.

The above is possible as long as 2ε̄ ≤ 1
2 −

1
1+e . The final attention and MLP layers are used to copy

the x4
i+1,j token with 1 in the second coordinate to the m-th token of the i + 1-st example, so that

the transformer outputs the prediction at the end of each example sequence. This can be done by
using the mov function described in Section 3.1 of Akyürek et al. (2022).

A summary of this construction can be found in Figure 2.

D.2. Sample complexity

Let the target hypothesis be f?, that is we assume, yi = f?(xi),∀i ∈ [n]. We are going to analyze
the error of the hypothesis returned by ICL after m examples. From Lemma 15, we know that the
true hypothesis f? has a large value in the output of the first layer, in the coordinate d + f?, at
each example i. Suppose our construction identifies the hypothesis to make the prediction with,
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after seeing i examples. Then if fi makes an incorrect prediction (that is |yi′ − fi(xi′)| ≥ ε for
some i′ ≤ i) on even one of these i examples, the output in coordinate d + fi is guaranteed to be
smaller than in d+ f? by Lemma 15. Consequently, the hypothesis fn returned after n examples is
guaranteed to have an error at most ε on each of the n examples in context. We now show that this
implies a risk bound on the hypothesis fn.

Lemma 18 Let pn = P(|fn(x) − f?(x)| ≤ ε) be the probability of the returned hypothesis
deviating from f? by more than ε on any example. Then with probability 1 − δ it holds that
pn ≥ 1− 20 log(m/δ)

3n .

Proof Fix any hypothesis f . Let Xi denote the Bernoulli random variable indicating the event that
|f(xi)−f?(xi)| ≤ ε and pf = P(|f(x)−f?(x)| ≤ ε). We compute the probability that this hypoth-
esis is potentially returned by the transformer which is equivalent to the event that

∑n
i=1Xi ≥ n.

P(
n∑
i=1

Xi ≥ n) = P

(
n∑
i=1

Xi ≥ npf + 2
√
npf (1− pf ) log(1/δ) +

4

3
log(1/δ)

+ n(1− pf )− 2
√
npf (1− pf ) log(1/δ)− 4

3
log(1/δ)

)
≤ δ,

as long as n(1−pf )−2
√
npf (1− pf ) log(1/δ)− 4

3 log(1/δ) ≥ 0. We note that Cauchy-Schwartz
implies

n(1− pf )− 2
√
npf (1− pf ) log(1/δ)− 4

3
log(1/δ) ≥

n(1− pf )

2
− 4

3
log(1/δ)− 2pf log(1/δ)

≥
n(1− pf )

2
− 10

3
log(1/δ)

Finally, we note that pf ≤ 1− 20 log(1/δ)
3n implies n(1−pf )

2 − 10
3n log(1/δ) ≥ 0. Taking a union bound

over all possible f and applying with f = fn, so that pfn = pn completes the proof.

Theorem 19 For any ε > 0 there exists an embedding of xi,j , yi,∀i ∈ [n], j ∈ [m] in RO(1/ε)

such that for n = Ω(log(m/ε)/ε) it holds that E[|fn(x)− f?(x)|] ≤ 2ε, where fn is the hypothesis
returned by ICL.

Proof We use the embedding into d1/εe buckets, as mentioned in the previous section together
with the construction of the transformer to satisfy the conditions of Lemma 18. Conditioning on the
good event, A, in Lemma 18 implies that P(|fn(x)− f?(x)| > ε|A) ≤ ε and so under A, we have

E |fn(x)− f?(x)| ≤ εpn + 1− pn ≤ 2ε,

where the second inequality follows from our condition on n.
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Appendix E. s-sparse Tokenized Regression

In this section we study the general s-sparse case defined in Definition 5. Recall that the hypothesis
class now consists of f = (j1, . . . , js) ∈ [m]s, that is each hypothesis selects s out of the m
coordinates of x. We begin by making the following simple observation under Assumption 2: if
j ∈ f? then for any i it holds that 〈x̄i,j , ȳi〉 ≥ 3/4, while if j is not part of a consistent policy
then we have 〈x̄i,j , ȳi〉 ≤ 1/4, where we recall that x̄i,j , ȳi are the input embeddings satisying
Assumption 2 as defined in the previous section.

Lemma 20 Under Assumption 2 with τ ≥ 2s we have that for any C ⊆ f? and, j ∈ f? \ C,
we have 〈x̄i,j , ȳi −

∑
j′∈C x̄i,j′〉 ≥

3
4 , while if |xi,j − xi,j′ | ≥ ε for all j′ ∈ f? then we have

〈x̄i,j , ȳi −
∑

j′∈C x̄i,j′〉 ≤
1
4 .

Proof Since ȳi =
∑

j∈f? x̄i,j , for any j ∈ f? \ C, we have〈
x̄i,j ,

∑
j∈f?\C

x̄i,j

〉
≥ 〈x̄i,j , x̄i,j〉 −

s

2τ
≥ 3

4
,

where the first inequality follows from Assumption 2, since any token which does not have an inner
product of 1 with xi,j has the inner product at least −1/(2τ). The last equality follows from the
precondition τ ≥ 2s in the lemma. On the other hand, for any token j which is not ε-close to any
token in f?, the inner product is at most s/(2τ) by a similar argument, which completes the proof.

We proceed to give a construction which will use O(m) layers with one head per layer. The
idea behind the construction is to learn each coordinate of a single consistent hypothesis in F . We
note that it is not possible to directly take the approach in the 1-sparse task to learn each coordinate
in f? independently now, unless there is a unique consistent hypothesis with high probability. As
described in Section 5, we follow an iterative deflation approach to avoid this issue.

Let C`i denote the subset of coordinates of a consistent hypothesis identified up to layer ` and
example i. We embed y`i , x

`
i,j ∈ R(d+m+1)mn in the following way. First we take the embeddings

x̄i,j , ȳi ∈ Rd and extend them to x̄i,j , ȳi ∈ Rd+m so that the first d coordinates again equal the
original embeddings x̄i,j , ȳi ∈ Rd from Assumption 2 and the remaining coordinates are as follows,
if coordinate j ∈ C`i , then ȳi(d + j) = 0, otherwise ȳi(d + j) = −Cε̄, where Cε̄ is a constant
depending only poly-logarithmically on an accuracy parameter ε̄. Finally x̄i,j(d + 1 : m) = ej .
Now we take these d + m dimensional vectors and apply the same transformation in the proof of
Lemma 13 to them, which results in a (d+m+ 1)mn dimensional embedding.

The query and key matrices are set so that 〈y`i , x`i,j〉Q`(K`)> = 〈ȳi(d+ 1 : m), x̄i,j(d+ 1 : m)〉

and 〈y`i , y`i 〉Q`(K`)> = 0. The value vectors are set to v`i,j =

(
−x̄i,j(1 : d)
−1

)
for j ≤ m and

v`i,m+1 =

(
ȳi(1 : d)

1

)
.

Notational remarks. For the remainder of this section, we use the notation x̄i,j , ȳi to refer to
the d + m dimensional vectors described above, as opposed to just the embedding provided by
Assumption 2 for convenience. We also define the embedding map emb(v, i, j) which takes a
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vector v ∈ Rd+m and applies the transformation of Lemma 13 for the block α = (i, j) to this
vector. That is, it pads the vector with an mn dimensional indicator of the position (i, j) and also
places the vector v in the (i, j)-th block.

Lemma 21 There exists a setting for the query, key and value matrices at layer ` so that given the
embeddings y`i and x`i,j , i ∈ [n], j ∈ [m] it holds that∥∥∥∥∥∥o`i,m+1 −

 1
|C`i |+1

(
ȳi(1 : d)−

∑
j∈C`i

x̄i,j(1 : d)
)

1
|C`i |+1

∥∥∥∥∥∥
∞

≤ ε̄

d
, o`i,m+1 ∈ Rd+1

∥∥∥∥o`i,j − (−x̄i,j(1 : d)
−1

)∥∥∥∥
∞
≤ ε̄

d
, o`i,j ∈ Rd+1.

Proof To show the claim of the lemma we only need to compute the attention weights from the
`-th attention layer. First, using Lemma 13 we can set A`(x`i,j , x

`
i,j) ≥ 1− ε̄

d , which, together with
the value vector choice, shows the second inequality of the lemma. If j 6∈ C`i then the construction
implies

〈y`i , x`i,j〉Q`(K`)> = 〈ȳi, x̄i,j〉 ≤ s− Cε̄,

where for the inequality we use 〈ȳi(1 : d), x̄i,j(1 : d)〉 ≤ s Further, using Lemma 13, we can also
set

〈y`i , y`i 〉Q`(K`)> = 0.

Finally, we want to ensure (nearly) uniform weights for all consistent examples in C`i and so we
enforce 〈y`i , x`i,j〉Q`(K`)> = 0 by using Lemma 13. We set Cε̄ = s + log(dmn/ε̄ + s) and this
implies A`(y`i , x

`
i,j) ≤ ε̄

dmn . Thus for any j ∈ C`i we have∣∣∣∣A`(y`i , x`i,j)− 1

|C`i |+ 1

∣∣∣∣ =

∣∣∣∣∣A`(y`i , x`i,j)− exp(0)∑
j∈C`i

exp(0) + exp(〈y`i , y`i 〉Q`(K`)>)

∣∣∣∣∣ ≤ ε̄

d
,

which completes the claim of the lemma.

Lemma 21 shows that we can ”deflate” yi by subtracting all consistent coordinates which have
been identified so far. Next, we are going to use the construction for the 1-sparse task on i-th
example y`+1

i ≈ y1
i −

∑
j∈C`i

x1
i,j and x`+1

i,j = x1
i,j . We make a slight modification to the outputs of

the `-th attention layer by setting

o`i,m+1 =

(
o`i,m+1

ȳi(d+ 1 : m)

)
o`i,j =

(
o`i,m+1

x̄i,j(d+ 1 : m)

)
.

This can be achieved using the skip-connection and appropriate padding of oi,m+1. However, to
simplify the argument we avoid describing this operation. We assume that the MLP layer after the
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`-th attention layer acts on o`i,j in the following way, it sends o`i,j → 1
o`i,j(d+1)

o`i,j . Further, it acts on

the coordinates corresponding to ȳi(d+1 : m) by sending−Cε̄ to 0 and 0 to−Cε̄. This can be done
by first adding 1 (as seen from the proof of Lemma 21Cε̄ > 1) to all coordinates, then using a relu to
clip all remaining −Cε̄ to 0, and finally multiply the remaining positive coordinates by −Cε̄ again.
This operation is needed to take the complement of C`i so that all consistent coordinates which have
already been added to C`i can be removed from consideration. We note that both these operations
actually need a 2-layer MLP, however, for simplicity we assume that these are implementable by the
MLP layer following the attention layer. We now describe the inputs x`+1

i,j and y`+1
i to the ` + 1-st

transformer layer:

x`+1
i,j = emb(x̄i,j), and y`+1

i = emb(wi), where∥∥∥∥∥∥wi(1 : d)− ȳi(1 : d) +
∑
j∈C`i

x̄i,j(1 : d)

∥∥∥∥∥∥
∞

≤ ε̄

d

wi(j) = −Cε̄1(j ∈ C`i ), d+ 1 ≤ j ≤ d+m.

(13)

Next, we choose Q`+1,K`+1 so that we have 〈x`+1
i,j , y

`+1
i 〉Q`+1(K`+1)> = 〈x̄i,j , ȳi〉 This implies for

all j ∈ C`i 〈x
`+1
i,j , y

`+1
i 〉Q`+1(K`+1)> ≤ s−Cε̄ and otherwise |〈x`+1

i,j , y
`+1
i 〉Q`+1(K`+1)> − 〈x̄i,j , ȳi −∑

j∈C`i
x̄i,j〉| ≤ ε̄. Finding a consistent coordinate is now equivalent to recovering a consistent

hypothesis for the 1-sparse task, which we know how to do using exactly two attention layers as
described previously.

Lemma 22 Applying the first two layers of the 1-sparse task from Section D.1 to x`+1
i,j , j ∈

[m], y`+1
i as defined in Equation 13 yields: ∥∥∥∥o`+3

i,j −
(
x`+1
i,j

ej

)∥∥∥∥
∞
≤ 2ε̄

d∥∥∥∥∥∥o`+3
i,m+1 −

1

i

i∑
t=1

∑
j∈[m]\C`t

A`+1(y`+1
t , x`+1

t,j )

(
x`+1
t,j

ej

)∥∥∥∥∥∥
∞

≤ 2ε̄

d

Proof We argue the first inequality in a similar way to Equation 10. For the second inequality we
can first argue that ∥∥∥∥∥∥o`+3

i,m+1 −
1

i

i∑
t=1

m∑
j=1

A`+1(y`+1
t , x`+1

t,j )

(
x`+1
t,j

ej

)∥∥∥∥∥∥
∞

≤ ε̄

d

in a similar way to how we argued for Equation 10, by using Lemma 13 to set A`+1(y`1t , x
`+1
t′,j ) ≤

ε̄
d((m+1)n)2

,∀t′ < t, j ∈ [m + 1]. Further, using the setting of Cε̄ from the proof of Lemma 21 we

have that A`+1(y`+1
t , x`+1

t,j ) ≤ ε̄
d(m+1)n , ∀j ∈ C

`
i . This now implies∥∥∥∥∥∥1

i

i∑
t=1

∑
j∈[m]\C`t

A`+1(y`+1
t , x`+1

t,j )

(
x`+1
t,j

ej

)
− 1

i

i∑
t=1

m∑
j=1

A`+1(y`+1
t , x`+1

t,j )

(
x`+1
t,j

ej

)∥∥∥∥∥∥
∞

≤ ε̄

d
.
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Combining with the above inequality for o`+3
i,m+1 finishes the proof.

Using Lemma 15 we have that for every j selected by some consistent hypothesisA`+1(y`+1
t , x`+1

t,j )

will exceed A`+1(y`+1
t , x`+1

t,j′ ), where j′ is not selected by any consistent hypothesis. Hence, this
two layer module identifies a consistent coordinate across the first i examples at example i by
Lemma 20. Furthermore, this coordinate cannot be one of the previously identified coordinates in
C`i by Lemma 22.

Let this new consistent coordinate be j`. We would like to add j` to C`i . This can be done using
two MLP layers and skip connections. We give a sketch of the construction below. Lemma 22 has
the consistent coordinate as the largest magnitude coordinate among [(d + m + 1)mn + 1, (d +
m + 1)mn + 1] of o`+3

i,m+1. Similarly to the 1-sparse construction the MLP can transform the last
[(d + m + 1)mn + 1, (d + m + 1)mn + 1] coordinates of o`+3

i,m+1 so that the MLP returns the
vector −ej` ∈ Rm. A skip connection from y`+1

i = emb(wi) now allows us to form the vector

emb

(
wi +

(
0
−ej`

))
. We note that the last m coordinates of wi +

(
0
−ej`

)
∈ Rd+m are such that

(
wi +

(
0
−ej`

))
(d+ j`) = −1(

wi +

(
0
−ej`

))
(d+ j) = −Cε̄, j ∈ C`i(

wi +

(
0
−ej`

))
(d+ j) = 0, j ∈ [m] \

(
C`i
⋃
{j`}

)
.

Add 1/2 to the coordinates in [d+ 1, d+m]. Next, we use another relu activation on each coordi-
nate. The resulting vector already satisfies that every coordinate j ∈ C`+4

i is equal to 0, and every
coordinate outside of the set is 1

2 . It remains to multiply the resulting vector by −2Cε̄ and add ȳi to
the first d coordinates using a skip connection. All of the above can be done using one additional
attention layer, together with an MLP. Since skip connections in the original transformer architec-
ture are only in between consecutive attention layers, we can implement the above by extending the
embedding of each y`+1

i , . . . , y`+4
i to have an additional d+m coordinates in which to store ȳi.

Applying the learned hypothesis. The above construction implies that after L = O(s) layers the
resulting yLi will contain exactly a set C`i of cardinality swhich contains only consistent coordinates.
Further, using the deflation construction, we can show the following.

Lemma 23 After L = O(s) layers it holds that |CLi | = s and further, there exists a bijection bi
from f? to CLi such that for any j ∈ f?, |xt,j − xt,bi(j)| ≤ ε, t ≤ i. The output yLi ∈ R(d+m+1)mn is
such that yLi = emb(wi) with wi(d+ j) = 0, ∀j ∈ CLi and wi(d+ j) = −Cε̄, ∀j ∈ [m] \ CLi .

Proof For the first part of the lemma we begin by showing that for any j′ ∈ CLi , there exists a
j ∈ f? such that |xi,j − xi,j′ | < ε. Suppose that this does not hold true, i.e., there is some j′

such that for all j ∈ f?, for which |xt,j − xt,j′ | ≥ ε for some t ≤ i. Lemma 20 implies that
〈x̄t,j′(1 : d), ȳt(1 : d)〉 ≤ 1

4 . On the other hand if j′ ∈ CLi then the construction implies that at some
layer `′ ≤ L it must have been the case that 〈x̄t,j′(1 : d), ȳt(1 : d)−

∑
j∈C`′t

x̄t,j(1 : d)〉 ≥ 3/4 for
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all t, otherwise j′ can not be added to C`′i as it is not consistent with f? on some round t and so it
would not be part of CLi as C`′i ⊆ CLi . This is now a contradiction as it implies

3

4
≤ 〈x̄t,j′(1 : d), ȳt(1 : d)−

∑
j∈C`′t

x̄t,j(1 : d)〉 ≤ 〈x̄t,j′(1 : d), ȳt(1 : d)〉+
s

2τ
≤ 1

2
,

where the second inequality follows from Assumption 2 as 〈x̄i,j′(1 : d), x̄i,j(1 : d)〉 > − 1
2s . This

shows that we can never add a coordinate which is not similar to some coordinate in f? across all
the examples till i.

We show that the map is injective as follows. Let j`0 some coordinate for which we have already
established the mapping j`0 → j ∈ f? at layer `0. Consider another candidate j`1 , for `1 > `0 such
that |xt,j`1 − xt,j | ≤ ε, that is j`1 can potentially be mapped to j as well on round t. We consider
two cases, first for j′ ∈ f? s.t. j′ 6= j we have |xt,j`1 − xt,j′ | > ε or j′ ∈ C`1−1

t already. In this case
we show that x̄t,j`1 (1 : d) is nearly orthogonal to ȳt(1 : d)−

∑
j∈C`1−1

t
x̄t,j(1 : d) so that xt,j`1 can

not be added at any layer after xt,j′ has been added:

〈x̄t,j`1 (1 : d), ȳt(1 : d)−
∑

j∈C`1−1
t

x̄t,j〉 =
∑

w∈C`1−1
t

〈x̄t,j`1 , x̄t,w〉 ≤
s

τ
,

where the last inequality follows as before together with the assumption |xt,j`1 − xt,j′ | > ε outside
of C`1−1

t . Next, if there exists some j′ ∈ f?, j′ 6∈ C`1−1
t such that |xt,j`1 − xt,j′ | < ε we can map

j`1 → j′ and add j′ to C`1t as long as the consistency property holds for all t′ ≤ t. Otherwise, there
exists a round t where |xt′,j`1 − xt′,j′ | > ε,∀j′ ∈ C`1−1

t and the argument above can be repeated.
Further, we note that the construction can add at least every j ∈ f? to CLi as the following is

always satisfied:

〈x̄i,j(1 : d), ȳi(1 : d)−
∑
s∈S

x̄i,s(1 : d)〉 ≥ 3

4
,∀j ∈ f?, ∀S ( f?,

unless S contains some coordinate j′ such that |xi,j − xi,j′ | ≤ ε for all i. That is, every j ∈ f?

is mapped to at least one coordinate in CLi . Taken together, each j ∈ CLi is mapped to exactly
one element of f? and each element of f? is mapped to some element of CLi . This establishes the
claim for the bijection. The second claim of the lemma follows just from the construction of the
transformer.

To use the returned y`i guaranteed by Lemma 23 for inference we first modify it in the following
way. We add the vector consisting of all 1s and then apply a relu on each coordinate. The resulting
vector now contains a consistent hypothesis in wi(d+ 1 : d+m). To apply the hypothesis we can
follow a similar construction to that of the final three layers from the 1-sparse token task.

E.1. Proof of Theorem 11

We treat f? and fn as two subsets of [m] with cardinality s. Lemma 23 implies that for every
example i ∈ [n], there is a bijection bn between fn and f? which maps any j ∈ f? to a j′ ∈ fn such
that |xi,j − xi,j′ | ≤ ε, i ∈ [n]. The same argument as in Lemma 18 shows the following.
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Lemma 24 For any x ∈ Rm, j ∈ f? let pn,j = P(|xj − xbn(j′)| ≤ ε). Then with probability 1− δ
it holds that pn ≥ 1− 20s log(m/δ)

3n .

Using the above lemma we can show the equivalent to the sample complexity bound for the index
token task.
Proof [Proof of Theorem 11] The same argument as in Theorem 19 can be used to show that for the
bijection guaranteed by Lemma 23 and the setting of n we have E[|xj − xbn(xj)|] ≤ 2ε, ∀j ∈ f?.
This implies the result of the theorem as

E[|fn(x)− f?(x)|] = E[|
∑
j∈f?

xbn(j) − xj |] ≤
∑
j∈f?

E[|xbn(j) − xj |] ≤ 2sε.

Redefining ε→ ε/s completes the proof.

Appendix F. Vector 1-sparse regression task

We now quickly discuss how to solve the vector version of the 1-sparse regression task, where
the transformer’s input is a sequence of examples (xi, yi)i∈[n], however, now xi ∈ Rm is a single
token, rather than being split into m tokens. The idea is to learn each bit of a consistent hypothesis
sequentially using a total of O(log(m)) attention layers. To do so we focus on recovering learning
a consistent hypothesis for example i as done in the first attention layer in the 1-sparse token task.
The remainder of the construction follows the ideas from the 1-sparse token task.

First attention layer. Unlike in the 1-sparse tokenized regression task, we can not represent a
single hypothesis by the respective token (even though it does still correspond to a coordinate in
x). Instead we assume that the value vector v1

i,1, for xi, in the first layer, contains 0 in its first m
coordinates and the following vector β1

i,1 ∈ Rm in the next m coordinates

β1
i,1(j) = 1(bit 1 of j equals 1).

The value vector v1
i,2 for yi is constructed similarly, with the first m coordinates equal to 0 again

and the second m coordinates equaling β1
i,2 ∈ Rm which is the complement of β1

i,1 in {0, 1}m. The
embeddings in the first layer are as follows. x1

i ∈ R(d+1)m contains the embedding of x̄i,j from
Assumption 2 in coordinates x1

i,1(d(j − 1) + 1 : dj). The remaining m coordinated are all set to
1. y1

i ∈ R(d+1)m is constructed similarly, where the first dm coordinates contain the embedding ȳi
from Assumption 2, repeated d times. The last m coordinates equal the last m coordinates of v1

i,2,
that is y1

i (dm + 1 : (d + 1)m) = v1
i,2(m + 1 : 2m). The query and key matrices Q1,K1 now

implement the following linear operation:

〈y1
i , x

1
i 〉Q1(K1)> = γ

m∑
j=1

β1
i,1(j)〈y1

i (d(j − 1) + 1 : dj), x1
i (d(j − 1) + 1 : dj)〉,

〈y1
i , y

1
i 〉Q1(K1)> =

γ

2

m∑
j=1

β1
i,1(j)〈y1

i (d(j − 1) + 1 : dj), y1
i (d(j − 1) + 1 : dj)〉.
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This is implemented in the following way, the query matrix Q is a diagonal matrix with Q(d(j −
1) + 1 : dj) = β1

i,1(j)Id×d. In the above γ = Θ(log(m/ε)) is a threshold parameter which will
turn the softmax into an approximate max. We do not specify the inner product 〈x1

i , ·〉Q1(K1)> as
the second layer embedding x2

i will be independent of the first layer.

Lemma 25 The inner product 〈y1
i , x

1
i 〉Q1(K1)> ≥ γ(1 − m

τ ) iff there exists at least one con-
sistent with f? hypothesis with first bit equal to 1. Further, if there is no such hypothesis then
〈y1
i , x

1
i 〉Q1(K1)> ≤ γmτ .

Proof Using the definition of the embeddings we have

〈y1
i , x

1
i 〉Q1(K1)> = γ

m∑
j=1

β1
i,1(j)〈ỹi, x̃i,j〉,

where x̃i,j , ỹi ∈ Rd are the initial embeddings from the 1-sparse task. From Assumption 2 we have

that 〈ỹ1
i , x̃

1
i,j〉 ≥ 1 if j = f?,

〈
y1
i , x

1
i,j

〉
≥ 0 if j is some other coordinate consistent with f? and

β1
i,j(j) = 1 iff the first bit of j equals 1. Hence we get an inner product of at least γ from f?, at

least 0 from any other consistent coordinate, and at least −1/τ from any inconsistent coordinates.
This implies the first claim of the lemma. For the second part we note that if there is no consistent
hypothesis with first bit equal to 1 then 〈ỹi, x̃i,j〉 ≤ 1

τ according to Assumption 2.

To keep the argument clean, we assume that the softmax acts as an argmax. As we have pointed
out, this can be achieved up to ε when setting γ = Θ(log(m/ε)). The output for the i-th answer
token, o1

i,2, now contains in its last m coordinates an indicator of which hypotheses are consistent,
when restricted to the value of the first bit. In particular, if there exists a consistent hypothesis then
o1
i,2(m+ 1 : 2m) = β1

i,1 and otherwise o1
i,2(m+ 1 : 2m) = β1

i,2.

Lemma 26 Let z ∈ Rm be some vector such that ‖z‖∞ ≤ c < ∞ and β ∈ {0, 1}m. Let z � β
denote the element-wise product of the two vectors. Then the operation z � β can be implemented
by a Relu MLP layer.

Proof Let e ∈ Rm be the all ones vector. The MLP applies the following operation Relu(z+ c(e−
β)− cβ)− c(e− β).

Using Lemma 26 the MLP acts on o1
i,2 by setting y2

i (d(j − 1) + 1 : dj) := o1
i,2(j)o1

i,2(d(j − 1) +

1 : dj), so that the first dm entries of y2
i only contain coordinates which are consistent with the

recovered bit in the first layer.

Second attention layer. In this layer we demonstrate how to learn the second bit of a consistent
hypothesis for example i, conditioned on the first bit contained in y2

i (m + 1 : 2m). The value
vectors are defined similarly to the first layer, using

β2
i,1(j) = 1(bit 2 of j equals 1),

and its complement β2
i,2 ∈ Rm. For the embeddings, x2

i = x1
i , and y2

i is as described above. Finally
we set K2 = K1 and Q2 is defined to act similarly to Q1, however, with respect to β2

i,1, that is:

〈y2
i , x

2
i 〉Q2(K2)> = γ

m∑
j=1

β2
i,1(j)〈y2

i (d(j − 1) + 1 : dj), x2
i (d(j − 1) + 1 : dj)〉.
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A result similar to Lemma 25 can now be shown, where the attention weight A2(yi, xi) ≈ 1
if there exists a consistent hypothesis with first bit set according to o1

i,2 and second bit equal to
1, otherwise A2(yi, yi) ≈ 1 and there exists a consistent hypothesis with first bit set according
to o1

i,2 and second bit equal to 0. Finally, we describe how the MLP is applied. First, we add
o1
i,2 + y2

i (dm+ 1 : (d+ 1)m) using the skip connection. This results in the following (assuming a
max, instead of a soft-max).

Lemma 27 The j-th coordinate of o1
i,2 + y2

i (dm + 1 : (d + 1)m) satisfies o1
i,2 + y2

i (dm + 1 :
(d+ 1)m) ≥ 2 iff the j-th hypothesis is consistent with f? on the i-th example.

Proof WLOG assume that A1(yi, xi) ≈ 1 and A2(yi, yi) ≈ 1 , so that the inner product in the
second layer has shown that there exists a consistent hypothesis with first two bits equal to 10.
From the construction it holds that o1

i,2 indexes all hypotheses with second bit set to 0. Further,
o1
i,2 indexes all hypothesis with first bit set to 1, and so under the assumption o1

i,2 + y2
i (dm + 1 :

(d+ 1)m) = o1
i,2 + o2

i,2 will have j-th coordinate greater than 2 if the j-th hypothesis is consistent
on the i-th example and has first two bits equal to 10.

We apply the following operation to o2
i,2 +y2

i (dm+1 : (d+1)m). First we subtract some threshold
2 > c > 1. Then we clip each negative coordinate to 0 and each positive coordinate to 1. Lemma 27
implies that the resulting vector indexes exactly all consistent hypotheses with first and second bit
set according to o1

i,2 and o2
i,2 respectively. Let this vector be y3

i (dm+ 1 : (d+ 1)m) ∈ Rm. We now
want to apply y3

i (dm + 1 : (d + 1)m) ∈ Rm to y1
i (1 : dm), similarly to how the first layer MLP

applied the consistent hypothesis to y1
i (1 : dm) as well. To do so we require an extra MLP layer.

Note that this can be achieved by adding another attention layer to carry out this operation.

Further layers. Replicating the construction for the second layer, but focusing on the b-th bit of
the hypothesis we can show the following

Lemma 28 AfterM = O(log(m)) layers it holds that yMi (dm+1 : (d+1)m)(j) = 1(j is consistent with f?).

One can now use the same type of construction as in the index token task to learn a hypothesis
which is consistent on all i examples seen so far and further use this hypothesis to do inference. The
sample complexity bound for this approach are similar to the one in Theorem 19. We also note that
this construction can be extended to handle the s-sparse index vector task as well, but we will not
go into details as the constructions required should not demonstrate any new ideas.

Appendix G. Experiments

G.1. 1-sparse tokenized regression experiments

We experiment with two settings for 1-sparse tokenized regression. In both settings the dimension-
ality of the problem is m = 5, that is each example xi consists of 5 tokens (xi,1, . . . , xi,5) together
with the answer token yi. The transformer architecture is the same for both tasks. We use 8 attention
layers, with masking future tokens, that is the only non-zero attention weights areAi(xi,j , xi′,j′) for
i ≥ i′, j ≥ j′. Each attention layer is follows by a layer-norm normalization and an MLP layer with
GeLU activation. Further, skip connections are used between the input to the attention layers and
the output of the layer-norm and MLP layers. The hidden size for the embeddings is d = 128, and
we use a single attention head per layer. Positional embeddings are learned. Predictions are done by
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a final MLP layer mapping the d-dimensional embeddings to a scalar. The training for both settings
uses the same hyper-parameters and optimizer. We use Adam as optimizer with the schedule used
in (Akyürek et al., 2022) and initial step-size set to 1e− 4. Initializing the network parameters also
follows Akyürek et al. (2022).

Training in both settings proceeds by generating example sequences (xi, yi)i∈[n], by first se-
lecting a fixed hypothesis f?, sampled uniformly at random from [m] and then sampling xi’s i.i.d.
from fixed distributions which we describe momentarily. The sequence for a single pre-training
iteration is then (xi, f

?(xi))i∈[n]. Pre-training proceeds in mini-batches of size 64, that is each
mini-batch has 64 sequences (xi, f

?(xi))i∈[n] sampled independently as we described above. We
use mean-squared loss over the sequence for pre-training in the following way:

L((xi, f
?(xi))i∈[n]; θ) =

1

n

n∑
i=1

(x8
i,5 − f?(xi))2,

where θ denotes the parameters of the transformer and x8
i,j is the output of the final MLP layer of

the transformer (in accordance with our index token task notation), that is we use the transformers
output after seeing the 5-th token in each example as the prediction, and the loss is taken as the
squared difference between this prediction and the 6-th token in each example. Finally, we note that
while f? is fixed for a sequence (xi, yi)i∈[n], we sample a fresh f? for each new sequence in the
mini-batch. This setup is identical to both Garg et al. (2022) and Akyürek et al. (2022). We train for
8000 epochs, where each epoch consists of 100 iterations, each one on a mini-batch of size 64.

The two settings we consider are in terms of the distribution over (xi, yi)i∈[n]. In the first
setting xi ∼ N (0, I5×5) and in the second setting xi ∼ Unif({+1,−1}5). These settings are
complementary to each other in the following way. In the Gaussian setting it is possible to learn
the hypothesis f? after a single ICL example almost surely. In the uniform over {−1, 1}m setting,
which refer to as the Rademacher setting, one needs to see Ω(log(m)) examples before f? can be
identified with high probability.

We plot the squared error at every example for a given sequence, attention at the last layer and
attention at layer 6. Plots are averaged over the mini-batch of size 64. For averaging we fix the
same f? over the full mini-batch. Results can be found in Figure 5, Figure 6, Figure 3. The figures
depicting attention in these plots are slightly different from the heatmaps in Section 6, however, they
represent the same results. On the x-axis we enumerate all tokens in the sequence and on the y-axis
we show the attention weight. We plot A(xi,6∗(i+1)−2, xi′,j′) for i ∈ [m], i′ ≤ i, j ∈ [n], that is the
attention of each inference token for example i to all other tokens preceding it. For the attention
plots at layer 8, the final layer, we also plot what the target indices are to have a reference on how
well the transformer tracks f?.

The transformer pre-trained on the Rademacher task only, exhibits very similar properties to the
mixed model discussed in Section 6. Perhaps, surprisingly, the model is able to achieve the same
performance on the Gaussian inference task as the mixed model, even though it has never seen
Gaussian examples.

The transformer pre-trained on the Gaussian only task, still retains the ability to learn from a
single example as demonstrated by Figure 5. However,the attention at layer 6 are less interpretable
compared to the mixed model and the Rademacher only model. The attention weights in the last
layer retain the nice properties from the other two models. The Gaussian model, however, performs
poorly on the Rademacher task as seen in Figure 6. We note that the attention weights at the last
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(a) Loss (b) Attention at 8 (c) Attention at 6

Figure 5: Train Gaussian, inference Gaussian.

(a) Loss (b) Attention at 8 (c) Attention at 6

Figure 6: Train Gaussian, inference Rademacher.

(a) Loss (b) Attention at 8 (c) Attention at 6

Figure 7: Train Rademacher, inference Gaussian.

(a) Loss (b) Attention at 8 (c) Attention at 6

Figure 8: Train Rademacher, inference Rademacher.
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Figure 9: Rademacher task attention spread

layer still behave similarly to the attention weights of the mixed model and the Rademacher model,
suggesting that the Gaussian model can still distinguish f?. We conjecture that the reason for the
poor performance is due to how the learned hypothesis is applied to examples for inference. In
particular, we expect that the Gaussian model, during pre-training, has learned to apply the inferred
hypothesis after the first example, however, this would be detrimental for the Rademacher setting,
as it is very unlikely that f? is identifiable after only a single example.

Finally in Figure 9 we show the behavior of the mixed model on a single Rademacher sequence.
The first 6 elements of the sequence from the figure are x1,1 = 1, x1,2 = 2, x1,3 = −1, x1,4 =
−1, x1,5 = −1, y1 = −1. At inference time for the second example, we show the attention weights
for example x1,4, which is token z10 in the sequence, spreads its attention uniformly on all consistent
hypothesis j ∈ {3, 4, 5} corresponding to tokens z8, z9, z10. This is again consistent with our
construction for inference. In our experiments we have observed that the attention is put on f? at
the earliest example i where the identification is possible, and this is why the averaged attention
plots at layer 8 are peaked, with some variance, at f?.

G.2. 3-sparse token task

The setting for the 3-sparse task is the same as for the 1-sparse task in terms of all parameters,
outside of sparsity. Further, training is done in the same way as the 1-sparse mixed task, with equal
mix of Gaussian and Rademacher examples. Loss and attentions are plotted in Figure 10. We
only show the attention and heatmap plots for the final layer. Unfortunately, there is no layer with
similar behavior to Layer 6 in the 1-sparse plots, which was consistent with our construction. All
observations for the final layer attention carry over from the 1-sparse task.

G.3. Segmentation

We make the following empirical observation: the performance of ICL is sensitive to the choice
of delimiter. In Figure 11 we show the quality of ICL using OpenAI’s GPT-3 model (known as
text-davinci-003) on a family of relational tasks and using a range of different delimiters. The
tasks in question are relational tasks, usually covering a type of “trivia” question. But we vary the
two delimiters and consider performance of the completion. Below are three example queries we
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(a) Loss (Gaussian), yi = xi,0 (b) Attention at layer 8 (Gaus-
sian)

(c) Heatmap at 8 (Gaussian)

(d) Loss (Rademacher). yi = xi,2 (e) Attention at 8 (Rademacher) (f ) Heatmap at 8 (Rademacher)

Figure 10: Loss and attention plots for 3-sparse tokenized regression for Gaussian (top) and Rademacher
(bottom) inputs. Loss drops to zero as soon as f? is determined, and attentions follow the construction of
Section 5. Indices 4, 10, 16, . . . are tokens where the label is predicted. In panels (b) and (e), these indices
attend to the index of f? in xi to predict yi correctly. The target indices line (blue) in panel (b) perfectly
overlaps with the attention spikes at tokens xi,0. In panel (d), the attention spikes largely overlap with target
indices, but there is some noise (see text). In panels (c) and (f), we plot a heatmap with the same indexing
as in Figure 3. These indices attend to all previous labels (indices 5, 11, 17, . . .) to aggregate a consistent
hypothesis across previous examples.
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(a) (b)

Figure 11: The accuracy of ICL over a range of tasks when we vary the choice of delimiter. On the
left figure, we vary the delimiter used to separate examples among {\n,/,but}, and on the right
we vary the delimiter used to separate x from y among {:,=>,is,is not}. The performance
is computed across four association tasks, we run each task 10 times (across different “training”
example sets), and for all the example delimiter tasks we use the label delimiter :, and for all the
label delimiter tasks we use the example delimiter \n.

provide to the model, and we consider the answer correct if the correct answer occurs within the
first 3 tokens of the response.

// scientist year of death
Albert Einstein => 1955 \n Isaac Newton => 1727 \n Johannes Kepler => ______
// famous actor year of birth
Leonardo DiCaprio is 1974 but Meryl Streep is 1949 but Dustin Hoffman is ______
// baseball team last won world series
Houston Astros is not 2017 / St. Louis Cardinals is not 2011 /

Boston Red Sox is not ______
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