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Abstract
We investigate the regret-minimisation problem in a multi-armed bandit setting with arbitrary

corruptions. Similar to the classical setup, the agent receives rewards generated independently from
the distribution of the arm chosen at each time. However, these rewards are not directly observed.
Instead, with a fixed ε ∈ (0, 1

2 ), the agent observes a sample from the chosen arm’s distribution
with probability 1− ε, or from an arbitrary corruption distribution with probability ε. Importantly,
we impose no assumptions on these corruption distributions, which can be unbounded. In this set-
ting, accommodating potentially unbounded corruptions, we establish a problem-dependent lower
bound on regret for a given family of arm distributions. We introduce CRIMED, an asymptotically-
optimal algorithm that achieves the exact lower bound on regret for bandits with Gaussian dis-
tributions with known variance. Additionally, we provide a finite-sample analysis of CRIMED’s
regret performance. Notably, CRIMED can effectively handle corruptions with ε values as high as
1
2 . Furthermore, we develop a tight concentration result for medians in the presence of arbitrary
corruptions, even with ε values up to 1

2 , which may be of independent interest. We also discuss an
extension of the algorithm for handling misspecification in Gaussian model.
Keywords: Multi-Armed bandit, Corruption neighbourhood, IMED, Robust estimation

1. Introduction
Multi-armed bandits are a widely-used statistical model in which an agent (or algorithm) interacts
with the environment by selecting actions based on past observations and receives a reward for each
chosen action. A classical objective is to minimise the regret, defined as the difference between the
rewards accumulated by the algorithm and those obtained by choosing the best action in hindsight
at each step. In this paper, we delve into the problem of sequential decision-making under partial
information, where the observations resulting from actions are susceptible to arbitrary yet stochastic
corruption. Specifically, we explore a variant of the stochastic multi-armed bandit problem with
unbounded stochastic corruption.

The algorithm is presented with K arms, or K unknown probability distribution from a given
family L, denoted by µ := (µ1, . . . , µK), where ∀a ∈ [K], µa ∈ L. When it selects an arm An

at time n, an independent sample, Yn, is drawn from the corresponding distribution µAn . This
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corresponds to the reward of the algorithm for pulling the chosen arm. However, unlike in the clas-
sical setup, Yn is not directly observed by the algorithm. Instead, the observations are subject to
corruption with a known probability ε ∈ (0, 0.5): at time n, the algorithm observes Yn ∼ µAn

with probability 1 − ε, and with probability ε, it observes a sample from an arbitrary distribution
HAn,n. Here, Hn := (H1,n, . . . ,HK,n) denotes the set of corruption distributions at time n, which
is assumed oblivious in that it can depend on the previous reward observations but not on the past al-
gorithmic actions. Further, we place absolutely no assumptions on the distributions H·,n. Following
the classical regret-minimisation setting, the algorithm’s goal in this partial-information setting is
to sequentially sample the arms to maximise the expected cumulative reward when the observations
are corrupted.

The bandit problem forms the theoretical cornerstone of modern Reinforcement Learning (RL)
and serves as the algorithmic foundation for recommender systems. As both bandit problems and
RL are increasingly finding practical applications, the question of robustness against corrupted or
externally perturbed observations has gained considerable significance. This is particularly rele-
vant because, in real-life applications such as finance, medicine, advertising, or recommender sys-
tems, algorithms often need to contend with corrupted data, as observations collected from multiple
sources are susceptible to measurement or recording errors and inaccuracies.

In finance, the observed payoff data frequently contains outliers due to data contamination
(Adams et al., 2019). In clinical research trials for new drugs and medical devices, outlier data
can lead to false positive interventions and conclusions (Thabane et al., 2013). In online platforms
and recommender systems, the ranking of products can get skewed by the appearance of small
number of fake users (Golrezaei et al., 2021). The classical corruption-oblivious bandit algorithms,
however, cannot effectively decide the arms to pull, when a possibly small fraction of the data may
be subject to measurement errors or corruption. Specifically, a recent line of works (Jun et al., 2018;
Liu and Shroff, 2019; Xu et al., 2021; Azize and Basu, 2023) show that one can make a classi-
cal bandit algorithms to incur linear regret by contaminating only a small amount of observations
(logarithmic on horizon or even lower). These findings motivate us to study the bandit setup in the
presence of arbitrary corruption, and design algorithms robust to it.

Researchers have broadly studied three types of settings: adversarial bandits (Auer et al., 1995,
2002b), stochastic bandits with bounded adversarial corruptions, in which an adversary shifts the
rewards under constraint on the total shift budget (Lykouris et al., 2018; Gupta et al., 2019; Zimmert
and Seldin, 2019), and more recently, unbounded stochastic corruption (Altschuler et al., 2019;
Mukherjee et al., 2021; Basu et al., 2022). To the best of our knowledge, there is no established
generic lower bound on regret in the context of unbounded stochastic corruptions, unlike in the
first two settings. Furthermore, there is no known algorithm capable of yielding an appropriate
upper bound on regret while also maintaining robustness. This paper aims to fill these two gaps by
investigating bandits with unbounded stochastic corruptions.

Regret. For µ ∈ LK , let m∗(µ) denote the mean of the optimal arm in µ (arm with the maxi-
mum mean), and let m(µa) denote the mean of arm a. For an arm a, let ∆a := m∗(µ) −m(µa)
denote the instantaneous mean regret incurred by pulling it. Recall that Yn denotes the independent
(uncorrupted) sample drawn from the distribution associated with arm An. Let Ya,j denote the jth

independent sample drawn from arm a.
Since in our setup, the observations are corrupted (while the rewards are uncorrupted), we define

the expected regret under corruption till time T as E [RT ] := E[
∑T

n=1 (m
∗(µ)− Yn)]. Here, the

expectation is with respect to all the randomness present in the system, including the impact of
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corruption on action selection. See also (Kapoor et al., 2019; Basu et al., 2022) for a similar notion
of regret. We further observe that E [RT ] =

∑K
a=1 E [Na(T )]∆a, where Na(T ) is the number of

pulls of the arm a till time T . Since ∆a’s are constant for a given µ and for the optimal arm(s)
∆a = 0, minimising the expected regret reduces to minimising the expected number of pulls of the
suboptimal arms E [Na(T )].
Notation. Let R and R+ denote the set of real numbers and non-negative real numbers, respectively,
and let P(R) denote the set of all probability distributions on R. For any set S, we denote by 2S

the set of subsets of S. For µ, n ∈ N, and Hn ∈ P(R)K , let µ ⊙ε Hn := (1 − ε)µ + εHn

denote the vector of distributions in µ corrupted by corruption distributions in Hn with corruption
proportion ε. We use a similar notation for each component µa, Ha,n ∈ P(R), i.e. µa ⊙ε Ha,n :=
(1 − ε)µa + εHa,n for a ∈ [K] and we call µa ⊙ε Ha,n a corrupted distribution. Additionally, by
HT, we denote the T ×K matrix of corruption distributions with {Hn : n ∈ [T ]} as rows. Finally,
we denote by G the set of all Gaussian distributions with variance 1, by φ the Gaussian pdf, and by
Φ the Gaussian CDF.

1.1. Contributions

In this paper, we investigate two question:
• Can we derive a problem-dependent lower bound on regret for a given set of reward distribu-

tions and the corresponding worst-case corruption distributions?
• Can we leverage this lower bound to design an asymptotically-optimal algorithm that is ro-

bust to unbounded stochastic corruptions?

In this section, we briefly describe the main contributions of this work.

1. A Generic Lower Bound on Regret: To the best of our knowledge, we establish the first instance-
dependent lower bound on regret that is applicable to any given family of reward distributions and
arbitrary corruption distributions (Section 2.1). Specifically, in Theorem 1, we demonstrate that
any algorithm performing well across all bandit instances within a given class must, in expec-
tation, pull each suboptimal arm at least Ω(log T ) times over the course of T trials. This result
aligns with the known Ω(log T ) problem-dependent lower bound in the classical setting (Lai
and Robbins, 1985). Moreover, when ϵ = 0, our proposed lower bound reduces to that of the
uncorrupted setting (Lai and Robbins, 1985; Burnetas and Katehakis, 1996).

2. An Impossibility Result: We demonstrate in Appendix B that constructing confidence intervals
for the mean of the true distribution in the presence of corruption, a classical problem in statistics,
is not feasible without prior knowledge of a bound on corruption probability ε. This resolves the
open problem discussed in Wang and Ramdas (2023, Remark 3) and also justifies the assumption
about the knowledge of ε in the current work (Remark 8).

3. An Analytical Quantifier of Hardness: The lower bound in Theorem 1 is in terms of an optimi-
sation problem that takes the given bandit instance µ as an input. In order to explicitly bring out
the structure of this problem and the hard corruption distributions for the given bandit instance,
we undertake an in-depth study for the specific setting of Gaussian reward distributions with
known variance, while still allowing for unbounded and arbitrary corruptions (see also Chen
et al. (2018)). For this setting, we characterise the hardest corruption distributions associated
with pairs of arms in µ that lead to the maximum regret in any algorithm. In addition, we show
that for each suboptimal arm a, ∆a should be at least 2Φ−1

(
1
2(1− ε)

)
for any algorithm to

3



AGRAWAL MATHIEU BASU MAILLARD

achieve a sub-logarithmic regret in presence of corruption, and also observe a non-convexity in
the lower bound (Section 2.3 and in Appendix D). These observations stand in stark contrast to
the classical bandit setup, necessitating a careful treatment in our analysis.

4. Algorithm Design: In Section 3, we leverage the formulation and properties of the lower bound
to propose an index-based algorithm, namely CRIMED (Corruption Robust IMED, Algorithm 1),
for unbounded corruptions and Gaussian reward distributions with known variance (we discuss
extension to misspecified Gaussian distributions in Appendix F). This is an extension of the
IMED Algorithm proposed by Honda and Takemura (2015), with two main changes in the index
design. First, it replaces the classical information-theoretic quantities that appear in the IMED
index with their pessimistic versions in order to account for the presence of corruptions. Second,
it uses median as a robust estimate for mean in the presence of corruption. In Section 3.2,
we give a finite-sample analysis of the regret of CRIMED (Theorem 2). Notably, CRIMED is
asymptotically (as T → ∞) optimal for any corruption level ε < 1

2 , which is a significant
improvement over the previous works of Kapoor et al. (2019) and Basu et al. (2022) allowing
only much smaller ϵ.

5. Median as the Robust Estimator and its Impact: Bandits involving arbitrary corruptions present
significantly greater challenges compared to their classical counterparts. In the presence of arbi-
trary corruptions, it is well-known that no consistent estimators for the mean of distributions can
exist (Chen et al., 2018). To address this challenge, we draw from the robust estimation literature
and opt for the median as a robust estimate of the mean. This choice is motivated by the fact
that for symmetric distributions, median is optimal because it incurs the smallest bias among all
robust estimators of the location parameter (see Section C). In Theorem 3, we establish a novel
concentration bound for the empirical median of corrupted Gaussian rewards that applies to any
value of ε less than 1

2 .

1.2. Related work

Our work connects and relates to several research areas, which we now briefly summarise.

Multi-armed bandits. The problem of bandits was first introduced in the context of designing
adaptive clinical trials by Thompson (1933), and later popularised under this name by Robbins
(1952). Since then, the variants of this problem have been widely studied and are used in practice.
For the classical regret-minimisation framework introduced earlier, asymptotic instance-dependent
lower bounds on regret are well known (Lai and Robbins, 1985; Burnetas and Katehakis, 1996).

Index-based (UCB) algorithms for this setting were popularised by the work of Auer et al.
(2002a). Cappé et al. (2013); Agrawal et al. (2021) proposed asymptotically-optimal UCB algo-
rithms for parametric and heavy-tailed distributions, respectively. While these algorithms are statis-
tically optimal, they can be computationally demanding. Honda and Takemura (2009, 2010, 2015)
developed a different style of (IMED) algorithms that have a lower computational cost and are also
statistically optimal. Alternative optimal algorithms relying on Bayesian posteriors to sample arms
(Thompson sampling) have also been developed (Agrawal and Goyal, 2012, 2017; Kaufmann et al.,
2012). In this paper, we follow a frequentist approach and design an IMED-type algorithm owing
to its optimality and computational simplicity.

Bandits with bounded corruption. In the adversarial bandits setting, the rewards are assumed to
be generated by an adaptive adversary from a bounded interval, e.g. [0, 1]. See, for example, Auer
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et al. (1995, 2002b); Abernethy and Rakhlin (2009); Audibert et al. (2009); Neu (2015). Researchers
have aimed to design the best of the both worlds algorithms that perform almost optimally for this
setting as well as the stochastic setting discussed in the previous paragraph, and are of parallel
interest (Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014; Seldin and Lugosi, 2017; Abbasi-
Yadkori et al., 2018; Pogodin and Lattimore, 2020).

In the stochastic setting with bounded adversarial corruptions, whenever an arm is pulled at time
n, a reward rn is stochastically generated from the corresponding distribution. But an adversary
switches the reward to r′n such that over the horizon T ,

∑T
n=1 |r′n − rn| ≤ C, for a non-negative

constant C. This setting and its variants have also been extensively studied in literature (Lykouris
et al., 2018; Gajane et al., 2018; Gupta et al., 2019; Zimmert and Seldin, 2019; Kapoor et al., 2019).
Here, the bound C plays a critical role, and the existing regret bounds are linearly dependent on it.
These existing regret bounds and algorithms are unfit to handle large amounts of corruptions. This
propels the study of bandits that are robust to unbounded corruptions.

Robust estimation under unbounded stochastic corruption. A robust estimator is an estimator
that perform well even in the presence of anomalous data. The corruption model considered in this
work has a long history in robust statistics. Given a data generating distribution P and a corrup-
tion budget ε, a corruption neighbourhood of P is the collection of all distributions of the form
(1− ε)P + εH , for H ∈ P(R). Huber (1964) developed an asymptotic theory of minimax optimal-
ity of estimators for distributions in corruption neighbourhood of P . Since then, several methods
have been devised to assess the asymptotic robustness of estimators (see, Huber and Ronchetti
(2009); Hampel et al. (1986)), in particular, in terms of the stability of the limit of an estimator
when the samples come from a corrupted distribution. Lately, a non-asymptotic notion of robust-
ness has gained interest. Here, the goal is to obtain estimators that concentrate fast, either when
the data-generating distribution P is heavy-tailed (Catoni, 2012; Devroye et al., 2016; Lugosi and
Mendelson, 2019; Agrawal, 2023), or corrupted (Wang and Ramdas, 2023; Chen et al., 2018).

These two concepts (asymptotic and non-asymptotic robustness) are closely linked, and the
estimators that perform well in the asymptotic sense have also been shown to perform well in the
non-asymptotic setting. Huber’s contamination model has also been widely-studied in computer
science (Diakonikolas et al., 2018; Charikar et al., 2017). In this work, we use concentration of
median to control the regret of CRIMED, that receives samples from a corruption neighbourhood of
the arm distributions (or from a misspecified model). The median has also been used for the best-
arm identification algorithms in which the goal is to find the arm with the largest median (Altschuler
et al., 2019; Even-Dar et al., 2006; Nikolakakis et al., 2021), which is significantly different from
the regret-minimisation setting considered in this paper.

Bandits with unbounded stochastic corruption. To the best of our knowledge, unbounded stochas-
tic corruption in bandits have only been studied in Altschuler et al. (2019), Mukherjee et al. (2021),
and Basu et al. (2022). Altschuler et al. (2019) and Mukherjee et al. (2021) study the best-arm
identification problem with a goal to find the arm with the largest median and mean, respectively, in
presence of corruptions. While adhering to the same corruption model, Basu et al. (2022) consider
the regret minimisation problem, and devise a UCB-type algorithm that incurs O(log(T )) instance-
dependent regret that is within a constant of the lower bound. Significantly improving on their work,
we devise an algorithm whose regret exactly matches the lower bound asymptotically, as T → ∞.
We also demonstrate the superiority of the proposed algorithm experimentally.
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2. Lower bound and KL-divergence in corrupted neighbourhoods

Given a class L of probability distributions, we want algorithms that perform uniformly well on all
the K-armed bandit instances with arms from L, when the observations are corrupted with probabil-
ity ε ∈ [0, 1/2). To meet this requirement, the algorithm needs to generate sufficient samples from
each arm. In this section, we present a lower bound on the number of samples that the algorithm
needs to generate from each arm.

2.1. Problem-dependent lower bound

Definition 1 (Uniformly-good algorithm) An algorithm acting on a distribution in L is said to be
uniformly-good for a corruption level ε, if for all µ ∈ LK and for all suboptimal arms a, it satisfies

sup
HT∈P(R)T×K

Eµ⊙εHT
[Na(T )] = o (Tα) , for all α > 0.

Here, Eµ⊙εHT
[·] denotes the expectation with respect to both the corrupted bandit process

µ⊙ε Hn, for each n ∈ [T ], and the possible randomness of the algorithm (omitted from notation).
Definition 1 is similar to the notion of consistent algorithms considered in the classical setup (Latti-
more and Szepesvári, 2020, Definition 16.1). Observe that unlike in that setting, for every instance,
the algorithm should perform well with respect to every sequence of K corruption distributions.

The lower bound on the expected number of times a uniformly-good algorithm pulls a subopti-
mal arm involves an optimisation problem, which we present first.

Corrupted KL-inf. The corrupted KL-inf is a function KLε
inf : P(R)×R× 2P(R) → R+, that for

η ∈ P(R), x ∈ R, and L ⊂ P(R), equals

KLε
inf(η, x;L) := min

H,H′,κ

{
KL
(
η ⊙εH,κ⊙εH

′) : κ∈L, H,H ′∈P(R),m(κ)≥x
}
. (2.1)

For ε = 0, this is equivalent to the optimisation problem that appears in the lower bound of
the uncorrupted setting, leading to the traditional KLinf := minκ {KL (η, κ) : κ∈L, m(κ) ≥ x}
(c.f. Burnetas and Katehakis (1996), Lattimore and Szepesvári (2020, Chapter 16)). The additional
optimisation over the corruption distributions H and H ′ makes KLε

inf smaller than KLinf . Moreover,
we observe (Figure 1(b)) that for ε > 0, KLε

inf can be non-convex in the second argument, unlike
for ε = 0 (Agrawal et al., 2021, Lemma 10). As we will see later, these imply that the problem in
presence of corruption is inherently harder than the classical setting.

In the reminder of this paper, ε denotes a known and fixed constant in (0, 0.5). See Appendix B
for a negative result, and a justification for the need to know ε (Remark 8).

Theorem 1 (Lower bound) For ε > 0, L ⊂ P(R), and a bandit instance µ ∈ LK , for any
suboptimal arm a in µ, a uniformly-good algorithm satisfies

lim inf
T→∞

1

log T

(
sup

H∈P(R)K
Eµ⊙εH [Na(T )]

)
≥ 1

KLε
inf(µa,m∗(µ);L) .

A few remarks are in order. First, since KLε
inf ≤ KLinf for ε ≥ 0, the lower bound above is

higher than that in the classical setting. Second, we show in discussion around Remark 8 that for
ε = 1

2 , KLε
inf = 0, implying that logarithmic regret cannot be achieved if a bound on the corruption
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(a) Plot of corrupted distributions for ε =
0.2.

min 1 2 3 4
0

1

2

3

4
kl (x, x + )
kl0(x, x + )

(b) Plot of klεG for σ = 1 and ε =
0.1.

Figure 1: Illustration of the corrupted distributions from Lemma 1 and klεG . Supp(H) denotes the
support of distribution H . ∆min is defined in Definition 3.

probability is unknown. Next, we show in Lemma 2 that a separation between m(µa) and m∗(µ)
is required, without which KLε

inf = 0. Next, recall that Hn is allowed to possibly depend on
the previous reward observations but not on the past algorithmic actions. Since the setting with
corruption H fixed across time is simpler than one allowing for different Hn at each time n, the
lower bound in Theorem 1 holds for the general setting considered in this paper (Remark 6).

The central idea of our proof is to extend the classical change of measure lemma (Garivier et al.,
2019) over the ε corruption neighbourhood of reward distributions, which is of independent interest.
We refer the reader to Section A.1 for a complete proof of Theorem 1.

2.2. Huber’s pair and corrupted KL-inf

In Section 3, the proposed algorithm computes KLε
inf using samples. To facilitate computation,

in this section, we characterise the optimisers for KLε
inf(η, x;L), specifically, the optimal pair of

corruption distributions H1 and H2. Let Sp (η) denote the support of η. First, we fix κ ∈ L, and
consider the optimisation problem over the two corruption distributions in KLε

inf . Define

d(η ⊙ε H1)(x) :=

{
(1− ε)dη(x), for dη

dκ(x) ≥ c1

c1(1− ε)dκ(x), otherwise,
(2.2)

and

d(κ⊙ε H2)(x) :=

{
(1− ε)dκ(x), for dη

dκ(x) ≤ 1
c2

c2(1− ε)dη(x), otherwise.
(2.3)

Here, df denotes the differential of a distribution function f , and dη
dκ(x) denotes the Radon-

Nikodym derivative of η with respect to κ. For x ∈ Sp (η) ∩ Sp (κ)c, dη
dκ(x) := ∞, and for

x ∈ Sp (η)c∩Sp (κ), dη
dκ(x) := 0. c1 and c2 are the normalisation constants ensuring that d(η⊙εH1)

and d(κ ⊙ε H2) are probability measures, and also satisfying 0 ≤ c2 ≤ 1
c1
≤ ∞. Observe that

Equations (2.2) and (2.3) implicitly define corruption distributions H1 and H2 (Remark 7).

Lemma 1 (Optimal corruption pair) For η ∈ P(R), κ ∈ P(R), and ε ∈ (0, 12), H1 and H2

defined by Equations (2.2) and (2.3), respectively, are the optimal corruption pair in Equation (2.1),
i.e., (H1, H2) ∈ argmin {KL(η ⊙ε H,κ⊙ε H

′) : H ∈ P(R), H ′ ∈ P(R)} .
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To prove the above result, we show that the directional derivative (for an appropriate notion in
the space of probability measures) of KL in every direction is non-negative at (H1, H2). We refer
the reader to Section A.2 for a proof of the above result. A similar pair of corruption distributions
were considered by Huber (1965) in a hypothesis testing setup.

It follows from Lemma 1 that the optimal corruption pair depends on the two input distributions.
In particular, the corruption always stays within the support of the input pair of distributions. For
illustration, we present these for the Gaussian-inlier setting, i.e., when both η and κ are Gaussian
distributions with unit variance, in Figure 1(a). We observe that the sets on which there is corruption
are located in the right-tail (respectively left-tail) of the distribution on the left (respectively on the
right). These and other interesting properties for Gaussian model with corruption are formally
proven in Lemma 3 and Appendix D.2, and will be used later in our analysis.

2.3. The case of Gaussian rewards with known variance
With the above minimisers for the corruption pair for fixed η and κ, we are now left with character-
ising the optimal κ in KLε

inf(η, x;L). When L = G, the collection of all Gaussian distributions with
a unit variance, and η ∈ G, it follows from Lemma 3 (later in the section) that the optimiser κ ∈ G is
the one with mean equal to x. Using these results in Theorem 1, we get the simplified lower bound
for the Gaussian bandit models, which also holds under time-varying corruption (Remark 6).

Recall that m(µa) denotes the mean reward of arm a with distribution µa.

Proposition 2 (Lower bound for Gaussian bandits) For µ ∈ GK , any uniformly-good algorithm
satisfies for any suboptimal arm a

lim inf
T→∞

1

log(T )

(
sup

H∈P(R)K
Eµ⊙εH [Na(T )]

)
≥ 1

klεG(m(µa),m∗(µ))
, where

∀x,y∈R, x≤y klεG(x, y) :=min
H,H′

{
KL(N (x, 1)⊙εH,N (y, 1)⊙εH

′) : H,H ′∈P(R)
}
. (2.4)

Here, the optimal pair of corruption distributions are given by Lemma 1.

We now state the necessary and sufficient conditions to have a finite lower bound on regret in
Gaussian bandits (Proposition 2) for a known and fixed ε ∈

(
0, 12
)
. Thus, Lemma 2 states the

(necessary and sufficient) conditions to achieve logarithmic regret for Gaussian bandits.

Lemma 2 (Disjoint corruption neighbourhoods) For η ∈ G, κ ∈ G, the following are equivalent:

(1) ∀(H1, H2) ∈ P(R)2, κ⊙ε H1 ̸= η ⊙ε H2, (2) |m(κ)−m(η)| > 2Φ−1

(
1

2(1− ε)

)
.

The condition (1) above states that for any corruption distribution H1, there doesn’t exist a dis-
tribution H2 such that the corrupted distributions κ ⊙ε H1 and η ⊙ε H2 are the same, rendering
klεG(m(κ),m(η)) = 0, i.e., the corruption neighbourhoods (Definition 9) of κ and η are disjoint.
The lemma above shows that this condition is equivalent to separation in the means of the two
Gaussian distributions η and κ. This is also related to the fact that in the presence of corruption, the
mean of the true distributions can only be estimated up to an unavoidable error (Appendix C). We
postpone the proof of Lemma 2 to Section C.1.

Lemma 2, when combined with Proposition 2, implies that a suboptimal condition to ensure
logarithmic regret is a separation between the means of the optimal arm and suboptimal arms. This
justifies formally introducing the required minimum gap.
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Definition 3 (Minimum distinction gap under corruption) ∆min := 2Φ−1
(

1
2(1−ε)

)
.

For Gaussian distributions, KL can be expressed using CDF Φ and PDF φ of a standard Gaus-
sian. Moreover, the corrupted KL, viz. klεG , enjoys nice properties like an almost closed-form
expression, shift invariance, differentiability, etc., described in the following lemma.

Lemma 3 (Properties of klεG(x, y)) Let H1, H2 be minimisers in Equation (2.4).

(a) The normalisation constants c1 and c2 are equal, i.e., c := c1 = c2, and uniquely solve

1/ (1− ε) = cΦ(∆−/2) + Φ(∆+/2), (2.5)

with ∆+ := ∆ + 2
∆ log 1

c , and ∆− := ∆− 2
∆ log 1

c .

(b) klεG has an almost closed-form expression (Equation (D.1)) (up to c defined as in Part (a)).
For 0 ≤ ∆ ≤ ∆min, x ∈ R, klεG(x, x+∆) = 0. Moreover, it is invariant, i.e.,

klεG(x+∆, y) = klεG(x, y −∆), for y ≥ x+∆.

(c) For x ∈ R and ∆ ≥ 0, the function ∆ 7→ klεG(x, x + ∆) is continuously differentiable. For
ε > 0 and ∆ ≤ ∆min, ∂ klεG(x, x+∆)/∂∆ = 0. For ∆ > ∆min,

∂ klεG(x, x+∆)

∂∆
= (1− ε)∆ (Φ(∆+/2)− Φ(∆−/2)) > 0.

They constitute the key properties of the corrupted divergence used in our regret analysis. We refer
the reader to Appendix D for a complete proof of Lemma 3, plus other interesting properties of klεG .

Consequences of Lemma 3. Part (b) shows that there is a flat region below ∆ = ∆min, where
klεG(x, x + ∆) equals 0 (Fig. 1(b)). We use this property in regret analysis of the algorithm for
proving fast convergence of the empirical klεG to 0, as well as to avoid certain computations at each
step. Part (c) shows that klεG is strictly increasing in the second argument for values larger than the
first argument. This was used in Proposition 2 to conclude that KLε

inf(η, x;G) = klεG(m(η), x).

Computational remarks. The normalising constant c from Part (a) implicitly depends on ε and ∆,
and so do ∆− and ∆+. Here, ∆− and ∆+ are related to support sets of the optimal corruption pair
H1 and H2 (Lemma 7 in Appendix D). For ∆ converging to ∆min, c can be shown to converge to
1 with ∆− and ∆+ converging to ∆min. This can be seen from Equation (2.5). In this limit, from
Lemma 3(c), it follows that the derivative of klεG converges to 0.

We also note that unlike the classical Gaussian bandit, from Fig. 1(b) we see that klεG(x, x+∆)
is non-convex in ∆, implying that after a point, increasing ∆ does not substantially decrease the
number of pulls of suboptimal arms, and hence the regret, in presence of corruption.

3. CRIMED: Algorithm and analysis
In this section, we leverage the lower bound in Proposition 2 to propose an algorithm robust to
corruption, namely CRIMED. We then give a finite-sample upper bound on the regret of CRIMED,
showing its asymptotic optimality for Gaussian bandits with unbounded stochastic corruption. Fi-
nally, we explicate the technical novelty of our regret analysis. We discuss an extension of CRIMED
for handling model-misspecifications in Appendix F.
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Algorithm 1: CRIMED for unit variance Gaussian bandits
Input: Horizon T , Corruption level ε, K
Initialisation phase: Compute Nmin using Equation (3.1) and pull every arm Nmin times.
for n ∈ {KNmin + 1, . . . , T − 1, T} do

Set Med∗(n)← maxaMed(µ̂a(n)), A∗
n ∈ argmaxaMed(µ̂a(n)), IA∗

n
(n)← logNA∗

n
(n).

Compute, for each arm a different from A∗
n,

Ia(n)← Na(n)kl
ε
G (Med(µ̂a(n))−∆min,Med∗(n)) + logNa(n).

Pull the arm An ∈ argmina Ia(n).
end

3.1. Algorithm design: An IMED-based algorithm with estimated medians
First, we present our algorithm design. For n ∈ N and a ∈ [K], let µ̂a(n) denote the empirical
distribution constructed using Na(n) samples from arm a. We use median of the corrupted obser-
vations as an estimator for the mean of underlying reward distributions. This choice is natural in the
case of Gaussian distributions, since it is known that the median has the smallest bias due to cor-
ruption among all location estimators in a corruption neighbourhood of the Gaussian (ref. Lemma
5 and corresponding discussion in Section C). The fact that we use the median is also closely linked
to the symmetry of the Gaussian distribution for which median is the same as mean.

Let Med(·) denote the median of the input distribution, and define the maximum estimated
median at time n as Med∗(n) := maxa Med(µ̂a(n)). We present CRIMED in Algorithm 1. Note
that in Algorithm 1 we introduce a forced exploration for Nmin steps, where for T > 0,

Nmin :=

⌈
2 log(T ) log(1+log(1+log(T )))2s2ε

log(1+log(T )0.99)

⌉
, sε :=

(
ε/2

log 1
1−2ε

) 1
2

+

(
1−2ε

4 log( 1−ε
ε )

) 1
2

(1− ε)φ
(
∆min
2 + 1

) . (3.1)

Here, sε is a proxy of the variance of the empirical median from Theorem 3. It converges to
a constant, 1

2φ(1) , as ε → 0. The amount of forced-exploration Nmin is o(s2ε log T ) as T → ∞.
Since we use empirical median as an estimate for the true mean using the corrupted observations,
the empirically-optimal arm, or the arm with the maximum estimated mean is defined as a∗(n) :=
argmaxb Med(µ̂b(n)). Moreover, since for this arm klεG(Med(µ̂a∗(n)(n))−∆min,Med∗(n)) = 0,
its index is trivial to compute (Lemma 3(b)). For other arms, we use the explicit formulation for klεG
(Lemma 3(b)), while we compute the constant c using a root-finding algorithm on Equation (2.5).

3.2. Theoretical results: Regret upper bound and concentration results
We now present the theoretical guarantees for the proposed algorithm, as well as the refined con-
centration inequality for median that play a key role in our analysis, and are of independent interest.

Theorem 2 (Finite-sample regret upper bound) For ε ∈ (0, 12) and µ ∈ GK such that for each
suboptimal arm a, ∆a > ∆min, CRIMED satisfies

E[Na(T )] ≤ Nmin +
log(T )

klεG (m(µa),m∗(µ))− 2δ (∆a + δ +∆min)
+O((log T )0.99),

where m∗(µ) = maxam(µa), and δ2 := (log(1 + log(1 + log T )))−1.

10
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The exact O((log T )0.99) term can be found in Equation (E.5) in the Appendix E. We believe
that the forced exploration for Nmin steps is an artefact of the proof, and is needed in our analysis to
handle the difficulties due to corruption. Indeed, in Section 4, we numerically compare CRIMED and
an aggressive version with Nmin = 1, called CRIMED*, and observe a smaller regret for CRIMED*.

Corollary 4 (Asymptotic optimality) For ε ∈ (0, 12) and µ ∈ GK such that for each suboptimal
arm a, ∆a > ∆min, CRIMED is asymptotically optimal, i.e.,

lim sup
T→∞

E [Na(T )]

log T
≤ 1

klεG(m(µa),m∗(µ))
.

As a consequence, we also have

lim
T→∞

E[RT ]

log T
=

K∑
a=1

∆a

klεG(m(µa),m∗(µ))

The proof of Theorem 2, which we detail in Appendix E, proceeds by controlling the probability
of selecting a suboptimal arm a at each step n. CRIMED pulls arm a at time n if its index Ia(n) is
the smallest. Thus, the probability of pulling an arm can be bounded by controlling the deviations
of klεG evaluated on the empirical estimates. This in turn is related to the probability of deviation
of the empirical estimates themselves. In Theorem 3, we prove a new concentration result for the
empirical median, which we leverage to prove that the regret of CRIMED is well controlled. Later,
in Lemma 4, we present the concentration results for the klεG evaluated at the empirical estimates.
Given n samples X1, . . . , Xn, Med(Xn

1 ) denotes the empirical median. This can be alternatively
seen as Med(P̂n), where P̂n denotes their empirical distribution of X1, . . . , Xn.

Theorem 3 (Concentration of median for corrupted Gaussians) Let X1, . . . , Xn be random sam-
ples sampled with Xi ∼ N (m, 1) ⊙ε Hi, for Hi ∈ F(X1, . . . , Xi−1), i.e. the smallest filtration
spanned by X1, . . . , Xi−1, and let ε < 1

2 . For y ∈ [0, 1],

P
(
Med(Xn

1 )−m ≥ ∆min

2
+ y

)
∨ P

(
Med(Xn

1 )−m ≤ −∆min

2
− y

)
≤ 2 exp

(−ny2
s2ε

)
.

Note that Hi ∈ F(X1, . . . , Xi−1), which means the outliers can depend on the past observations.
We remark that Theorem 3 does not require i.i.d. samples. In particular, the corruption distribution
is allowed to be time-varying. Further, observe from Equation (3.1) that when ε goes to 0, sε goes
to 1

2φ(1) . On the other hand, when ε goes to 1
2 , φ(∆min

2 + 1) goes to 0, hence sε goes to ∞, and
we get a trivial bound in the theorem. In particular, our bound adapts to ε. We refer the reader to
Appendix E.5 for a proof of the theorem.

Remark 5 (A refined concentration result) Theorem 3 is an improvement over the concentration
in Altschuler et al. (2019, Lemma 7) in which the variance term does not depend on ε. Furthermore,
Theorem 3 allows for an ε that is arbitrarily close to 1

2 , which is an improvement over the existing
bounds for robust mean estimators featuring an upper limit on ε away from 1

2 . For example, ε ≤ 1
7

in (Wang and Ramdas, 2023, Theorem 2), and ε ≤ 1
15 in (Altschuler et al., 2019, Theorem 18).

Using Theorem 3 and properties of klεG , we prove the following concentration result.
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Lemma 4 (Concentration of klεG .) Let δ > 0, x ∈ R. Let X1, . . . , Xn be n random samples such
that Xi ∼ N (ma, 1)⊙ε Hi, for Hi ∈ F(X1, . . . , Xi−1).

(a) For y ∈ [0, 1], with probability at least 1− 2 exp
(
−ny2/s2ε

)
,

klεG

(
Med(Xn

1 )−
∆min

2
,ma − δ

)
≤ (y − δ)+

(
|y − δ|+ ∆min

2

)
.

(b) For mb > ma +∆min and y ∈ [0, 1], with probability at least 1− 2 exp
(
−ny2/s2ε

)
,

klεG (ma,mb)− klεG

(
Med(Xn

1 )−
∆min

2
,mb

)
≤ y(mb −ma + y +∆min).

A useful thresholding. For y ∈ [0, δ) the probability of klεG(Med(Xn
1 )− ∆min

2 ,ma − y) being 0 is
strictly positive, from Lemma 4(a). This contrasts with the uncorrupted-Gaussian setting, for which
this is a zero probability event, except when y = 0. We extensively use this key property in the
proof of Theorem 2, which follows from the thresholding property that klεG (x, x+∆)=0 holds for
any ∆≤∆min. Specifically, the probability of being 0 coincides with that for ma−y−Med(Xn

1 ) ≤
∆min
2 . We refer the reader to Appendix E.6 for a proof of the lemma.

Challenges in the regret analysis. To prove Theorem 2, we modify the proof for the regret bound
of Honda and Takemura (2015). The major difference arises from the fact that Theorem 3 does not
allow us to reach arbitrarily large level of confidence, i.e. with y ≤ 1, the probability in Theorem 3
cannot be smaller than exp(−Ω(n)). This implies that very large deviation of the median do not
imply very small probabilities. This is a known limitation of robust estimators (Devroye et al.,
2016). As a consequence, we change the decomposition of the bad event An = a to also include an
event on which the deviation of the klεG is large.

We decompose the event An = a as a union of three disjoint events. (i) En(a): when the subop-
timal arm is not well estimated. (ii) Fn(a): when the optimal arm is not well estimated and Gn(a)
when klεG has large deviations (ref. Lemma 10 for formal definitions). We highlight that Lemma 4(a)
with y = δ, i.e. the fast concentration to 0, is specifically used to control the probabilities of events
Fn(a) and Gn(a). (iii) Event Gn(a) is further controlled thanks to the forced-exploration mecha-
nism. Indeed, we observe that even refined concentration such as anytime concentration might only
improve the lower order terms in the regret upper bound, but are not sufficient to control Gn(a).

4. Experimental illustration
In this section, we numerically illustrate the efficiency of our algorithm. The computation of
CRIMED indexes depends on the threshold c, that we evaluate using Equation (2.5) and the default
scipy (Virtanen et al., 2020) root-finding algorithm. We consider arm distributions as N (ma, σ

2
a),

i.e., Gaussian inliers. The corruption distributions (outliers) are of formN (mo, σ
2
o) in Setting 1 and

2, and standard Cauchy in Setting 3. Table below details the parameters used. Arm 3 is optimal.

Parameters Horizon σa means arms ma ε medians outliers mb σo outliers
Setting 1 10,000 0.5 [0.8, 0.9, 1] 0.01 [1, 1, 0.8] 1
Setting 2 10,000 0.5 [0.8, 0.9, 1] 0.01 [10, 10, -20] 1
Setting 3 10,000 0.5 [0.8, 0.9, 1] 0.01 [10, 10, -20] ∞

Setting 1 corresponds to a mild corruption, in which the corrupted distribution of arm 3 still has
the largest mean of 0.98. In Setting 2, the corruption causes a change in the order of the arms (arm 2
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Figure 2: Cumulative regret for 100 repetitions on Settings 1 (left), 2 (middle), and 3 (right). Solid
lines represent the means and shaded area are 90% percentile intervals.

is optimal according to the corrupted distributions). Hence, robustness is needed to identify correctly
the optimal arm. In Setting 3, the outliers are heavy-tailed. We compare 4 algorithms: CRIMED
(Algorithm 1) with Nmin set to Equation (3.1), CRIMED*, an aggressive version of CRIMED with
Nmin set to 1, IMED is the same as CRIMED* but in which there is no corruption (ε = 0) and the
means are estimated using the empirical mean, and finally RobustUCB (Basu et al., 2022).

Figure 2 illustrates that all the algorithms, except IMED, feature a logarithmic regret. IMED
incurs a linear regret in large-corruption settings (Settings 2, 3). On the other hand, CRIMED and
CRIMED* perform comparably, and they are both performing better than RobustUCB. We also
observe no significant difference in performance when the corruptions are heavy-tailed vs Gaussian.

5. Discussion and open questions

We studied a variant of the stochastic multi-armed bandits with unbounded stochastic corruption
and analysed the behaviour of the KL divergence within a corruption neighbourhood in details.
This served as the foundation for the proposed algorithm CRIMED, that asymptotically achieves
this lower bound for Gaussian bandits. We developed a new concentration result for median al-
lowing CRIMED to tackle corruption proportion up to 1

2 , which was not possible with the existing
algorithms. We discussed a modification of CRIMED to handle misspecifications in Gaussian model.

We believe that the Gaussian reward assumption is not essential, and we believe it is possible to
generalise these results to at least symmetric, unimodal distributions. CRIMED can be appropriately
adjusted to handle more general reward distributions with the following modifications: 1) replacing
median with any robust estimator for mean that concentrates fast, for example, median-of-means,
and 2) adjusting Ia(n), the index for arm a, to replace klεG by the corresponding KL-inf. These
changes would necessitate establishing concentration results similar to Theorem 3 and Lemma 4.

Note that the Gaussian assumption enabled us to obtain an (almost) closed-form expression of
the klεG . Further, its symmetry property allowed us to use the known exact optimality (including
constants) of the median for robust mean estimation. Generalisation to non-symmetric and possibly
non-parametric inliers is likely to be much more challenging. This is because in the non-symmetric
case, robust estimators approximate location parameters that may be far from the mean and we
have to trade off between the error due to corruption and the error due to asymmetry. This requires
the study of a non-trivial trade-off between robustness and asymptotic distance to the mean, using
robust mean estimators such as median-of-means or M-estimators.

Similarly, we believe that the proof techniques we introduce for corruption robust bandits are
complementary to those for some structured bandit problems (such as unimodal or Lipschitz struc-
ture) and, hence, could yield extensions to such settings, provided that an efficient and optimal
multivariate robust mean estimator is used.
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Appendix A. Proofs for results in Section 2.1 and Section 2.2: Lower bound and
hardest corruption pair

Remark 6 Observe that

sup
HT∈P(R)T×K

Eµ⊙εHT
[Na(T )] ≥ sup

H∈P(R)K
Eµ⊙εH [Na(T )] ,

where HT is a T ×K matrix of corruption distributions with row n being Hn, the vector of corrup-
tion distributions at time n. Note that the inequality follows since, in the RHS above, the corruption
distributions associated with each arm are the same across time. Below, we establish the lower
bound for this simpler setting, where the corruption doesn’t change with time. Since the lower
bound for fixed H across time will only be smaller, this proves that the same lower bound holds
even for the more general setting considered in this work that allows for time-varying corruption.

A.1. Proof of Theorem 1

Recall that the given bandit instance is denoted by µ ∈ LK . For a ∈ [K] and i ∈ {1, . . . , Na(T )},
let {Xa,i}a,i denote the Na(T ) corrupted observations from arm a till time T . Under µ with cor-
ruption distributions H = {H1, . . . ,HK}, the likelihood of observing samples, denoted by Lµ,H,
is

Lµ,H =
K∏
a=1

Na(T )∏
i=1

((1− ε)µa(Xa,i) + εHa(Xa,i)) =
K∏
a=1

Na(T )∏
i=1

µa ⊙ε Ha(Xa,i).

Without loss of generality, we assume that arm 1 is the unique optimal arm in µ and establish
the lower bound for the sub-optimal arm 2. To this end, consider an alternative bandit instance, ν =
(ν1, . . . , νK), where, νb ∈ L for each b ∈ [K], for b ̸= 2, νb = µb, and m(ν2) ≥ m∗(µ). Clearly,
m∗(ν) ≥ m∗(µ). The likelihood of observing samples under ν with corruption distributions H′ =
{H ′

1, . . . ,H
′
K}, denoted by Lν,H′ is given by

Lν,H′ =
K∏
a=1

Na(T )∏
i=1

νa ⊙ε H
′
a(Xa,i).

Writing the log-likelihood ratio,

LLT =

K∑
a=1

Na(T )∑
i=1

log

(
µa ⊙ε Ha

νa ⊙ε H ′
a

(Xa,i)

)
.

Taking average with respect to µ⊙ε H, we get

Eµ⊙εH [LLT ] =

K∑
a=1

Eµ⊙εH [Na(T )] KL(µa ⊙ε Ha, νa ⊙ε H
′
a).

Informally, letFt be the σ−algebra generated by the randomness of the algorithm and the obser-
vations up to time t. We refer the reader to Lattimore and Szepesvári (2020, Chapter 4) for a formal
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introduction to stochastic multi-armed bandits. An application of the data-processing inequality
(see, Garivier et al. (2019)) gives that for any FT measurable event ET ,

K∑
a=1

Eµ⊙εH [Na(T )] KL(µa ⊙ε Ha, νa ⊙ε H
′
a) ≥ d

(
µa ⊙ε Ha(ET ), νa ⊙ε H

′
a(ET )

)
,

where for x ∈ (0, 1) and y ∈ (0, 1), d(x, y) := KL(Ber(x),Ber(y)) denotes the KL divergence
between Bernoulli distributions with means x and y. Since the RHS above is true for all events ET
that are FT measurable, optimising over them we get

K∑
a=1

Eµ⊙εH [Na(T )] KL(µa ⊙ε Ha, νa ⊙ε H
′
a) ≥ sup

ET∈FT

d
(
µa ⊙ε Ha(ET ), νa ⊙ε H

′
a(ET )

)
.

Taking infimum over the corruptions H ∈ P(R)K and H′ ∈ P(R)K on both sides, the above
inequality implies

inf
H,H′

K∑
a=1

Eµ⊙εH [Na(T )] KL(µa ⊙ε Ha, νa ⊙ε H
′
a)

≥ inf
H,H′

sup
ET∈FT

d
(
µa ⊙ε Ha(ET ), νa ⊙ε H

′
a(ET )

)
. (A.1)

Since for every H, the corresponding H′ with H ′
b = Hb for all b ∈ [K] and b ̸= 2 is feasible, the

infimum in the l.h.s. above is at most(
sup
H

Eµ⊙εH [N2(T )]

)(
inf

H2,H′
2

KL(µ2 ⊙ε H2, ν2 ⊙ε H
′
2)

)
. (A.2)

Now, following along the arguments in Kaufmann et al. (2016) for the classical regret-minimisation
setting without corruption, we first choose

ET =
{
N1(T ) ≤ T −

√
T
}
.

Then, we obtain by a simple application of Markov’s inequality

Pµ⊙εH (ET ) = Pµ⊙εH

(
T −N1(T ) ≥

√
T
)
≤

∑
a̸=1

Eµ⊙εH [Na(T )]

√
T

=: PH
T ,

and

Pν⊙εH′ (EcT ) = Pν⊙εH′

(
N1(T ) ≥ T −

√
T
)
≤

∑
a̸=2

Eν⊙εH′ [Na(T )]

T −
√
T

=: 1−QH′
T = (QH′

T )c.

Next, recall that the algorithm under consideration is uniformly-good (see Definition 1). This im-
plies

sup
H

Pµ⊙εH (ET ) ≤ PT := sup
H

PH
T

T→∞−−−−→ 0,
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and
sup
H′

Pν⊙εH′ (EcT ) ≤ Qc
T := sup

H′
(QH′

T )c
T→∞−−−−→ 0.

Clearly, for a fixed H and H′, from the monotonicity of d(·, ·) in its arguments, it holds

d (Pµ⊙εH (ET ) ,Pν⊙εH′ (ET )) ≥ d

(
sup
H

Pµ⊙εH (ET ) , 1− sup
H′

Pν⊙εH′ (EcT )
)

≥ d(PT , QT ). (A.3)

Using (A.2) and (A.3) in (A.1), we get(
sup
H

Eµ⊙εH [N2(n)]

)(
inf

H2,H′
2

KL(µ2 ⊙ε H2, ν2 ⊙ε H
′
2)

)
≥ d(PT , QT ). (A.4)

Next, we consider the following relation

lim
T→∞

d (PT , QT )

log T
= lim

T→∞

1

log T
log

1

Qc
T

≥ lim
T→∞

1

log T
log

T −
√
T

sup
H′

∑
a̸=2

Eν⊙εH′ [Na(T )]
.

We observe that the r.h.s. above equals

lim
T→∞

1 +
log
(
1− 1√

T

)
log T

−
log

(
sup
H′

∑
a̸=2

Eν⊙εH′ [Na(T )]

)
log T

 ,

which in turns equals 1. Thus, we have obtained

lim
T→∞

d (PT , QT )

log T
≥ 1.

Using this in Equation (A.4),

lim inf
T→∞

(
sup
H

Eµ⊙εH [N2(T )]

)
log T

≥ 1

inf
H2,H′

2

KLε
inf(µ2 ⊙ε H2, ν2 ⊙ε H ′

2)
.

Since the above inequality is true for all the alternative bandit instances ν ∈ LK with m(ν2) ≥
m∗(µ), we optimise over these to get

lim inf
T→∞

(
sup
H

Eµ⊙εH [N2(T )]

)
log T

≥ 1

KLinf(µ2,m∗(µ);L) ,

where KLε
inf(µ2,m

∗(µ);L) equals

inf
{
KL(µ2 ⊙ε H2, ν2 ⊙ε H

′
2) : ν2 ∈ L, m(ν2) ≥ m∗(µ), H2 ∈ P(R), H ′

2 ∈ P(R)
}
.
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A.2. Proof of Lemma 1

Given η ∈ L and κ ∈ L, we will show that H1 and H2 satisfying Equations (2.2) and (2.3) are
optimal for KLε

inf , for a fixed κ. To this end, consider any alternative corruption distributions,
H ′

1 ∈ P(R) and H ′
2 ∈ P(R). For t ∈ (0, 1), define

Hi,t = (1− t)Hi + tH ′
i, for i ∈ {1, 2} ,

and
JH′

1,H
′
2
(t) =

1

ε
KL(η ⊙ε H1,t, κ⊙ε H2,t).

To prove the lemma, we show that JH′
1,H

′
2

is a convex function that is minimised at t = 0. To
see this,

dJH′
1,H

′
2

dt
(t) =

∫
log

dη ⊙ε H1,t

dκ⊙ε H2,t
(x)
(
dH ′

1 − dH1

)
(x)

−
∫

dη ⊙ε H1,t(x)

(
(dH ′

2 − dH2)

dκ⊙ε H2,t
(x)− (dH ′

1 − dH1)

dη ⊙ε H1,t
(x)

)
=

∫
log

dη ⊙ε H1,t

dκ⊙ε H2,t
(x)
(
dH ′

1 − dH1

)
(x)−

∫
dη ⊙ε H1,t

dκ⊙ε H2,t
(x)
(
dH ′

2 − dH2

)
(x),

where the last equality follows from the fact that H1 and H ′
1 both integrate to 1. Differentiating

again with respect to t,

d2JH′
1,H

′
2

dt2
(t) =

∫ (
dH ′

1 − dH1√
dη ⊙ε H1,t

−
√

dη ⊙ε H1,t
dH ′

2 − dH2

dκ⊙ε H2,t

)2

≥ 0,

proving the convexity of JH′
1,H

′
2

for any H ′
1, H

′
2. Thus, it suffices to prove that its derivative is

non-negative at t = 0. To this end, we now define the sets

A :=

{
x :

dη

dκ
(x) < c1

}
and D :=

{
x :

dη

dκ
(x) >

1

c2

}
. (A.5)

Then,

dJH′
1,H

′
2

dt
(0) =

∫
A

log (c2)
(
dH ′

1 − dH1

)
(x) +

∫
Ac∩Dc

log
dη

dκ
(x)dH ′

1(x) +

∫
D

log
1

c1
dH ′

1(x)

−
∫
A

c2dH
′
2(x)−

∫
Ac∩Dc

dη

dκ
(x)dH ′

2(x)−
∫
D

1

c1

(
dH ′

2 − dH2

)
(x)

≥ log c2 (1−H1(A))− 1

c1
(1−H2(D))

= 0,

where the last equality follows from the facts that H ′
1 and H ′

2 have supports equal to A and D,
respectively, and integrate to 1.
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Remark 7 Observe that Equations (2.2) and (2.3) implicitly define the probability measures H1

and H2. To see this, we first argue that H1 is non-negative. Recall that

d(η ⊙ε H1) = (1− ε)dη + εdH1.

From Equation (2.2) it is clear that dH1(x) = 0 for dη
dκ ≥ c1. Thus, H1 is supported only on the

complement set, where it is non-negative by choice of c1. Next, since d(η ⊙ε H1) integrates to 1
(by choice of c1) and so does η, H1 too integrates to 1. One can similarly argue that H2 defined by
Equation (2.3) is a probability measure.

Appendix B. Discussion on the knowledge of ε and an impossibility result

We note that in the current work, we do not require the knowledge of the precise value of corruption
probability ε. Instead, knowing an upper bound on ε suffices. In this section, we will show that
without such knowledge, no uniformly good algorithm can achieve logarithmic regret (Remark 8).

Let us remind the reader that this is also a standard assumption in the robust statistics literature.
On a related note, Wang and Ramdas (2023, Remark 3) mention as an open problem whether it is
possible to construct confidence intervals using corrupted samples without the knowledge of ε (or a
bound on it). In this section, we provide a negative answer to this question.

Our approach is to relate the problem of constructing anytime-valid confidence intervals in the
presence of corruption to a specific sequential hypothesis testing problem using corrupted data,
which can, in turn, be formulated as the best-arm identification (BAI) problem with corruptions in
the multi-armed bandit framework. We then use the machinery from the proof of Theorem 1 to
arrive at a lower bound for this problem in terms of KLε

inf , defined in Equation (2.1). We show that
if a bound on ε is not known, then KLε

inf = 0, rendering the BAI problem un-learnable, hence, the
impossibility for the existence of a sequential test, and hence, the impossibility for the existence of
non-trivial anytime confidence intervals. The approach for proving the impossibility result for BAI
is reminiscent of a similar negative result for classical BAI in bandits with heavy-tailed distributions
(uncorrupted setting), proven in (Agrawal et al., 2020, Theorem 3).

For δ > 0, and a collection L of probability measures, we only prove the negative result for
constructing an anytime valid upper bound that holds with probability at least 1− δ, using samples
generated from a corruption neighbourhood (Definition 9) of a distribution µ1 ∈ L. Symmetric
arguments (including a symmetric sequential test) give a corresponding negative result for the lower
bound that holds with probability at least 1 − δ. We now introduce the specific sequential test for
this.

Sequential setting (hypothesis testing) of interest. Consider the problem of testing whether the
mean of a distribution µ1 ∈ L is below a given threshold ζ in a δ-correct framework. To be
more specific, let m(µ1) denote its mean, and let m(µ1) < ζ (unknown to the algorithm). The
algorithm can generate samples from µ1. However, on doing so, it observes the true sample with
probability 1−ε, and receives a sample from an arbitrary corruption distribution with the remaining
ε probability, i.e., it observes samples from an ε corruption neighbourhood of µ1. In presence of
ε corruption, the goal of the algorithm is to generate finite samples (possibly random number of
samples, depending on observations made), and declare that m(µ1) < ζ with probability at least
1 − δ. While ensuring this δ-correctness property, the algorithm’s goal is also to minimise its
expected stopping time. Let us denote the δ-correct algorithm for this problem by A(δ, ζ).
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Equivalence of δ-correct anytime-valid upper bound and sequential test described above.
Observe that given a δ-correct algorithm for the above described problem, A(δ, ζ), one can con-
struct an anytime-valid upper bound on the true mean for µ1 that holds with probability at least
1− δ using ε-corrupted samples as follows: at any time n, define the set

Un := {ζ : A(δ, ζ) has not stopped in n samples} .

Then, Un is an anytime-valid upper bound on m(µ1) that holds with probability at least 1− δ. The
reverse implication also holds, i.e., given any sequence of δ-correct anytime-valid upper bound on
m(µ1) constructed using ε-corrupted samples, say Ūn, one can design a δ-correct algorithm for
the above described problem, as described next. Consider the algorithm that stops and declares
m(µ1) < ζ at time n if Ūn ≤ ζ. Else, it generates a sample, computes Un+1, and proceeds.

With the above equivalence at hand, it suffices to show that any δ-correct algorithm for iden-
tifying m(µ1) ≤ ζ would require an unbounded number of samples if ε is not known. For this,
following arguments similar to those in the proof of Theorem 1, one can show the following lower
bound on the expected number of samples E [N ] any δ-correct algorithm would require to generate,
when the corruption proportion ε is known:

E [N ] ≥ log 1
δ

KLε
inf(µ1, ζ;L)

, (B.1)

where, recall that

KLε
inf(µ1, ζ;L) := min

H,H′,ν1

{
KL
(
µ1 ⊙εH, ν1 ⊙εH

′) : ν1∈L, H,H ′∈P(R),m(ν1)≥ζ
}
. (B.2)

When ε is not known to the algorithm, a further optimisation over ε < 1
2 would feature in the

lower bound. Otherwise, for every fixed ε < 1
2 for which the algorithm is δ-correct, there exists an

ε′ > 0 such that ε̃ := ε + ε′ < 1
2 , and the algorithm wouldn’t be δ-correct for some distribution

in L with corruption proportions being ε̃. This follows from the corresponding lower bound in
Equation (B.1) for ε̃ instead of ε, and monotonicity of KLε

inf in ε (larger ε implies a smaller KLε
inf ,

and a higher lower bound). Thus, when ε is unknown, KLε
inf with ε = 1

2 would feature in the lower
bound in Equation (B.1).

Unknown ε implies KLε
inf = 0. As discussed above, if ε is unknown, KLε

inf features with ε = 1
2

in the lower bound. Now, consider any distribution κ ∈ L such that m(κ) ≥ ζ. In the definition of
KLε

inf(µ1, ζ;L) in Equation (B.2), ν1 = κ, H = κ, H ′ = η are feasible solutions for ε = 1
2 , and

satisfy µ1 ⊙ε κ = κ⊙ε µ1, implying that KLε
inf = 0. Hence, the lower bound in Equation (B.1) is

unbounded, implying non-existence of a δ-correct algorithm, hence δ-correct anytime-valid upper
bound.

Remark 8 Observe that from the above discussion, we have that for ε = 1
2 , KLε

inf = 0. This
also implies that the lower bound in Theorem 1 in unbounded for our regret-minimisation setting in
presence of corruption. Thus, we also conclude that a logarithmic regret is not possible without a
knowledge of a bound on ε that is strictly smaller than 1

2 .
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Appendix C. Non-intersection of corruption neighbourhoods: Discussions and
Proofs from Section 2.3

Let T be the set of all functions A of probability distributions, A : P(R) → R, such that A is
translation equivariant, meaning that for any δ̃ > 0, if X ∼ κ, and X+δ̃ ∼ η, then A(η) = A(κ)+δ̃.
The class T of translation equivariant functions is interesting because common functions like mean,
median, and quantiles belong to this class.

It is well known that in the presence of corruption with ε probability, consistent estimation of any
translation equivariant function, including mean, is not possible even with infinite samples (Chen
et al., 2018). The presence of corruption introduces a bias that is unavoidable, that we refer to as
bias due to corruption. We recall this in what follows.

Definition 9 (Corruption neighbourhood.) For a fixed corruption proportion ε and a fixed distri-
bution κ, its corruption neighbourhood is defined as the collection of all distributions in the follow-
ing set (denoted as κε):

κε := {(1− ε)κ+ εH : H ∈ P(R)} .

Observe that the mean of distributions in the corruption neighbourhood of any distribution κ can be
arbitrarily large or small.

The bias due to using the family of functions T defined above, for distribution κ in presence of
corruption with probability ε, is defined as

bκ(ε) := inf
A∈T

sup
κ′∈κε

|A(κ′)−A(κ)|. (C.1)

The definition above quantifies the mini-max bias suffered by any translation-equivariant function
of κ, in presence of ε corruption. The lemma below, taken from Huber and Ronchetti (2009, Section
4.2), shows that when κ is symmetric and unimodal, then the function that suffers the minimum bias
is median. We refer the reader to Huber and Ronchetti (2009) for a proof of the lemma.

Lemma 5 (Optimality condition for median) Let κ be a symmetric and unimodal distribution.
The functional that achieves the infimum in bκ(ε) is median. Moreover,

bκ(ε) = F−1
κ

(
1

2(1− ε)

)
,

where Fκ is the c.d.f. of κ.

We now prove the equivalent conditions for klεG to be non-zero.

C.1. Proof of Lemma 2

Without loss of generality, we assume that m(κ) ≤ m(η). Define

b0(ε) := Φ−1

(
1

2(1− ε)

)
.

We first prove that if for all (H1, H2) ∈ P(R)2 such that κ⊙ε H1 ̸= η ⊙ε H2, then

|m(κ)−m(η)| > 2b0(ϵ).
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For this, we show the contrapositive of the above. To this end, let us assume that |m(κ) −
m(η)| ≤ 2b0(ε). Then

∃ ε′ ≤ ε such that |m(κ)−m(η)| = 2b0(ε
′).

We construct a probability measure that belongs to the intersection of the corruption neighbour-
hoods of η and κ. Define

p′(x) :=

{
(1− ε′)φ (x−m(κ)) , for (x−m(κ)) ≤ b0(ε

′)

(1− ε′)φ (x−m(κ)− 2b0(ε
′)) , for (x−m(κ)) > b0(ε

′),
.

We first show that p′ ∈ κε, i.e., it belongs to the corruption neighbourhood of κ. To this end,
consider (p′ − (1− ε′)κ)(x), which equals{

0, for (x−m(κ)) ≤ b0(ε
′)

(1− ε′) (φ (x−m(κ)− 2b0(ε
′))− φ (x−m(κ))) , for (x−m(κ)) > b0(ε

′).

Now, if x−m(κ) ∈ (b0(ε
′), 2b0(ε

′)], then

0 ≤ 2b0(ε
′)− (x−m(κ)) ≤ b0(ε

′) ≤ x−m(κ).

Hence (p′ − (1− ε′)κ)(x) ≥ 0.
Similarly, if x−m(κ) ≥ 2b0(ε

′), then

0 ≤ x−m(κ)− 2b0(ε
′) ≤ x−m(κ),

giving (p′ − (1− ε′)κ)(x) ≥ 0.
Additionally,∫

R
(p′ − (1− ε′)κ)(x)dx

= (1− ε′)

∫ (
φ
(
x−m(κ)− 2b0(ε

′)
)
− φ (x−m(κ))

)
1
{
x−m(κ) > b0(ε

′)
}

= (1− ε′)
(
1− Φ

(
−b0(ε′)

)
−
(
1− Φ

(
b0(ε

′)
)))

= (1− ε′)

(
1

2(1− ε′)
− 1 +

1

2(1− ε′)

)
= ε′.

Hence, p′−(1−ε′)κ is also a non-negative measure that sums to ε′. This implies that p′ ∈ κε′ ⊂ κε.

We next show that p′ belongs to the corruption neighbourhood of η.

Since
|m(κ)−m(η)| = 2b0(ε

′) = m(η)−m(κ),

we have

p′ =

{
(1− ε′)φ (x−m(κ)) for x−m(κ) ≤ b0(ε

′)

(1− ε′)φ (x−m(κ)− 2b0(ε
′)) for x−m(κ) > b0(ε

′)

=

{
(1− ε′)φ (x−m(η) + 2b0(ε

′)) for x−m(η) ≤ −b0(ε′)
(1− ε′)φ (x−m(η)) for x−m(η) > −b0(ε′).
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Then, (p′ − (1− ε′)η)(x) equals{
(1− ε′) (φ (x−m(η) + 2b0(ε

′))− φ (x−m(η))) for x−m(η) ≤ −b0(ε′)
0 for x−m(η) > −b0(ε′).

Again, if x−m(η) ∈ (b0(ε
′), 2b0(ε

′)], then

0 ≤ 2b0(ε
′)− (x−m(η)) ≤ b0(ε

′) ≤ x−m(η),

implying that p′(x)− (1− ε′)η(x) ≥ 0.
On the other hand, if x−m(η) ≥ 2b0(ε

′), then

0 ≤ x−m(η)− 2b0(ε
′) ≤ x−m(η),

and then p′(x)− (1− ε′)η(x) ≥ 0.

Additionally, p′ − (1− ε′)η sums to ε′, as shown below:∫
R
(p′ − (1− ε′)η)(x)

=

∫
(1− ε′)

(
φ
(
x−m(η) + 2b0(ε

′)
)
− φ (x−m(η))

)
1
{
x−m(η) ≤ −b0(ε′)

}
= (1− ε′)

(
Φ(b0(ε

′))− Φ(−b0(ε′))
)

= (1− ε′)

(
1

2(1− ε′)
− 1 +

1

2(1− ε′)

)
= ε′.

Thus, p′ also belongs to the corruption neighbourhood of η, i.e., p′ ∈ ηε′ ⊂ ηε, proving one direc-
tion.

We now prove that if |m(κ)−m(η)| > 2b0(ε), then κε ∩ ηε = ∅, again by proving the contra-
positive.

Suppose ∃κ′ ∈ κε ∩ ηε. Since median is a minimax-bias functional, and κ′ ∈ κε,

|Med(κ′)−Med(κ)| ≤ b0(ε).

Similarly, having κ′ ∈ ηε,

|Med(κ′)−Med(η)| ≤ b0(ε).

Hence, we obtain that

|m(κ)−m(η)| = |Med(κ)−Med(η)| ≤ 2b0(ε),

proving the other direction.

27



AGRAWAL MATHIEU BASU MAILLARD

Appendix D. Properties of klεG: a discussion and proofs

klεG is crucial for our algorithm, both practically, and theoretically. We characterise its solutions
in Lemma 1, and we prove various nice properties that are useful in algorithmic implementation,
as well as for its analysis. In this appendix, we discuss these properties of klεG , including those
presented in the main text in Lemma 3.

Recall that for x ∈ R, y ∈ R,

klεG(x, y) := inf
H,H′

{
KL(N (x, 1)⊙ε H,N (y, 1)⊙ε H

′) : H ∈ P(R), H ′ ∈ P(R)
}
.

Further, recall that Lemma 1 characterises the optimal H and H ′ for this problem, and are defined
by Equation (2.2) and Equation (2.3). Later, in Lemma 6, we identify the support sets for the
optimal corruption pair (H1, H2) in the specific setting of η = N (x, 1) and κ = N (y, 1). We now
prove Lemma 3, before going on to developing additional properties, which will be handy in the
analysis later. In particular, we show Equation (D.1) below which gives a closed-form expression
for klεG(x, y), for x < y, once we know the optimal c from Lemma 3(a), which we compute using a
root-finding algorithm. For any x < y, let ∆ = y − x, c, ∆+ and ∆− be as in Lemma 3(a). Then,

klεG(x, y)

1− ε
=(1− c)Φ

(
∆−
2

)
log

1

c
+

∆2

2

(
Φ

(
∆+

2

)
−Φ
(
∆−
2

))
−∆

(
φ

(
∆−
2

)
−φ
(
∆+

2

))
. (D.1)

D.1. Proof of Lemma 3

Let η represent the cdf of N (x, 1) and κ be that for N (y, 1). Recall that c1 and c2 are the normali-
sation constants for the optimal corruption distributions in klεG(x, y) (Lemma 1).

Proof of Lemma 3(a): Since d(N (x, 1) ⊙ε H1) is a probability distribution, it sums to 1. Let
W ∼ N (0, 1) be a random variable distributed according to standard Gaussian. Using the explicit
form of Ac1 and Dc1 from Lemma 6 (presented later), we have

1 =

∫
R
d(η ⊙ε H1)

= (1− ε) (c1κ(Ac1) + η(R \Ac1))

= (1− ε)

(
c1P

(
W + y ≥ x+ y

2
+

log( 1
c1
)

y − x

)
+ P

(
W + x <

x+ y

2
+

log( 1
c1
)

y − x

))

= (1− ε)

(
c1

(
1− Φ

(
x+ y

2
+

log( 1
c1
)

y − x
− y

))
+Φ

(
x+ y

2
+

log( 1
c1
)

y − x
− x

))

= (1− ε)

(
c1

(
1− Φ

(
−∆

2
+

log( 1
c1
)

∆

))
+Φ

(
∆

2
+

log( 1
c1
)

∆

))
.
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Similarly, d(N (y, 1)⊙ε H2) is a probability distribution, it sums to 1, giving

1 =

∫
d(N (y, 1)⊙ε H2)

= (1− ε) (c2η(Dc2) + κ(R \Dc2))

= (1− ε)

(
c2P

(
W + x ≤ x+ y

2
−

log( 1
c2
)

y − x

)
+ P

(
W + y >

x+ y

2
−

log( 1
c2
)

y − x

))

= (1− ε)

(
c2Φ

(
x+ y

2
−

log( 1
c2
)

y − x
− x

)
+ 1− Φ

(
x+ y

2
−

log( 1
c2
)

y − x
− y

))

= (1− ε)

(
c2Φ

(
∆

2
−

log( 1
c2
)

∆

)
+ 1− Φ

(
−∆

2
−

log( 1
c2
)

∆

))

= (1− ε)

(
c2

(
1− Φ

(
−∆

2
+

log( 1
c2
)

∆

))
+Φ

(
∆

2
+

log( 1
c2
)

∆

))
.

From the above, observe that c1 and c2 solve the same equation. Hence, they can be taken to be
equal to a common value, say c > 0.

We now prove the uniqueness of this common value c. From the discussion in the previous
paragraph, c solves the following equation:

1

1− ε
= cΦ

(
∆−
2

)
+Φ

(
∆+

2

)
. (D.2)

Observe that c is uniquely defined by Equation (D.2), indeed c 7→ cΦ
(
∆−
2

)
+Φ

(
∆+

2

)
is increasing

because its derivative is

Φ

(
∆−
2

)
+

1

∆
φ

(
∆−
2

)
− 1

c∆
φ

(
∆+

2

)
= Φ

(
∆−
2

)
> 0. □

Proof for Lemma 3(b): From Lemma 1 and the using part (a) above in the definition of klεG , we have
for any x < y,

klεG(x, y)

1− ε
=

∫
Ac

cφ(t− y) log (c) +

∫
Dc

φ(t− x) log
1

c
+

∫
R\Ac∪Dc

φ(t− x) log

(
φ(t− x)

φ(t− y)

)
dt.

(D.3)

On simplifying, it then equals 1− ε times

c log (c) Φ

(
∆−
2

)
+ log(1/c)Φ

(
∆−
2

)
+

∫
R\Ac∪Dc

φ(t− x) log

(
φ(t− x)

φ(t− y)

)
dt.

We now compute the integral on R \Ac ∪Dc. For this, let a < b. Then clearly,∫ b

a
φ(t− x) log

(
φ(t− x)

φ(t− y)

)
=

1√
2π

∫ b

a
e−

(t−x)2

2

(
−(t− x)2

2
+

(t− y)2

2

)
dt

=(x− y)

(
1√
2π

∫ b

a
te−

(t−x)2

2 dt− x+ y

2
(Φ(b− x)− Φ(a− x))

)
.
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Using the mean of a truncated-Gaussian random variable, we get∫ b

a
φ(t− x) log

(
φ(t− x)

φ(t− y)

)
=(x− y)

(
x(Φ(b− x)−Φ(a− x))+φ(a− x)− φ(b− x)−x+ y

2
(Φ(b− x)− Φ(a− x))

)
=
(x− y)2

2
(Φ(b− x)− Φ(a− x)) + (x− y) (φ(a− x)− φ(b− x)) .

Now, substituting ∆ = y−x, a = x+ ∆−
2 and b = x+ ∆+

2 , we have that the above integral equals
∆2

2

(
Φ

(
∆+

2

)
− Φ

(
∆−
2

))
−∆

(
φ

(
∆−
2

)
− φ

(
∆+

2

))
.

Substituting this in Equation (D.3) we have that klεG(x, y) equals (1− ε) times

c log (c) Φ

(
∆−
2

)
+ log(1/c)Φ

(
∆−
2

)
+

∆2

2

(
Φ

(
∆+

2

)
− Φ

(
∆−
2

))
−∆

(
φ

(
∆−
2

)
− φ

(
∆+

2

))
. (D.4)

Shift invariance now follows from the above expression for klεG only in terms of ∆. □

Proof for Lemma 3(c): Recall the defining equation for c from Equation (D.2). Observe that c is a
function of ∆. Then, by implicit function theorem, c is differentiable. Let c′ denote the derivative
of c with respect to ∆. Then, using the expressions for derivatives from Lemma 8,

∂

∂∆
φ

(
∆+

2

)
= φ

(
∆+

2

)(
−∆+∆−

4∆
− ∆+φ(∆−/2)

2∆Φ(∆−/2)

)
,

and similarly,
∂

∂∆
φ

(
∆−
2

)
= φ

(
∆−
2

)(
−∆+∆−

4∆
+

∆−φ(∆−/2)

2∆Φ(∆−/2)

)
.

Since ∆ 7→ c is differentiable with continuous derivative on (0,∞), from Equation (D.4), ∆ 7→
klεG(x, x+∆) is also differentiable with continuous derivative on (0,∞).

Differentiating Equation (D.4) with respect to ∆ (after setting y = x+∆), and substituting for
c′ from Lemma 8, we have that

1

(1− ε)

∂klεG(x, x+∆)

∂∆
= −c log cϕ

(
∆−
2

)
+

c log c

2
φ

(
∆−
2

)
∆+

∆
− c log c

∆

φ2(∆−/2)

Φ(∆−/2)

− log c
∆+

2∆
φ

(
∆−
2

)
+

log c

∆

φ2(∆−/2)

Φ(∆−/2)
− ∆+φ(∆+/2)φ(∆−/2)

2Φ(∆−/2)

+ ∆

(
Φ

(
∆+

2

)
−Φ

(
∆−
2

))
+
∆∆−
4

φ

(
∆+

2

)
− ∆∆+

4
φ

(
∆−
2

)
+

∆

2

φ(∆−/2)φ(∆+/2)

Φ(∆−/2)
+

∆

2

φ2(∆−/2)

Φ(∆−/2)
+

∆−∆+

4
φ

(
∆−
2

)
− ∆+∆−

4
φ

(
∆+

2

)
− ∆−φ

2(∆−/2)

2Φ(∆−/2)
.
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Next, using
cφ(∆−/2) = φ(∆+/2),

and collecting the coefficients of like-terms, the required derivative scaled by 1− ε equals

∆

(
Φ

(
∆+

2

)
−Φ

(
∆−
2

))
+
φ2(∆+/2)

Φ(∆−/2)

(
1

c∆
log

1

c
− 1

c2∆
log

1

c
+

∆

2c
+

∆

2c2
− ∆−

2c2
− ∆+

2c

)
+ φ

(
∆+

2

)(
log

1

c
− ∆+

2∆
log

1

c
+

∆+

2∆c
log

1

c
+

∆∆−
4
− ∆∆+

4c
+

∆+∆−
4c

− ∆+∆−
4

)
.

Substituting for ∆+ and ∆− in the above expression, one can see that the coefficients of φ(∆+/2)

and φ2(∆+/2)
Φ(∆−/2) are 0, giving

1

1− ε

∂klεG(x, x+∆)

∂∆
= ∆(Φ(∆+/2)− Φ(∆−/2)) .

For the inequality, observe that by definition of c, we have

Φ

(
∆−
2

)
≥ cΦ

(
∆−
2

)
=

1

1− ε
− Φ

(
∆+

2

)
.

Using this inequality in the derivative ∂klεG(x,x+∆)

∂∆ we get the result. □

D.2. Additional properties of klεG

In this section, we state various properties of klεG derived from the definitions of the optimal pair of
corrupted distributions from Lemma 1.

Lemma 6 Let y > x + ∆min. Let H1 and H2 be the pair of distributions from Lemma 1 for
η = N (x, 1) and κ = N (y, 1). Then, Sp (H1) = Ac1 and Sp (H2) = Dc2 , where

Ac1 =

{
t ∈ R : t ≥ y + x

2
+

log(1/c1)

y − x

}
and Dc2 =

{
t ∈ R : t ≤ x+ y

2
− log(1/c1)

y − x

}
.

Proof First, by the definitions of H1 and H2, we have that H1 is supported on

Ac1 =

{
dN (x, 1)

dN (y, 1)
(t) ≤ c1

}
=

{
log

(
dN (x, 1)

dN (y, 1)
(t)

)
≤ − log

1

c1

}
=

{
(t− y)2

2
− (t− x)2

2
≤ − log

1

c1

}
=

{
t(x− y) +

y2 − x2

2
≤ − log

1

c1

}
=

{
t ≥ x+ y

2
+

log 1
c1

y − x

}
.
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Similarly, we have the rewriting

Dc2 =

{
dN (x, 1)

dN (y, 1)
(t) ≥ 1

c2

}
=

{
log

(
dN (x, 1)

dN (y, 1)
(t)

)
≥ log

1

c2

}
=

{
t(x− y) +

y2 − x2

2
≥ log

1

c2

}
=

{
t ≤ x+ y

2
−

log 1
c2

y − x

}
.

Lemma 7 For y > x, define ∆ = y − x,

∆+ := ∆ + 2 log

(
1

c

)
1

∆
and ∆− := ∆− 2 log

(
1

c

)
1

∆
,

where c is the normalisation constant. Sp (H1) = Ac and Sp (H2) = Dc, where

Ac =

{
x ≥ ∆+

2
+m(η)

}
and Dc =

{
x ≤ ∆−

2
+m(η)

}
.

Proof This follows from Lemma 7 with c1 = c2 = c.

Lemma 8 We have that c is a continuous function of ∆ with continuous derivative on (0,∞).
Moreover, for any ∆ > 0,

c′ =
−cφ(∆−/2)

Φ(∆−/2)
, cφ

(
∆−
2

)
= φ

(
∆+

2

)
,

∂∆+

∂∆
=

∆−
∆
− 2c′

∆c
,

∂∆−
∂∆

=
∆+

∆
+

2c′

∆c
.

Proof c is defined by the following equation:

1

1− ε
= cΦ

(
∆−
2

)
+Φ

(
∆+

2

)
.

Because ∆ 7→ ∆+, ∆ 7→ ∆− and Φ are all differentiable with continuous derivative on (0,∞), we
have by implicit function theorem, c is a differentiable function of ∆ with continuous derivative, let
us denote c′ this derivative. We have on the one hand

∆′
+ :=

d

d∆
∆+ = 1− 2

c′(∆)

∆c(∆)
− 2

log(1/c(∆))

∆2
=

∆−
∆
− 2

c′(∆)

∆c(∆)
,

and no the other hand

∆′
− :=

d

d∆
∆− =

∆+

∆
+ 2

c′(∆)

∆c(∆)
.
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Then, taking the derivative with respect to ∆ in Equation (D.2),

0 =c′(∆)Φ

(
∆−
2

)
+ c(∆)

(
∆′

−
2

)
φ

(
∆−
2

)
+

(
∆′

+

2

)
φ

(
∆+

2

)
=c′(∆)

(
Φ

(
∆−
2

)
+

1

∆
φ

(
∆−
2

)
− 1

c(∆)∆
φ

(
∆+

2

))
+ c(∆)

∆+

2∆
φ

(
∆−
2

)
+

∆−
2∆

φ

(
∆+

2

)
. (D.5)

Now, observe that ∆2
+ = ∆2

− + 8 log(1/c(∆)), hence

φ

(
∆+

2

)
=

1√
2π

e−
∆2
+
8 =

1√
2π

e−
∆2
−
8

+log(c) = c(∆)φ

(
∆−
2

)
. (D.6)

Plugging this in Equation (D.5), we have

0 = c′(∆)Φ

(
∆−
2

)
+ c(∆)φ

(
∆−
2

)
.

Hence, we deduce that

c′(∆) = −
c(∆)φ

(
∆−
2

)
Φ
(
∆−
2

) . (D.7)

As a direct consequence of the above properties of klεG and Taylor’s inequality, we also have the
following mean-value theorem for klεG .

Lemma 9 (Mean-value theorem for klεG) Suppose that µa ∼ N (ma, 1), µb ∼ N (mb, 1) and
m∗ ∈ R with both ∆a := m∗ −ma > ∆min and ∆b := m∗ −mb > ∆min. Then,

klεG(µa,m∗)− klεG(µb,m∗) ≤ (1− ε)(mb −ma)+ (∆a ∨∆b) .

Proof By Lemma 3, we have KLε
inf(νa,m∗) = klεG(ma,m∗) and similarly for KLε

inf(νb,m∗).
Using this and the shift invariance from Lemma 3(b),

KLε
inf(νa,m∗)−KLε

inf(νb,m∗) = klεG(ma,m∗)− klεG(mb,m∗)

= klεG(m∗, 2m∗ −ma)− klεG(m∗, 2m∗ −mb),

and then, denoting ∆a = m∗−ma = and ∆b = m∗−mb, if ma < mb then from Taylor’s inequality
and Lemma 3,

KLε
inf(νa,m∗)−KLε

inf(νb,m∗)

≤ (mb −ma) sup
t∈(0,1)

∣∣∣∣∂klεG(x, x+∆)

∂∆

∣∣∣
∆=(1−t)(m∗−ma)+t(m∗−mb)

∣∣∣∣
≤ (mb −ma)(1− ε) sup

∆=(1−t)(m∗−ma)+t(m∗−mb)
t∈(0,1)

∆

(
2Φ

(
∆+

2

)
− 1

1− ε

)

≤ (1− ε)(mb −ma) (∆a ∨∆b) .
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On the other hand, if ma ≥ mb, then KLε
inf(νa,m∗)−KLε

inf(νb,m∗) ≤ 0.

Observe that Lemma 9 gives a bound very similar to that in the Gaussian setting without cor-
ruptions. Indeed, in the latter case,

KL(µa,N (m∗, 1))−KL(µb,N (m∗, 1)) =
(∆2

a −∆2
b)

2
≤ (∆a −∆b)(∆a ∨∆b).

Lemma 9 is tight for ∆a and ∆b around ∆min but not when ∆a and ∆b are large, this is due to
having bounded the derivative of klεG(x, x+∆) by ∆ in the proof, for simplicity because handling
Φ(∆+/2)− Φ(∆−/2) require knowledge on c which is defined implicitely.
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Appendix E. Proofs of results from Section 3

E.1. Proof of Theorem 2: regret upper bound

For a ∈ [K] and t ∈ N, let µ̂a,t denote the empirical distribution obtained using t samples observed
(corrupted samples) from arm a. To prove Theorem 2, we use that

Na(T ) =
T∑

n=1

1{An = a},

and decompose {An = a} using Lemma 10 below.

Lemma 10 (Decomposition of bad event) For any M > 0,

{An = a} ⊂ En(a) ∪ Fn(a) ∪Gn(a),

where En(a), Fn(a) and Gn(a) are disjoint events defined by

En(a) =

{
An = a,Na(n)kl

ε
G

(
Med(µ̂a(n))−

∆min

2
,m(µ1)− δ

)
≤ log n

}
,

Fn(a) =

n⋃
t=Nmin

{
An = a, Med(µ̂1,t) ≤ m(µ1)− δ − ∆min

2
,

I∗(n) ≤ tklεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
+ log t ≤ tM + log t

}
,

Gn(a) =

n⋃
t=Nmin

{
An = a, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≥M,N1(n) = t

}
.

Using Lemma 10, observe that for T ≥ KNmin,

Na(T ) ≤ Nmin +
T∑

n=KNmin

1 (En(a)) +
T∑

n=KNmin

1 (Fn(a)) +
T∑

n=KNmin

1 (Gn(a)) .

Thus, to bound the average number of pulls of suboptimal arm a, it suffices to bound the summation
of the probabilities of the above indicator functions since

E (Na(T )) ≤ Nmin +

T∑
n=KNmin

P (En(a)) +

T∑
n=1

P (Fn(a)) +

T∑
n=1

P (Gn(a)) . (E.1)

In the above inequality,

∑
n

P(En(a)) ≤
T∑

n=1

P
(
An = a,Na(n)kl

ε
G(Med(µ̂a(n))−

∆min

2
,m(µ1)− δ) ≤ log n

)
, (E.2)
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the second term is equal to

E
( T∑

n=KNmin

n∑
t=Nmin

1

(
An = a, Med(µ̂1,t) ≤ m(µ1)− δ − ∆min

2
,

I∗(n) ≤ tklεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
+ log t ≤ tM + log(t)

))
,

(E.3)

and the third term satisfies∑
n

E(Gn(a)) ≤
T∑

n=1

n⋃
t=1

{
P
(
klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≥M,N1(n) = t

})
.

(E.4)
Here, Equation (E.2) corresponds to the deviation of suboptimal arm a, which will contribute to the
main term in the total regret, while Equation (E.3) corresponds to the deviation of the optimal arm,
whose total contribution to the regret will at most be a constant and Equation (E.4) corresponds to
large deviations for klεG on the optimal arm.

First, we bound the probability of the event En(a) occurring with the following lemma. This
gives us the main term in our regret upper bound.

Lemma 11 For δ > 0 satisfying,

δ < min

(
1,∆a +∆min,

klεG (m(µa),m(µ1))

4(∆a +∆min)

)
,

we have∑
n

P(En(a)) ≤
log(T )

klεG (m(µa),m(µ1))− 2δ (∆a + δ +∆min)
+

4

1− exp (−δ2/s2ε)
,

Next, we bound the probability of events Fn(a) and Gn(a) using the following two lemmas.
These two events will have a negligible probability compared to the probability of event En(a).

Lemma 12 For δ < 1 and M = δ2

2s2ε
,

T∑
n=1

P(Fn(a)) ≤
e
− δ2

s2ε(
1− exp

(
− δ2

s2ε

))2 +
2(

1− exp
(
− δ2

2s2ε

))2 ≤ 4(
1− exp

(
− δ2

2s2ε

))2 .
Lemma 13 Let Nmin be given by

Nmin =

⌈
2 log(T )s2ε

log(1 + log(T )0.99)δ2

⌉
,

Then, for any value of M > 0, we have

T∑
n=1

P(Gn(a)) ≤ 1 + log(T )0.99.

36



CORRUPTION ROBUST IMED

Substituting the bounds from Lemmas 11, 12, 13 in Equation (E.1), we get

E[Na(T )] ≤
log(T )

klεG (m(µa),m(µ1))− 2δ (∆a + δ +∆min)

+

⌈
2 log(T )s2ε

log(1 + log(T )0.99)δ2

⌉
+ (log T )0.99 +

4(
1− exp

(
− δ2

2s2ε

))2 +
4

1− exp (−δ2/s2ε)
.

(E.5)

Next, choose

δ2 =
1

log(1 + log(1 + log(T )))
,

which also satisfies the constraints for Lemma 12 for T sufficiently large, and is such that δ −−−−→
T→∞

0.

It satisfies,⌈
2 log(T )s2ε

log(1 + (log T )0.99)δ2

⌉
+(log T )0.99+

4(
1− exp

(
− δ2

2s2ε

))2 + 4

1− exp (−δ2/s2ε)
= o(log(T )).

Hence, we have shown that

lim
T→∞

E[Na(T )]

log(T )
≤ 1

klεG (m(µa),m(µ1))
,

which concludes the proof of Theorem 2.

E.2. Proof of Lemma 11: controlling deviations of suboptimal arm (event En(a))

Let us first handle the summation from Equation (E.2), this term will give us the main term in regret.
Consider the following inequalities:

T∑
n=1

1 (En(a)) =
T∑

n=1

1

(
An = a,Na(n)kl

ε
G

(
Med(µ̂a(n))−

∆min

2
,m(µ1)− δ

)
≤ log n

)

≤
T∑

n=1

n∑
t=1

1

(
An = a, tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)− δ

)
≤ log T,Na(n) = t

)

≤
T∑
t=1

1

(
tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)− δ

)
≤ log T

)
.

The last line follows from the fact that for a given t, there exists only one n such that the two events
An = a and Na(n) = t are true. Thus, to bound

∑
n P(En(a)), it suffices to bound

∞∑
t=1

P
(
tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)− δ

)
≤ log T

)
. (E.6)

Each summand in the above expression is bounded by

P

tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)

)
− t

m(µ1)∫
m(µ1)−δ

d klεG

(
Med(µ̂a,t)− ∆min

2 , z
)

dz
dz ≤ log T

 .
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Using that for x ∈ R, d klεG(x,x+∆)

d∆ ≤ ∆ (see Lemma 3), and injecting the probability back into
Equation (E.6), we get
∞∑
t=1

P
(
tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)− δ

)
≤ log T

)

≤
∞∑
t=1

P

tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)

)
− t

m(µ1)∫
m(µ1)−δ

(
z −Med(µ̂a,t)+

∆min

2

)
dz ≤ log T


≤

∞∑
t=1

P
(
tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)

)
− tδ

(
m(µ1)−Med(µ̂a,t) +

∆min

2

)
≤ log T

)
.

Using Theorem 3 with y = δ ≤ 1 to bound the probability that the median have deviations larger
than δ, we get

∞∑
t=1

P
(
tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)− δ

)
≤ log T

)

≤
∞∑
t=1

P
(
tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)

)
− tδ (∆a + δ +∆min) ≤ log T

)

+
∞∑
t=1

2 exp

(
− tδ2

s2ε

)
.

At this point, let us introduce

t0 =

⌈
log(T )

klεG (m(µa),m(µ1))− 2δ (∆a + δ +∆min)

⌉
.

where, because of the inequality δ ≤ min(∆a + ∆min,
1

4(∆a+∆min)
klεG (m(µa),m(µ1))), we can

conclude that

2δ (∆a + δ +∆min) ≤ 4δ (∆a +∆min)

≤ klεG (m(µa),m(µ1)) .

Hence the denominator in t0 is positive.
The required sum-of-probabilities (E.6) can further be bounded by:
∞∑

t=t0

P
(
t0

(
klεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)

)
− δ (∆a + δ +∆min)

)
≤ log T

)

+ 2
∞∑

t=t0

exp

(
− tδ2

s2ε

)
+ t0 − 1,

which is further less than
∞∑

t=t0

P
(
klεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)

)
≤ klεG (m(µa),m(µ1))− δ (∆a + δ +∆min)

)

+ 2
∞∑

t=t0

exp

(
− tδ2

s2ε

)
+ t0 − 1.
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Now, using Lemma 4 under the condition δ ≤ 1, we bound the probability in the summation
above as below:

∞∑
t=1

P
(
tklεG

(
Med(µ̂a,t)−

∆min

2
,m(µ1)− δ

)
≤ log T

)
≤ 4

∞∑
t=t0

exp

(
− tδ2

2s2ε

)
+ t0 − 1,

which is at most

4

1− exp (−δ2/s2ε)
+ t0 − 1.

Hence for δ ≤ 1, we have ∑
n

P(En(a)) ≤ t0 − 1 +
4

1− exp (−δ2/s2ε)
, (E.7)

where it can be checked, by definition, that

t0 − 1 ≤ log(T )

klεG (m(µa),m(µ1))− 2δ (∆a + δ +∆min)
.

E.3. Proof of Lemma 12: controlling deviation of the optimal arm (event Fn(a))

Since each arm is pulled at least Nmin times till time n ≥ KNmin, we have

T∑
n=KNmin

P(Fn(a)) = E
( T∑

n=KNmin

n∑
t=Nmin

1

(
An = a, Med(µ̂1,t) ≤ m(µ1)− δ − ∆min

2
,

I∗(n) ≤ tklεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
+ log t ≤ tM + log(t)

))
.

By changing the order of summation in the above expression, it can be shown to equal

T∑
t=Nmin

E
( T∑

n=t

1

(
An = a, Med(µ̂1,t) ≤ m(µ1)− δ − ∆min

2
,

I∗(n) ≤ tklεG(Med(µ̂1,t)−
∆min

2
,m(µ1)− δ) + log t ≤ tM + log(t)

))
,

which is smaller than

T∑
t=1

E
(
1

(
Med(µ̂1,t) ≤ m(µ1)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)

×
T∑

n=t

1

(
An = a, I∗(n) ≤ tklεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
+ log t

))
.
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Recall that for time n such that An = a, I∗(n) = Na(n)kl
ε
G(Med(µ̂a(n))−∆min,Med∗(n))+

logNa(n), which is at least logNa(n). Using this, the above summation is bounded by

T∑
t=1

E
(
1

(
Med(µ̂1,t) ≤ m(µ1)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)

×
T∑

n=t

1

(
An = a, logNa(n) ≤ tklεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
+ log t

))
,

which is at most (also see Honda and Takemura (2015, Lemma 13))

T∑
t=1

E
(
1

(
Med(µ̂1,t) ≤ m(µ1)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)
× e

tklεG

(
Med(µ̂1,t)−

∆min
2

,m(µ1)−δ
)
+log t

)
. (E.8)

Using the bound on
∑

n P(Fn(a)) from Equation (E.8) and observing that the expectation in
the bound is for a non-negative random variable, we get the following bound on

∑T
n=1 P(Fn(a)):

T∑
t=1

t

∞∫
0

P
(
1

(
Med(µ̂1,t) ≤ m1(µ)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)

× e
tklεG

(
Med(µ̂1,t)−

∆min
2

,m(µ1)−δ
)
≥ x

)
dx. (E.9)

Let us control the integral above separately on [0, 1] and [1,∞).

Integral on [0, 1] On [0, 1] we only control the deviations of the empirical median and we do not
care about the deviations of klεG :

1∫
0

P
(
1

(
Med(µ̂1,t) ≤ m1(µ)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)

× e
tklεG

(
Med(µ̂1,t)−

∆min
2

,m(µ1)−δ
)
≥ x

)
dx

≤
1∫

0

P
(
Med(µ̂1,t) ≤ m1(µ)− δ − ∆min

2

)
dx=P

(
Med(µ̂1,t) ≤ m1(µ)−δ −

∆min

2

)
≤ 2e

−t δ
2

s2ε .

Using Theorem 3 for the last line, for δ < 1. Then, we get

T∑
t=Nmin

1∫
0

tP
(
1

(
Med(µ̂1,t) ≤ m1(µ)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)

≤ 2

∞∑
t=1

te
−t δ

2

s2ε = 2
e
− δ2

s2ε(
1− e

− δ2

s2ε

)2 . (E.10)
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Next, we bound the integral on [1,∞).

Integral on [1,∞) We use that the deviations of klεG are bounded by M in the indicator function
to bound simplify the probability as follows.

T∑
t=1

t

∞∫
1

P
(
1

(
Med(µ̂1,t) ≤ m1(µ)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)

× e
tklεG

(
Med(µ̂1,t)−

∆min
2

,m(µ1)−δ
)
≥ x

)
dx

≤
T∑
t=1

t

∞∫
1

P
(
etM ≥ e

tklεG

(
Med(µ̂1,t)−

∆min
2

,m(µ1)−δ
)
≥ x

)
dx

=
T∑
t=1

t

exp(tM)∫
1

P
(
tklεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≥ log x

)
dx

Then, we use a change of variable x← ey to show that the above is smaller than

T∑
t=1

t

tM∫
0

P
(
tklεG(Med(µ̂1,t)−

∆min

2
,m(µ1)− δ) ≥ y

)
eydy.

Next, we use the first case of Lemma 4 with y = δ and bound the probability that klεG(Med(µ̂1,t)−
∆min
2 ,m(µ1)− δ) is strictly positive. We have,

P
(
klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
> 0

)
≤ 2 exp

(
− tδ2

s2ε

)

Using this bound, we get the following control

T∑
t=1

t

∞∫
1

P
(
1

(
Med(µ̂1,t) ≤ m1(µ)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)

× e
tklεG

(
Med(µ̂1,t)−

∆min
2

,m(µ1)−δ
)
≥ x

)
dx

≤ 2
T∑

t=Nmin

tM∫
0

t exp

(
− tδ2

s2ε

)
eydy ≤ 2

T∑
t=Nmin

t exp

(
− tδ2

s2ε

)
eMt.
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Now, take M = δ2

2s2ε
, to keep the exponent of the exponential negative, we get

T∑
t=1

t

∞∫
1

P
(
1

(
Med(µ̂1,t) ≤ m1(µ)− δ − ∆min

2
, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≤M

)

× e
tklεG

(
Med(µ̂1,t)−

∆min
2

,m(µ1)−δ
)
≥ x

)
dx

≤ 2
T∑
t=1

t exp

(
− tδ2

2s2ε

)
≤

2 exp
(
− δ2

2s2ε

)
(
1− exp

(
− δ2

2s2ε

))2 ≤ 2(
1− exp

(
− δ2

2s2ε

))2 .
Wrap-up: bounding

∑
n P(Fn(a)): Combining Equations (E.9), (E.10), and (E.9), and choosing

M =
δ2

2s2ε
,

we finally obtain

T∑
n=1

P(Fn(a)) ≤
e
− δ2

s2ε(
1− exp

(
− δ2

s2ε

))2 +
2(

1− exp
(
− δ2

2s2ε

))2 ≤ 4(
1− exp

(
− δ2

2s2ε

))2 . (E.11)

E.4. Proof of Lemma 13: controlling large deviations of the kl (event Gn(a))

Let us now control P(Gn(a)). We have for any M > 0,

T∑
n=KNmin

P(Gn(a))

=
T∑

n=Nmin

P

 n⋃
t=Nmin

{
An = a, klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≥M,N1(n) = t

}
≤

T∑
n=Nmin

n∑
t=Nmin

P
(
klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≥ δ2

2s2ε

)

≤
T∑

n=Nmin

n∑
t=Nmin

P
(
klεG

(
Med(µ̂1,Nmin)−

∆min

2
,m(µ1)− δ

)
≥ 0

)

≤ T 2e
−Nmin

δ2

s2ε .

This leads us to choose

Nmin =

⌈
2 log(T )s2ε

log(1 + log(T )0.99)δ2

⌉
,

which ensures that
T∑

n=1

P(Gn(a)) ≤ 1 + log(T )0.99.
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E.5. Proof of Theorem 3: concentration of empirical median

Without loss of generality, by doing the change of variable X ← X −m, we assume in the proof
that m = 0. For any λ > 0, we have

P (Med(Xn
1 ) > λ) ≤ P

(
#{i : Xi ≥ λ} ≥ n

2

)
= P

(
1

n

n∑
i=1

1{Xi ≥ λ} ≥ 1

2

)
.

Let W1, . . . ,Wn i.i.d Ber(ε), Y1, . . . , Yn i.i.d ∼ N (m, 1) and O1, . . . , On be i.i.d from H , with the
W ’s, the Y ’s and the O’s all independents. By characterization of a mixture of distributions, we
have that Xi is equal in distribution to (1−Wi)Yi +WiOi. Hence,

P (Med(Xn
1 ) ≥ λ) = P

(
1

n

n∑
i=1

(1{(1−Wi)Yi +WiOi ≥ λ}) ≥ 1

2

)

= P

(
1

n

n∑
i=1

((1−Wi)1{Yi ≥ λ}+Wi1{Oi ≥ λ}) ≥ 1

2

)

≤ P

(
1

n

n∑
i=1

(1−Wi)1{Yi ≥ λ}+ 1

n

n∑
i=1

Wi ≥
1

2

)
. (E.12)

The quantities appearing in the right-hand-side of Equation (E.12) are all with values in {0, 1}.

Concentration of Bernoulli random variables
W1, . . . ,Wn are i.i.d Bernoulli random variables with mean ε. From Bourel et al. (2020, Lemma
6), for any γ ∈ (0, 1),

P

 1

n

n∑
i=1

Wi ≥ ε+

(
(1− 2ε) log 1

γ

4n log 1−ε
ε

) 1
2

 ≤ γ. (E.13)

Similarly, for 1 ≤ i ≤ n , (1−Wi)1{Yi > λ} are also Bernoulli random variables with mean

E[(1−Wi)1{Yi > λ}] = (1− ε)(1− Φ(λ)) ≤ (1− Φ(λ)) ≤ 1/2.

Again using the sub-Gaussian concentration from Bourel et al. (2020, Lemma 6), we have with
probability larger than 1− γ,

1

n

n∑
i=1

(1−Wi)1{Yi ≥ λ} ≤ (1− ε)(1− Φ(λ)) +

(1− 2(1− ε)(1− Φ(λ))) log 1
γ

4n log
(
1−(1−ε)(1−Φ(λ))
(1−ε)(1−Φ(λ))

)
 1

2

≤ (1− ε)(1− Φ(λ)) +

(1− 2(1− ε)(1− Φ(λ))) log(1/γ)

4n log
(

Φ(λ)
1−Φ(λ)

)
 1

2

,

(E.14)

43



AGRAWAL MATHIEU BASU MAILLARD

where in the last line, we used that p 7→ (1 − p)/p is decreasing on (0, 1). Then, from Equa-
tions (E.14) and (E.13), we get with probability larger than 1− 2γ,

1

n

n∑
i=1

(1−Wi)1{Yi ≥ λ}+ 1

n

n∑
i=1

Wi

≤ (1− ε)(1− Φ(λ)) + ε+

(1− 2(1− ε)(1− Φ(λ))) log 1
γ

4n log
(

Φ(λ)
1−Φ(λ)

)
 1

2

+

(
(1− 2ε) log 1

γ

4n log 1−ε
ε

) 1
2

.

In this equation, there are two free parameters: λ and γ. Next, we choose λ so that

1

n

n∑
i=1

(1−Wi)1{Yi ≥ λ}+ 1

n

n∑
i=1

Wi ≤
1

2

with high probability. This choice of λ will then allow us to control the probability in Equation (E.12).

Choice of λ
First, we state some basic inequalities for Φ(λ). We have for λ = ∆min

2 + L, using Taylor’s
inequality,

Φ(λ)− 1

2(1− ε)
≥ Lφ

(
∆min

2
+ L

)
and from monotonicity of x 7→ x/(1− x) on [0, 1),

Φ(λ)

1− Φ(λ)
≥ Φ(∆min

2 )

1− Φ(∆min
2 )

=

1
2(1−ε)

1−2ε
2(1−ε)

=
1

1− 2ε
.

Then, we have

(1− ε)(1− Φ(λ)) + ε− 1

2
+

(1− 2(1− ε)(1− Φ(λ))) log 1
γ

4n log
(

Φ(λ)
1−Φ(λ)

)
 1

2

+

(
(1− 2ε) log 1

γ

4n log((1− ε)/ε)

) 1
2

≤ (1− ε)

(
1− 2ε

2(1− ε)
− Lφ

(
∆min

2
+ L

))
+ ε− 1

2

+


(
1− 2(1− ε)

(
1−2ε
2(1−ε) + Lφ(∆min

2 + L)
))

log 1
γ

4n log
(

1
1−2ε

)


1
2

+

(
(1− 2ε) log 1

γ

4n log 1−ε
ε

) 1
2

≤ −(1− ε)Lφ

(
∆min

2
+ L

)
+

 ε log 1
γ

2n log
(

1
1−2ε

)
 1

2

+

(
(1− 2ε) log 1

γ

4n log 1−ε
ε

) 1
2

≤ −(1− ε)Lφ

(
∆min

2
+ L

)
+

 ε log 1
γ

2n log
(

1
1−2ε

)
 1

2

+

(
(1− 2ε) log 1

γ

4n log 1−ε
ε

) 1
2

.
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Now, suppose L ≤ 1 and choose

L =
1

(1− ε)φ
(
∆min
2 + 1

)
√ ε

2 log
(

1
1−2ε

) +

√
(1− 2ε)

4 log
(
1−ε
ε

)
√ log(1/γ)

n

= sε

√
log(1/γ)

n
, (E.15)

with sε

√
log(1/γ)

n ≤ 1. After this choice of λ, there is only one free parameter remaining: γ.

Injection of chosen λ in Equation (E.12)
From the choice of λ = ∆min

2 + L from Equation (E.15), we have

P

(
Med(Xn

1 ) ≥
∆min

2
+ sε

√
log(1/γ)

n

)
≤ 2γ.

Under the condition that γ ≥ exp
(
−n/s2ε

)
. Let us now reformulate this result by solving the

following equation for γ:

y = sε

√
log(1/γ)

n
,

we get for any 0 ≤ y ≤ 1

P
(
Med(Xn

1 ) ≥
∆min

2
+ y

)
≤ 2 exp

(
−ny2/s2ε

)
.

To get the other direction, remark that X is equal in distribution to −X and inject in the above
concentration.

E.6. Proof of Lemma 4: concentration of klεG
The two proofs are very similar, except that we don’t concentrate around the same quantity.

Case mb = ma − δ
We write that from Lemma 9,

klεG

(
Med(Xn

1 )−
∆min

2
,ma − δ

)
= klεG

(
Med(Xn

1 )−
∆min

2
,ma − δ

)
− klεG (ma −∆min − δ,ma − δ)

≤
(
ma −Med(Xn

1 )−
∆min

2
− δ

)
+

max

(
ma −Med(Xn

1 )− δ +
∆min

2
,∆min

)
.

Then, from Theorem 3, with probability larger than 1− 2 exp
(
−ny2

s2ε

)
, we have for any y ≤ 1,

klεG

(
Med(Xn

1 )−
∆min

2
,ma − δ

)
≤ (y − δ)+max (y − δ +∆min,∆min)

= (y − δ)+

(
|y − δ|+ ∆min

2

)
, (E.16)

where the last line comes from the fact that when y ≤ δ, the bound is 0 anyway.
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Case mb > ma +∆min

From Lemma 9,

klεG (ma,mb)− klεG

(
Med(Xn

1 )−
∆min

2
,mb

)
≤
(
Med(Xn

1 )−ma −
∆min

2

)
+

max

(
mb −Med(Xn

1 ) +
∆min

2
,mb −ma

)
.

Then, from Theorem 3, with probability larger than 1− 2 exp
(
−ny2

s2ε

)
, we have for any y ≤ 1,

klεG (ma,mb)− klεG

(
Med(Xn

1 )−
∆min

2
,mb

)
≤ ymax (mb −ma + y +∆min,mb −ma)

= y(mb −ma + y +∆min).

E.7. Proof of Lemma 10

The event {An = a} can be written as a disjoint union of{
An = a, Med∗(n) > m(µ1)− δ − ∆min

2

}
(E.17)

and {
An = a, Med∗(n) ≤ m(µ1)− δ − ∆min

2

}
. (E.18)

Of these, intuitively, the second event in Equation (E.17) should not be rare. However, once suf-
ficient samples have been allocated to arm a, the event {An = a} becomes rare when Med∗(n)
is close to m1(µ). This is because after sufficient samples, µ̂a(n) ≈ µa, which implies that
klεG(Med(µ̂a(n))−∆min,Med∗(n)) should be large. For the event in Equation (E.18), for large n,
the event {Med∗(n) ≤ m1(µ)− δ −∆min/2} should be rare. We will show that the probability of
Equation (E.17) occurring, summed across time, contributes to the main term in regret.

Define I∗(n) := mina Ia(n) to be the minimum index. Recall that a∗(n) denotes the arm with
the maximum estimated mean, i.e.,

a∗(n) ∈ arg max
b∈[K]

Med(µ̂b(n)).

Since An = a implies that Ia(n) = I∗(n). Then,

Ia(n) = I∗(n)

≤ Ia∗(n)(n)

= logNa∗(n)(n)

≤ log n.

Thus, {An = a} implies that Ia(n) ≤ log n and Equation (E.17) is contained in{
An = a, Na(n)kl

ε
G (Med(µ̂a(n))−∆min,Med∗(n)) ≤ log n, Med∗(n) > m(µ1)− δ − ∆min

2

}
.
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Next, using the monotonicity of klεG in the second argument and its translation invariance (Lemma

3) in the above containment, we have that
{
An = a, Med∗(n) > m1(µ)− δ − ∆min

2

}
is contained

in {
An = a,Na(n)kl

ε
G

(
Med(µ̂a(n))−

∆min

2
,m(µ1)− δ

)
≤ log n

}
. (E.19)

Next, observe that the event in Equation (E.18) satisfies{
An = a, Med∗(n) ≤ m(µ1)− δ − ∆min

2

}
⊂
{
An = a, Med∗(n) ≤ m(µ1)− δ − ∆min

2
, klεG

(
Med(µ̂1(n))−

∆min

2
,m(µ1)− δ

)
≤M

}
∪
{
klεG

(
Med(µ̂1(n))−

∆min

2
,m(µ1)− δ

)
≥M

}
which is included in

n⋃
t=1

(
An = a, Med∗(n) ≤ m(µ1)− δ − ∆min

2
,

klεG

(
Med(µ̂1(n))−

∆min

2
,m(µ1)− δ

)
≤M,N1(n) = t

)
∪
{
klεG

(
Med(µ̂1(n))−

∆min

2
,m(µ1)− δ

)
≥M,N1(n) = t

}
Let µ̂1,t denote the empirical distribution for arm 1 with t samples. Now, since An = a implies that

Ia(n) = I∗(n) ≤ I1(n) = N1(n)kl
ε
G (Med(µ̂1(n))−∆min,Med∗(n)) + logN1(n),

the above union-of-events is further contained in

n⋃
t=1

{
An = a, Med(µ̂1,t) ≤ Med∗(n) ≤ m(µ1)− δ − ∆min

2
,

I∗(n) ≤ tklεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
+ log t ≤ tM + log(t)

}
∪
{
klεG

(
Med(µ̂1,t)−

∆min

2
,m(µ1)− δ

)
≥M,N1(n) = t

}
,

which is the union of Fn(a) and Gn(a).

E.8. Proof of Corollary 4

Taking the limsup in Theorem 2 yield the upper bound lim sup
T→∞

E[Na(T )]
log T ≤ 1

klεG(m(µa),m∗(µ)) . Then,

from this upper bound and the definition of regret, we have lim sup
T→∞

E[RT ]
log T ≤

∑K
a=1

∆a
klεG(m(µa),m∗(µ)) .

Similarly, applying the same reasoning with Proposition 2 we get lim inf
T→∞

E[RT ]
log T ≤

∑K
a=1

∆a
klεG(m(µa),m∗(µ)) ,

which proves the conclusion of the corollary.
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Appendix F. CRIMED for misspecified Gaussian model

In the main text, we assumed that the arm distributions followed a Gaussian distribution with unit
variance and observations were corrupted. In this section, we explore a modification of CRIMED that
demonstrates a strong numerical performance even in the presence of model misspecification (with
corruption). Impacts of model misspecification in bandits has attracted increasing attention, where
the existing studies focus mostly on the linear bandits and linear contextual bandits (Ghosh et al.,
2017; Foster et al., 2020). In contrast, we study multi-armed stochastic bandits with misspecification
about reward distributions being Gaussian.

We commence by detailing the misspecified model and the adaptation of CRIMED, providing
a brief outline of its theoretical rationale. The section concludes with numerical analyses of the
proposed algorithm.

F.1. Misspecified Gaussian model: Regret lower bound and algorithm design

Fix ε > 0, the fraction of observations that are corrupted. Recall that we place absolutely no
assumptions on corruption distributions. In the current section, we consider misspecification of the
Gaussian models. Fix ε(m) > 0, —this denotes the fraction of samples that are misspecified. Fix
δ > 0, —this represents a bound on the difference of the mean of the Gaussian distribution and the
misspecification distribution. Unlike for the corruption distributions, which are allowed to perturb
the mean arbitrarily, we need this bound for the misspecification model. To be more specific, we
consider the following perturbation of the Gaussian models for the arm distributions, with fixed and
known ε(m), and δ.

Iδ
ε(m) :=

{
(1− ε(m))N (x, 1) + ε(m)η(m) : x ∈ R, |x−m(η(m))| ≤ δ, η(m) ∈ P(R)

}
,

where, recall that P(R) denotes the collection of all probability measures on R. Here, η(m) is the
misspecification distribution, which is restricted to have a mean close to that of the true Gaussian
distribution, but otherwise can be arbitrary.

Bandit model. Each arm a in the bandit instance is associated with a distribution µa ∈ Iδε(m) , which

is a (1− ε(m), ε(m)) mixture of N (ma, 1) and η
(m)
a , i.e.,

µa = (1− ε(m))N (ma, 1) + ε(m)η(m)
a .

On pulling an arm a, the algorithm receives a reward which is an independent sample drawn from
µa. However, as in the main text, with probability 1−ε, it observes this independent sample, but with
the remaining ε probability, it observes a sample drawn from an arbitrary corruption distribution.
However, unlike in the main text, here the uncorrupted sample is not from a Gaussian distribution,
but a mixture of a Gaussian and a misspecification distribution.

Next, consider the ε corruption neighbourhood of distributions in Iδ
ε(m) , given by Cδ

ε,ε(m) below.

Cδ
ε,ε(m) =

{
κ⊙ε H : κ ∈ Iδ

ε(m) , H
(m) ∈ P(R)

}
.

For an arm a with distribution µa ∈ Iδε(m) and corruption distribution H , the observations from
these arms are distributed as µa ⊙ε H ∈ Cδε,ε(m) . This can be re-expressed as

(1− ε(m))(1− ε)N (ma, 1) + ε(m)(1− ε)η(m)
a + εH.
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Regret. For this setting, ∆̄a := m∗(µ) −m(µa), where recall that m∗(µ) denotes the maximum
mean of distributions in µ, and define ∆a := maxb(mb−ma), where ma is the mean of the Gaussian
distribution associated with arm a. Then, ∆̄a equals

max
b

{
(1− ε(m))mb + ε(m)m(η

(m)
b )− (1− ε(m))ma − ε(m)m(η(m)

a )
}
.

Since ηa is assumed to satisfy
∣∣∣m(η

(m)
a )−ma

∣∣∣ ≤ δ, we have

∆̄a ≤ max
b

{
mb −ma + 2ε(m)δ

}
= ∆a + 2ε(m)δ.

The expected regret incurred by the algorithm in T trials can then be shown to satisfy

E[RT ] =

K∑
a=1

E[Na(T )]∆̄a ≤
K∑
a=1

E[Na(T )]
(
∆a + 2ε(m)δ

)
.

Here, the expectation is with respect to the randomness in the algorithm, arm distributions, as well
as the corruption distributions. As in Theorem 1, one can then obtain the following lower bound on
regret for an appropriate definition of uniformly-good algorithms (that know both ε and ε(m)):

lim inf
T→∞

1

log T

(
sup

H∈P(R)K
Eµ⊙εH [Na(T )]

)
≥ 1

KLε
inf

(
µa,m∗(µ); Iδ

ε(m)

) ,
where KLε

inf is defined as earlier, and is given below for completeness. For η ∈ P(R), x ∈ R,

KLε
inf

(
µa,m

∗(µ); Iδ
ε(m)

)
=min

{
KL(µa ⊙ε H,κ⊙ε H

′) : κ ∈ Iδ
ε(m) ,m(κ) ≥ x,H,H ′∈P(R)

}
.

(F.1)
For x ∈ R and y ≥ x, recall the definition of Gaussian KLε

inf , kl
ε
G(x, y), from Equation (2.4).

We now show that the KLε
inf with respect to the misspecified model Iδ

ε(m) defined above, is lower
bounded by that for a Gaussian class with a unit variance, with a blown-up corruption proportion.

Lemma 14 Let µa = (1− ε(m))N (ma, 1) + ε(m)η
(m)
a ∈ Iδ

ε(m) , and ε̃ := ε+ ε(m) − εε(m). Then

KLε
inf

(
µa, x; Iδε(m)

)
≥ klε̃G

(
ma, x− ε(m)δ

)
.

Proof Observe from Equation (F.1) that KLε
inf(µa, x; Iδε(m)) equals

min
{
KL(((1− ε(m))N (ma, 1) + ε(m)η(m)

a )⊙ε H, ((1− ε(m))N (y, 1) + ε(m)κ(m))⊙ε H
′) :

(1− ε(m))y + ε(m)m(κ(m)) ≥ x,H,H ′, κ(m) ∈ P(R),
∣∣∣y −m(κ(m))

∣∣∣ ≤ δ
}
,

where the minimisation is over y, κ(m), H , and H ′. The inequalities on m(κ(m)) in the constraints
above imply

y ≥ x− ε(m)δ.
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Using this in the constraints instead, and further optimising over η(m)
a , KLε

inf is lower bounded as
below:

min
{
KL(((1− ε(m))N (ma, 1) + ε(m)η(m)

a )⊙ε H, ((1− ε(m))N (y, 1) + ε(m)κ(m))⊙ε H
′) :

y ≥ x− ε(m)δ,H,H ′, κ(m), η(m)
a ∈ P(R)

}
,

where the minimisation is over y, κ(m), η(m)
a , H , and H ′. Let ε̃ := ε + ε(m) − εε(m). Then, the

lower bound obtained above equals,

KLε̃
inf(N (ma, 1), x− ε(m)δ;G),

which equals
klε̃G(ma, x− ε(m)δ),

proving the desired bound.

We now present the modification of CRIMED for this setting. We do not use the knowledge of δ
in algorithm design.

Algorithm. We increase the value of the parameter ε in CRIMED to

ε̃ = ε+ ε̃(m) − εε̃(m)

to encompass both corruption and the misspecification distributions as outliers (corruptions), i.e.,
we modify CRIMED to use ε̃ in place of ε everywhere (index as well as Nmin). We call CRIMED(m)

the resulting algorithm (similarly CRIMED ∗ (m)).

Regret bound. Following the proof of Theorem 2, we get the following upper bound on regret of
the modified algorithm. For µ ∈ Iδ

ε(m) such that for each sub-optimal arm a, ∆a− 2ε(m)δ ≥ ∆min,

where ∆min is the minimum gap (Definition 3) corresponding to ε̃, CRIMED(m) satisfies

lim
T→∞

E[Na(T )]

log(T )
≤ 1

klε̃G (ma,maxb {mb})
,

where the arguments of klε̃G are means of the Gaussian parts of the arm distributions. Further, recall
that the condition on the misspecification distributions, gives the following:∣∣∣ma −m(η(m)

a )
∣∣∣ ≤ δ =⇒ m(µa) ≥ ma − ε(m)δ.

Since klε̃
(m)

is non-decreasing in its second argument (Lemma 3), we get the following upper
bound on regret:

lim
T→∞

E[Na(T )]

log(T )
≤ 1

klε̃G (ma,maxbmb)
≤ 1

klε̃G
(
ma,m∗(µ)− ε(m)δ

) ,
where m∗(µ) denotes the maximum mean of the arms in µ. This establishes a logarithmic regret
for the misspecified setting. In the next section, we present some numerical results to justify the
logarithmic bound.
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Figure 3: Reward distributions for arms in Settings 4 and 5.
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Figure 4: Cumulative regret for 100 repetitions on Settings 4 (left) and 5 (right). Solid lines repre-
sent the means and shaded area are 90% percentile intervals.

F.2. Experimental illustration

In this section, we present experiments for the misspecified setting. We consider two settings of ban-
dit with 3 arms: Setting 4 and Setting 5. In Setting 4, there are no outliers, the law is misspecified
Gaussian with means ma having values [0.6, 0.8, 1], and standard deviation 0.5; the misspecifi-
cation distribution for each arm is Gaussian with means [3, 3, 3] and standard deviation 0.5; the
misspecification weight ε(m) = 0.1. Plots of the three distributions can be found on Figure 3.

In Setting 5, in addition to model misspecification, we also have corruption. The arm distri-
butions are the same as in Setting 4. In addition, the corruption proportion is set to ε = 0.01,
with corruption distributions for each arm being Gaussian with means [10, 10,−20], and standard
deviation 1. The results are plotted in Figure 4.

In Figure 4 we see that CRIMED ∗ (m) performs well in a misspecified setting. In particular, it is
better than IMED which (mistakenly) considers a Gaussian model. This shows that using corruption
to tackle model misspecification is worthwhile. As in experiments from Section 4, CRIMED ∗ (m)

is also better than RobustUCB, mainly due to the non-optimality of RobustUCB.

51


	Introduction
	Contributions
	Related work

	Lower bound and KL-divergence in corrupted neighbourhoods
	Problem-dependent lower bound
	Huber's pair and corrupted KL-inf
	The case of Gaussian rewards with known variance

	CRIMED: Algorithm and analysis
	Algorithm design: An IMED-based algorithm with estimated medians
	Theoretical results: Regret upper bound and concentration results

	Experimental illustration
	Discussion and open questions
	Proofs for results in Section 2.1 and Section 2.2: Lower bound and hardest corruption pair
	Proof of Theorem 1
	Proof of Lemma 1

	Discussion on the knowledge of  and an impossibility result
	Non-intersection of corruption neighbourhoods: Discussions and Proofs from Section 2.3
	Proof of Lemma 2

	Properties of klG: a discussion and proofs
	Proof of Lemma 3
	Additional properties of klG

	Proofs of results from Section 3
	Proof of Theorem 2: regret upper bound
	Proof of Lemma 11: controlling deviations of suboptimal arm (event En(a))
	Proof of Lemma 12: controlling deviation of the optimal arm (event Fn(a))
	Proof of Lemma 13: controlling large deviations of the kl (event Gn(a))
	Proof of Theorem 3: concentration of empirical median
	Proof of Lemma 4: concentration of klG
	Proof of Lemma 10
	Proof of Corollary 4

	CRIMED for misspecified Gaussian model
	Misspecified Gaussian model: Regret lower bound and algorithm design
	Experimental illustration


